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Abstract

White matter hyperintensities (WMHs) are frequently observed on structural neuro-

imaging of elderly populations and are associated with cognitive decline and
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increased risk of dementia. Many existing WMH segmentation algorithms produce

suboptimal results in populations with vascular lesions or brain atrophy, or require

parameter tuning and are computationally expensive. Additionally, most algorithms

do not generate a confidence estimate of segmentation quality, limiting their inter-

pretation. MRI-based segmentation methods are often sensitive to acquisition proto-

cols, scanners, noise-level, and image contrast, failing to generalize to other

populations and out-of-distribution datasets. Given these concerns, we propose a

novel Bayesian 3D convolutional neural network with a U-Net architecture that auto-

matically segments WMH, provides uncertainty estimates of the segmentation out-

put for quality control, and is robust to changes in acquisition protocols. We also

provide a second model to differentiate deep and periventricular WMH. Four hun-

dred thirty-two subjects were recruited to train the CNNs from four multisite imaging

studies. A separate test set of 158 subjects was used for evaluation, including an

unseen multisite study. We compared our model to two established state-of-the-art

techniques (BIANCA and DeepMedic), highlighting its accuracy and efficiency. Our

Bayesian 3D U-Net achieved the highest Dice similarity coefficient of 0.89 ± 0.08

and the lowest modified Hausdorff distance of 2.98 ± 4.40 mm. We further validated

our models highlighting their robustness on “clinical adversarial cases” simulating data

with low signal-to-noise ratio, low resolution, and different contrast (stemming from

MRI sequences with different parameters). Our pipeline and models are available at:

https://hypermapp3r.readthedocs.io.
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1 | INTRODUCTION

1.1 | Clinical motivation

White matter hyperintensities (WMHs) are commonly observed MRI-

based biomarkers of cerebral small vessel disease and have been asso-

ciated with aging and neurodegenerative diseases such as Parkinson’s
disease (PD) and Alzheimer’s disease (AD) (Lee et al., 2016; Lee

et al., 2010; Prins & Scheltens, 2015). WMHs have been linked to

global cognitive impairment (Jokinen et al., 2020), a decline in mental

processing speed (van den Heuvel, 2006), an increased risk of late

onset depression (Herrmann, Le Masurier, & Ebmeier, 2008), and an

increased risk of stroke, dementia, and mortality (Debette &

Markus, 2010). Since WMH often occurs in the preclinical stage of

dementia, it may represent one of the pathological processes indicat-

ing progression from mild cognitive impairment (MCI) to dementia

(Smith et al., 2008) and should be considered as a covariant of interest

at baseline and longitudinally in future AD treatments (Carmichael

et al., 2010). Furthermore, periventricular venous collagenosis is asso-

ciated with WMH in both AD and non-AD patients (Keith

et al., 2017).

WMH appear as hyperintense (bright) on both T2-weighted

(T2w) and fluid-attenuated inversion recovery (FLAIR) MRI images

and hypointense (dark) on T1-weighted (T1w) images. While T1w-

based WMH estimates have been shown to have some degree of

correlation with estimates based on T2w and FLAIR image (Dadar

et al., 2018), the inclusion of the two sequences provides improved

contrast and visualization of WMH borders, and thus a more accurate

segmentation and volume quantification. This is especially important

for the classification of both deep WMH (dWMH, found in deep

white matter) and periventricular WMH (pvWMH, which extend from

the ventricular wall). dWMH presence has been linked to the inci-

dence of migraine (Hong et al., 2020), while increases in pvWMH

have been associated with AD progression (Kilgore et al., 2020), as

well as stroke (Valdés Hernández, Piper, & Bastin, 2014). There has

been debate in the literature regarding whether or not WMH should

be differentiated based on their location, or if they should be consid-

ered to be the same based on continuous spectrum (Wardlaw, Valdés

Hernández, & Muñoz-Maniega, 2015). The exploration of WMH

involvement in neurodegenerative disease warrants an accurate

segmentation, quantification and classification of WMH and its

subtypes.
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1.2 | Related works

1.2.1 | Automated segmentation

There has been a large amount of work revolving around WMH seg-

mentation in clinical and neuroscience research. Traditionally, manual

tracings are employed as the gold standard. Individuals trained to seg-

ment WMH are aware of the features that distinguish WMH from

normal-appearing white matter and other tissue types. The large

amount of time and training required to manually segment WMH

necessitate the need for automatic methods to segment WMH.

Despite the bevy of available segmentation methods (Griffanti

et al., 2016; Wang et al., 2012; Zhang et al., 2020), several challenges

still exist, such as the lack of uniformity across different image types

and differences in imaging protocols/scanners, as well as the lack of

methods for quality control. For example, segmentation methods that

rely on image intensity (Griffanti et al., 2016; Yoo et al., 2014) had

varying degrees of success. While methods that focus on thresholding

based on intensity often fail to detect smaller, lower intensity dWMH,

thereby increasing the rate of false positives (Jeon et al., 2011). In

addition, datasets used for training and testing are often small, and

may not always be tested across different scanner types.

Supervised methods utilize previously acquired ground truth, cap-

italizing on features from the data to produce accurate segmentations

on other datasets. Many state-of-the-art (SOTA) WMH segmentation

methods are based on a supervised learning formulation. BIANCA,

short for “Brain intensity abnormality classification algorithm”
(Griffanti et al., 2016) is a fully automated supervised method based

on the k-nearest neighbor (kNN) algorithm. The LOCally Adaptive

Threshold Estimation (LOCATE) method was later proposed

(Sundaresan et al., 2019) to determine local thresholds that are sensi-

tive to spatial differences in the lesion probabilities to improve

BIANCA's binary lesion masks.

In recent years, deep learning with convolutional neural net-

works (CNNs) has achieved SOTA performance for many medical

image segmentation tasks, including WMH and stroke lesions

(Guerrero et al., 2018). Kamnitsas et al. (2017) proposed a network

architecture consisting of two parallel convolutional pathways that

processes the 3D input patches at multiple scales, followed by post-

processing using a 3D densely connected conditional random field

(CRF) to remove false positives. Their method was originally pro-

posed for ischemic stroke and tumor segmentation, but it can be

adopted for different lesion segmentations. The U-Net model archi-

tecture (Ronneberger, Fischer, & Brox, 2015) has been widely used in

segmenting biomedical images due to its performance and efficiency

of using GPU memory. A CNN model for WMH segmentation that

distinguishes between WMH and stroke was presented by Guerrero

et al. (2018). Li et al. (2018) presented a U-Net and an ensemble of

models trained with random weight initializations to reduce over-

fitting and boost segmentation results. A skip connection U-Net

model was proposed by Wu et al. (2019) to capture more features

and improve the model's receptive field and was evaluated on WMH

segmentation.

1.2.2 | Uncertainty and Bayesian networks

Uncertainty estimation is critical for understanding the reliability of

segmentation networks, and for providing a quantitative assessment

of confidence in their outputs. This is specifically important for medi-

cal imaging in a clinical setting. Current approaches do not provide

uncertainty estimates for their segmentation results. Several studies

have investigated uncertainty estimation for deep neural networks

(Kendall, Badrinarayanan, & Cipolla, 2017; Kendall & Gal, 2017; Wang

et al., 2019). As suggested by Kendall and Gal (2017), there are two

major types of predictive uncertainties for deep CNNs: epistemic

(model) uncertainty and aleatoric (image-based) uncertainty. Epistemic

uncertainty describes limitations in the learning procedure due to lim-

ited training data. Aleatoric uncertainty depends on noise or random-

ness in the input image.

Bayesian neural networks (BNNs) have been used to estimate

model uncertainty; however, they are hard to implement and are com-

putationally expensive. Previous works have used Stochastic Varia-

tional Gradient Descent (SVGD) to perform approximate Bayesian

inference on uncertain CNN parameters (Zhu & Zabaras, 2018). Other

approximation methods have been developed such as Markov Chain

Monte Carlo (Neal, 1996) that are not scalable for large neural net-

works with millions of parameters, and variational methods

(Graves, 2011) to provide an analytical approximation to the posterior

probability of unobserved variables, to perform statistical inference

over these variables. Bayes by Backprop (BBB) is another approach

that combines variational inference with traditional backpropagation

to efficiently find the best approximation to the posterior (Blundell

et al., 2015). Other studies have used ensembles of multiple models to

generate uncertainty (Lakshminarayanan, Pritzel, & Blundell, 2017).

Alternatively, Monte Carlo (MC) Dropout has been used to demon-

strate that dropout at test time can be cast as approximate Bernoulli

variational inference to allow an efficient approximation of the

model's posterior distribution without additional parameters

(Kendall & Gal, 2017).

1.2.3 | Generalization and robustness

Machine learning algorithms are usually evaluated by the model's gen-

eralization and robustness (Paschali et al., 2018). Generalization refers

to the model performance on an unseen dataset. To build a deep

learning model that generalizes well, a large and diverse amount of

data is required to avoid overfitting (LeCun, Bengio, & Hinton, 2015).

This is a significant obstacle for using deep learning in the medical

domain, where producing high-quality labeled data is time-consuming,

expensive, and requires expert knowledge. Robustness refers to the

ability of a model to correctly classify previously unseen examples

with noise and slight perturbations, which are more challenging to

classify and segment (Rozsa, Gunther, & Boult, 2018). MR-based seg-

mentation methods are mostly sensitive to acquisition protocols,

scanners, noise-level and image contrast. Paschali et al. (2018) investi-

gated the robustness of a variety of medical imaging networks on
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adversarial cases and found that models that achieve comparable per-

formance in generalizability may have significant differences in their

relative exploration of the underlying data manifold, therefore

resulting in varying robustness and model sensitivities. Data augmen-

tation can be used as a regularization strategy to control overfitting

and improve the model's robustness and performance (Nalepa,

Marcinkiewicz, & Kawulok, 2019). Common data augmentation

schemes for segmentation of neuroimaging data include affine trans-

formations, elastic deformation, random cropping, flipping about a

spatial axis, adding noise, and adjusting image contrast.

1.3 | Contributions

In this work, we present several innovative methodological and exper-

imental contributions. First, we developed and evaluated a 3D U-Net

with MC Dropout as a Bayesian network to segment WMH and pro-

vide uncertainty quantification, generating an estimate of the model's

confidence of the predicted segmentation. Second, a separate model

was developed to distinguish and segment dWMH and pvWMH,

respectively, using initial WMH segmentation. Third, unlike previous

work, we employed an unseen multi-site study for testing, in addition

to the four large multisite datasets with different diagnostic groups

used for training. Fourth, we compared our methods against

established SOTA techniques on a wide spectrum of white matter dis-

ease burden including very mild WMH cases with small volumes

which are difficult to capture and segment. Finally, the network was

trained using an augmentation scheme that included permutations to

noise level, resolution, and contrast to achieve resistance to common

changes due to different MRI acquisition protocols and scanners. This

adversarial resistance was validated against simulated challenges in

clinical datasets, referred to here as “clinical adversarial attacks.” Our

trained models are publicly available, and we developed an easy-to-

use pipeline with a graphical user interface for making them accessible

to users without programming knowledge.

2 | MATERIALS AND METHODS

2.1 | Participants

To train the WMH segmentation model, a total of 432 subjects were

recruited from four multicenter studies: 160 subjects with cerebrovas-

cular disease ± vascular cognitive impairment (CVD ± VCI) or PD (55–

86, 75% male) through the Ontario Neurodegenerative Disease

Research Initiative (ONDRI) (Farhan et al., 2017), 203 individuals with

nonsurgical carotid stenosis (47–92, 61% male) through the Canadian

Atherosclerosis Imaging Network (CAIN) study (ClinicalTrials.gov:

NCT01440296), 37 subjects with nonfluent progressive aphasia,

semantic dementia (SD), and normal controls through the Language

Impairment in Progressive Aphasia (LIPA) study (Marcotte et al., 2017)

(55–80), and 32 subjects with CVD, VCI, or Alzheimer's disease

(AD) through the Vascular Brain Health (VBH) study (Swardfager

et al., 2017) (46–78, 50% male). Ground truth segmentations for

WMH were generated using SABER-Lesion Explorer semiautomated

pipeline that generates intensity-based segmentations which are then

manually edited by expert annotators trained by a neuroradiologist

with an intraclass correlation of ≥0.9 (Ramirez et al., 2011, 2014).

Sequences used for the generation of the ground truth included 3D

T1w and T2w FLAIR to accurately delineate the WMH. Participant

demographics, diagnosis, Montreal Cognitive Assessment (MoCA)

scores, and volumes for the ground truth segmentations and vascular

lesions are summarized in Table 1.

The models were tested on a total of 158 subjects, including

53 with severe WMH burden (Fazekas 3/3) from the Medical Imaging

Trials NEtwork of Canada (MITNEC) Project C6 (ClinicalTrials.gov:

NCT02330510), a separate fifth multicenter (unseen) study not part

of those used for training. The breakdown of subjects from the five

studies is presented in Table 1.

2.2 | Data preprocessing

The preprocessing techniques used in this study are described in our

prior work (Goubran et al., 2019). Briefly, we conducted the following

data preprocessing steps on all images prior to training: 1) bias-field

correction for B1 inhomogeneities using the N4 algorithm (Tustison

et al., 2010), 2) skull-stripping to separate brain from nonbrain tissues

(Ntiri et al., 2021), 3) background-cropping using a bounding box such

that all voxels outside the bounding box are zero-valued, and 4) Z-

score intensity normalization using the mean as the subtrahend and

the SD as the divisor for each patient volume (Reinhold et al., 2019).

2.3 | Bayesian 3D CNN architecture

Our networks are based on the U-Net architecture (Çiçek et al., 2016;

Ronneberger, Fischer, & Brox, 2015), which consists of encoder and

decoder pathways, with pooling and upsampling operations. The

architecture of the network (Figure 1a) was based on the original U-

Net (Çiçek et al., 2016; Ronneberger, Fischer, & Brox, 2015), with

some modifications in our 3D implementation. Similar to our prior

work (Goubran et al., 2019), residual blocks were added to each

encoding layer. Residual blocks resolve the gradient degradation prob-

lem that occurs with deeper networks with an increasing number of

layers. Also similar to our previous work (Ntiri et al., 2021), dilated

convolutions were used which help to enlarge the field of view (FOV)

of convolutional filters without losing resolution or coverage (Yu &

Koltun, 2016). Instance normalization was used instead of batch nor-

malization (Ioffe & Szegedy, 2015) to avoid instability associated with

batch normalization due to the stochasticity generated by small batch

sizes. The network has a depth of 5 layers and 16 initial filters. Here,

motivated by approximate Bayesian formulations in deep learning

(Gal & Ghahramani, 2016), MC dropout layers were added to the net-

work as one of the main contributions of the proposed network. To

turn our baseline CNN into a Bayesian CNN, we added MC dropout
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layers in residual blocks after the first dilated convolution layer which

is equivalent to placing a Bernoulli distribution over the weights.

To optimize the location and rate of MC dropout, validation

experiments were performed, testing MC dropout on 1) all layers

(both encoder and decoder), 2) encoder layers, 3) three central layers

both encoder and decoder, and using dropout rates of 0.3 and 0.5.

Based on these experiments, we observed that adding dropout on the

encoder layers (the residual blocks) with a dropout rate of 0.3 pro-

duced the best results on the validation data.

Each encoder layer consists of a convolutional layer and a residual

block (He et al., 2016). At each residual block, the input is split into

two paths. The first path consisted of two dilated convolutional layers

with kernel sizes 7 � 7 � 7 with a MC dropout layer with a rate of

0.3 between the two convolutions, while an identity map was applied

to the input data in the second path. Element-wise addition was then

applied to the results of the first and second paths, combining the out-

puts of the two.

At each decoder layer before the final layer, the upsampling block

from the previous level is concatenated with the corresponding fea-

tures on the encoder level. Upsampling modules consisted of an

upsampling layer of size 3 � 3 � 3, followed by a convolutional layer.

The output from the upsampling module was concatenated with the

summation output from the respective later on the contracting side,

before being passed to a feature block. The feature block consisted of

two convolutional layers (one dilated convolution) with a stride of

1 � 1 � 1, and kernels of size 7 � 7 � 7 and 1 � 1 � 1, respectively.

The number of filters was halved at each decoder step. At the last

layer, the concatenated feature map is passed to a sigmoid function to

generate a probability map for the class/voxels of interest.

2.4 | Adversarial resistance and augmentation
experiments

Data augmentation is an effective way to enlarge the size and quality

of training data to improve model generalizability and avoid overfitting

due to a limited dataset. Augmentation can equip a deep network with

desired invariance and robustness properties. A large list of data aug-

mentation strategies/schemes were evaluated to improve the adversar-

ial resistance of our WMH model to common changes stemming from

MRI sequences with different parameters, protocols, and scanners. The

effects of three types of augmentations on model performance were

evaluated: 1) geometrical affine transformations, 2) histogram-based

transformations, and 3) pixel-level transformations. Affine transforma-

tions included flipping, changes in orientations, random cropping, and

random scaling. Histogram-based transformations included histogram

equalization, scaling and brightness modification, while pixel-level

transformations included the addition of Rician noise (Gudbjartsson &

Patz, 1995), contrast shifting/scaling and gamma intensity transforma-

tions. Based on these experiments, an optimal set of augmentations

including four transformations per scan were performed on each of the

subjects, including flipping along the horizontal axis (left–right axis),

random rotating by an angle α¼�90 along y and z axes, introducing

Rician noise generated by applying the magnitude operation to images

with added complex noise, where each channel of the noise is inde-

pendently sampled from a Gaussian distribution with random SD

σ¼ 0:01,0:2ð Þ, and changing image intensity by gamma γ¼ 0:1,0:5ð Þ
such that each pixel/voxel intensity is updated as:

x�min xð Þ
intensity_range

� �γ

� intensity_rangeþmin xð Þ

where intensity_range is max xð Þ�min xð Þ.

2.5 | Loss function

An “equally weighted” formulation of the Dice coefficient was used

as the loss function to mitigate the class imbalance issue, in which the

majority of voxels in the image do not represent the structure of inter-

est (Milletari, Navab, & Ahmadi, 2016). The Dice coefficient is a mea-

sure of similarity, determined by a calculation of the overlap between

two binary images. Given a predicted binary volume P and the ground

truth binary volume G, the Dice coefficient is defined as:

D¼2:

PN
i
pigi

PN
i
pi2þ

PN
i
gi2

where the sums run over the N voxels, of the predicted binary volume

pi �P and the ground truth binary volume gi �G. When differentiated

with respect to pj ( jth voxel of the prediction), to calculate back-

propagated gradients, we get:

∂D
∂pj

¼2 �
gj
PN
i
p2i þ

PN
i
g2i

� �
�2pj

PN
i
pigi

� �
PN

i p
2
i þ
PN

i g
2
i

� �2
26664

37775

F IGURE 1 (a) Proposed architecture for the Bayesian 3D U-Net
convolutional neural network with residual blocks and dilated
convolutions. (b) Overall inference pipeline to generate WMH
segmentation and uncertainty maps as well as a second network to
differentiate dWMH and pvWMH. dWMH, deep white matter
hyperintensity; pvWMH, periventricular white matter hyperintensity;
WMH, white matter hyperintensity
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2.6 | Model training

All models were trained for 200 epochs. Early stopping was set to

50 epochs where validation loss did not improve to avoid overfitting.

The Adam optimizer (Kingma & Ba, 2015) was used with an initial

learning rate of 5 � 10�3, and a learning rate drop of 0.5 (after

10 epochs where validation loss did not improve). We have selected

these training hyperparameters based on experiments.

A multicontrast network that relies on T1w and FLAIR sequences

as inputs were trained. The network was trained on images with vari-

ous voxel sizes on the whole image, as opposed to patches. Out of

the 537 subjects with WMH segmentations used in this study (not

including the unseen study used only for testing), 378 (�70%) were

used for training, 54 (�10%) for validation during training (from across

all the studies), and 105 (�20%) for testing. We tested different opti-

mizers, learning and decay rates. The networks were trained on a

V100-SXM2 graphics card with 32G of memory and a Volta architec-

ture (NVIDIA, Santa Clara, CA).

2.7 | Segmentation and uncertainty

The MC dropout sampling technique which places a Bernoulli distribu-

tion over the network's weights is implemented to estimate the uncer-

tainty. At test time, by retrieving N stochastic outputs, the posterior

distribution p YjXð Þ can then be approximated (Gal &

Ghahramani, 2016). With a set y¼ y1,y2::,yNf g from p YjXð Þ, the final

prediction by is obtained for X by maximum likelihood estimation:

by¼ argmaxy p yjXð Þ≈Mode yð Þ

where Mode yð Þ is the most frequent element in y. This corresponds to

the majority voting of multiple predictions.

The uncertainty is estimated by measuring how diverse the pre-

dictions are. Both variance and entropy of distribution p YjXð Þ can be

used to estimate the uncertainty. However, the variance captures the

spread among predictions. In this paper we use variance which pro-

vides a voxel-wise model uncertainty map:

var yð Þ≈ 1
N

XN
n¼1

byn2� 1
N

XN
n¼1

byn
 !2

2.8 | dWMH and pvWMH segmentation

Distinguishing the dWMH and pvWMH is critical because of their dif-

ferent clinical implications. In this article, we trained a second network

to distinguish and segment dWMH and pvWMH. Since multi-class

segmentation is more challenging than binary-class segmentation, we

trained two separate networks to perform WMH segmentation. The

second network was trained on T1w, FLAIR, and binary ground truth

as inputs and multi-class ground truth as labels. During inference, the

first network generates binary predictions using T1w and FLAIR

sequences as inputs. Then, the second network, getting the advantage

of the output of the first model, segments dWMH and pvWMH using

T1w and FLAIR sequences, and the initial binary WMH segmentation

from the first model. The inference pipeline is shown in Figure 1b.

2.9 | Evaluation on clinical datasets

Our WMH model performance was compared against two other

established SOTA segmentation tools: 1) BIANCA from the FSL suite

(Griffanti et al., 2016), which is a fully automated and supervised

method for WHM detection based on the k-nearest (k-NN) algorithm

and 2) DeepMedic (Kamnitsas et al., 2017) which is a 3D multiscale

CNN designed with parallel pathways that the second path operates

on downsample images. All segmentation tools used in the analysis

were trained and evaluated on the same dataset (training [n = 432]

and test [n = 158]) for a fair comparison. To train BIANCA, skull-

stripped T1 and FLAIR sequences were used as input data. We used

the following optimized BIANCA parameters for training: 1) spatial

weighting (sw) = 1, that is, the data are simply variance normalized; 2)

no patch; 3) location of training points = no border location for non-

WMH training points, that is, excluding non-WMH voxels near the

lesion's edge from the training set; and 4) the number of training

points = Fixed + unbalanced with 2000 WMH points and 10,000

non-WMH points (Griffanti et al., 2016). Since the output of BIANCA

is a probability map of voxels to be classified as WMH, a thresholding

step was employed using a 0.9 cutoff to obtain a binary mask.

DeepMedic was also trained using both skull-stripped T1 and

FLAIR images. The model architecture included 11 layers (eight layers

for the convolutional pathway and three layers for final classification),

with the convolutional pathway further subdivided into three con-

volutional pathways. The convolution kernels of the three pathways

were the size 3 � 3 � 3. The inputs of the three pathways were cen-

tered at the same image location, but the second and third segments

were extracted from a downsampled version of the image by a factor

of 3 and 5, respectively. DeepMedic was trained with 37 � 37 � 37

patches and a batch size of 10 for a total of 700 epochs. The weights

of the network were updated by an Adam optimized with an initial

learning rate 10�3 following the schedule of 10 � 0.1epoch, and L2

penalty weight decay of 10�4. A cross-entropy loss is used. Data aug-

mentation was applied during the training procedure through random

flipping in the x, y, and z axes with a probability of 50% and the addi-

tion of random noise.

2.10 | Evaluation metrics

Volume and shape-based metrics were used to evaluate the segmen-

tation performance of the segmentation methods including the

MOJIRI FOROOSHANI ET AL. 2095



Pearson correlation coefficient, the Dice similarity coefficient (DSC),

the modified Hausdorff distance (HD95), the absolute volume differ-

ence (AVD), recall, and F1-score for individual lesions. The Pearson

correlation coefficient (Pearson & Galton, 1895) was used as a mea-

sure of the correlation between the volumes from each segmentation

prediction P, and volumes from ground truth manually segmented

data G.

The DSC is a measure of the overlap between two datasets.

Given a predicted binary mask, P and a binary ground truth volume G,

the Dice similarity coefficient is defined as:

DSC G,Pð Þ¼2� jG\P j
jG j þ jP j

The Hausdorff distance measures how far two surfaces occupying the

same space are. Given two sets of points representing objects occu-

pying the same space, G and P, where x�G and y�P, the Hausdorff

distance from P to G is defined as the largest value in a derived set of

closest distances between all points.

Ĥ G,Pð Þ¼maxx � G miny � P

���x,y���n on o

In the above function,
���x,y��� is the Euclidean distance between points

x and y. Because the Hausdorff distance between the two sets rela-

tive to G is not equal to the distance relative to P, the bidirectional

Hausdorff distance is equal to the maximum value between the two

directions. A smaller distance is indicative of a greater degree of simi-

larity between the segmentation and the manual tracing. Here, we

used the 95th percentile instead of the maximum (100th percentile)

distance to obtain a more robust distance estimate.

The AVD between the volumes of both ground truth (G) and

predicted (P) images were also computed. An AVD of 0 signifies that

the ground truth and the segmentation have the same number of

voxels, though it is not indicative of a perfect segmentation. Let VG

and VP be the volume of lesion regions in G and P, respectively. Then

the AVD as a percentage is defined as:

AVD¼ j VG�VP j
VG

Each individual lesion is defined as a 3D connected component. Given

this definition, let NG be the number of individual lesions delineated in

G, and NTP be the number of correctly detected lesions after compar-

ing P to G. Each individual lesion is defined as a 3D connected compo-

nent. The Sensitivity for individual lesions (Recall) is defined as:

Recall G,Pð Þ¼ NTP

NG

Let NFP be the number of wrongly detected lesions in P. Then, the

F1-score for individual lesions is defined as:

F1 G,Pð Þ¼ NTP

NTPþNFP

The nonparametric Mann–Whitney U test was employed with an

α-level of 0.05 to assess the improvement between our models and all

tested methods on these evaluation metrics.

2.11 | Clinical adversarial attacks

To validate the robustness of our model on data with lower resolution

or quality, we generated “clinical adversarial cases” to further test the

model's robustness. These cases included: introduction of noise

(to simulate data with lower signal-to-noise ratio [SNR]), down-

sampling of image resolution (to simulate typically short clinical scans

performed on low field strength magnets), and different contrasts

(to simulate data with different scanners). Noise was introduced using

a Rician distribution sampled from two channels of Gaussian noise

with an SD of σ. Input images were downsampled by a factor of

2 across all dimensions. The image intensities were changed with γ. All

other SOTA methods were compared to our models on the most chal-

lenging adversarial cases, specifically: those with induced noise of

σ¼0:2, those downsampled by a factor of 2 in each spatial axis, as

well as changing image intensity with γ¼0:5.

3 | RESULTS

In this section, we first present our model segmentation results and

the accompanying uncertainty maps to highlight the application of the

uncertainty for quality control. We then compare the performance of

our models to SOTA methods using volume and shape-based evalua-

tion metrics. We also evaluate the second model’s performance

across dWMH and pvWMH segmentation. Furthermore, we focus on

the evaluation of more challenging mild cases across tested methods.

The models are finally tested against generated clinical adversarial

cases to evaluate their robustness toward increased noise, lower reso-

lution and different contrasts.

3.1 | Uncertainty maps for quality control

Figure 2 highlights qualitative WMH segmentation results for an

example subject based on the Bayesian model with Monte Carlo simu-

lation (N¼20 models) to obtain epistemic uncertainty. This example

demonstrates instances of both over-segmentation and under-seg-

mentation. It can be observed that the uncertainty map shows high

confidence (low uncertainty) in correctly segmented regions and lower

confidence (high uncertainty) in mis-segmented regions as highlighted

by red (under-segmentation) and green (over-segmentation) arrows.

Uncertainty map can thus represent an estimate of segmentation con-

fidence for quality control in both clinical and research settings.
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3.2 | Evaluation of clinical datasets

Average DSC, modified HD95, AVD, recall and F-1 score for

HyperMapper Baseline, HyperMapper Bayesian, BIANCA, and

DeepMedic for WMH segmentations are summarized in Table 2 and

Figure 3. Our Bayesian model had the highest DSC (0.89 ± 0.08) and

the lowest HD95 (2.98 ± 4.40 mm) across tested methods. The

Bayesian model outperformed the Baseline model, which demon-

strates that test-time dropout helps improve segmentation accuracy

besides providing an uncertainty map, with the caveat of increased

computation time. BIANCA achieved the highest recall, which indi-

cates a high proportion of true positive voxels; however, it produced

the lowest F-1 score, which represents low precision or a high number

of false positive voxels. Notably, our models had the highest F-1 score

F IGURE 2 An example of WMH segmentation and uncertainty estimation, showing on a FLAIR scan, the Bayesian model’s prediction and
estimated epistemic uncertainty in (a) axial, (b) sagittal, and (c) coronal views. Blue represents the overlap between ground truth and prediction,
red (and green arrow heads) represents ground truth voxels missing in prediction (undersegmentation), green (and green arrow heads) represents
prediction voxels not in the ground truth (oversegmentation). Red boxes represent “false-positive” voxels (model predictions) that are indeed
positive voxels and were missed in the manual editing of the semiautomated ground truth labels. FLAIR, fluid-attenuated inversion recovery;
WMH, white matter hyperintensity

TABLE 2 Evaluation of WMH segmentation on different methods with the following metrics: Dice similarity coefficient, Hausdorff distance
in “mm” unit (modified as 95th percentile) (HD95), absolute volume difference, sensitivity (Recall), and F-1 score for individual lesions

HyperMapper baseline HyperMapper Bayesian BIANCA DeepMedic

Dice similarity coefficient 0.892 (±0.080) 0.893 (±0.080) 0.604 (±0.222) 0.858 (±0.080)

Hausdorff distance (HD95) (mm) # 3.045 (±4.417) 2.979 (±4.396) 29.684 (±17.105) 4.477 (±6.322)

Absolute volume difference (%) # 9.819 (±12.173) 9.843 (±12.134) 108.970 (±216.346) 13.846 (±14.731)

Sensitivity (recall) 0.762 (±0.149) 0.762 (±0.150) 0.805 (±0.168) 0.764 (±0.153)

F-1 score 0.752 (±0.119) 0.753 (±0.119) 0.199 (±0.148) 0.652 (±0.126)

Time (s) 10 16 24 25

Note: # indicates that smaller values represent better performance.

Values in bold indicate best performance.

Abbreviation: WMH, white matter hyperintensity.
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which represents lower false positives. DeepMedic and BIANCA had

1.5 to 10 times higher Hausdorff values than our Bayesian model. In

addition, our models were faster than BIANCA and DeepMedic. Pear-

son correlations between manual segmentation volume and volume

quantified by the three tested methods are summarized in Suppl.

Figure 1. Our models and DeepMedic had the highest volume correla-

tions with manual WMH compared to the other tested techniques

r¼0:99, p< :0001ð Þ, while BIANCA had the lowest volume correla-

tions r¼ :91,p< :0001ð Þ. A qualitative comparison between all WMH

segmentation methods on one subject is shown in Figure 4.

The cases with the highest and lowest DSC between the manual

segmentations and the Bayesian model’s predictions, along with their

uncertainties are displayed in Figure 5a and b, respectively. In both

cases, the model was able to accurately segment a wide spectrum of

white matter disease burden including both very mild and highly

severe WMH. Visual inspection of the case with the lowest DSC dem-

onstrates some of the challenges of this segmentation task, such as

overlooking hyperintensities in the parietal lobe and ventricle wall.

The majority of these challenges were captured in the corresponding

uncertainty maps as the high variance between different test-time

models.

While our training data had only one human rater per image, we

also calculated all the evaluation metrics (DSC, modified HD95, AVD,

Recall, and the F1 score) on an additional dataset of three human

raters with a sample of N = 20 to evaluate inter-rater differences. The

results are summarized in Suppl. Table 1 and Suppl. Figure 2. Although

this additional dataset did not include all the required input sequences

to test our model, the raters achieved a Dice similarity that is higher

than the one achieved by our model on our test data (0.94 vs 0.89).

While this is not a direct comparison, this result is to be expected

since these are expert trained raters, the dataset is homogenous

(unlike our unseen test data from other studies) and the sample size is

smaller than our test data. It should also be noted that our model’s
mean Hausdorff distance (HD95) was lower than the inter-rater

HD95, probably due to inconsistencies in manual labeling of very

small WMH lesions.

3.3 | Evaluation on dWMH and pvWMH

We also evaluated our second model’s capability of classifying both

dWMH and pvWMH. This distinction is important in the clinical set-

ting because accurate WMH labeling is a critical feature in classifying

vascular dementia. Dice similarity coefficients on dWMH and

pvWMH were 0.58 ± 0.22 and 0.87 ± 0.09, respectively. These

results demonstrate that segmenting dWMH is more challenging due

F IGURE 3 Evaluation of WMH segmentations across tested methods using the following metrics: Dice similarity coefficient, modified
Hausdorff distance (HD95), absolute volume difference (%), and Lesion F1. not significant: ns, p < .05: *; p < .01: **; p < .001: ***; p < .0001: ****.
WMH, white matter hyperintensity

2098 MOJIRI FOROOSHANI ET AL.



to their size and location. For instance, pvWMH usually appear larger,

brighter, and often form confluent lesions with higher contrast, while

dWMH usually appears as small punctate lesions. Figure 6 highlights

WMH multi-class segmentation results for an example subject with

the first model’s WMH segmentation, dWMH/pvWMH segmenta-

tion, and multiclass ground truth.

3.4 | Evaluation on mild cases

To highlight the clinical and research utility of our models, we further

evaluated their performance on cases with mild WMH burden, against

other SOTA methods (Table 3; Suppl. Figure 3). Table 3 shows the

evaluation of different methods on 50 cases with mild WMH burden

(pvWMH [cc]: 1.8 [1.1] and dWMH: 0.27 [0.22]). The results demon-

strate that our Bayesian model had the highest performance as

assessed by DSC, HD95, and F1-score (0.84 ± 0.10, 5.25 ± 6.51, and

0.721 ± 0.116, respectively). They also highlight the higher complexity

of the task and the shortcomings of existing SOTA methods in

extracting unique features from much smaller lesions with limited vol-

umes and extent. Therefore, their early detection is clinically impor-

tant for neurodegenerative populations.

3.5 | Clinical adversarial cases

Our model’s performance was evaluated on the effects of changes and

perturbations in SNR, resolution, and contrast and compared against

F IGURE 4 Visual comparison of the tested methods in an example subject. Blue represents the overlap between ground truth and prediction
(true-positive voxels), red (and red arrows) represents ground truth voxels missing in prediction (false-negative voxels), green (and green arrows)
represents prediction voxels not in ground truth (false-positive voxels)
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other SOTA methods (Table 4). Cases with the lowest SNR led to a per-

formance drop of our Bayesian model with an average drop of 9.7% in

DSC and an average increase of 20% in HD95. While decreases in reso-

lution resulted in an average drop of 9.4% in DSC and an increase of

96% in HD95. Changing image contrast produced a drop of 7.9% in

DSC and an increase of 69% in HD95. WMH segmentation results and

uncertainty maps for these simulated experiments are shown in

Figure 7 and Suppl. Figure 9. To further validate the performance of

our model against changes in imaging protocols, we evaluated it against

clinical adversarial attacks on a population with mild WMH burden

(Suppl. Table 2). The results show that the mild WMH cases results in a

higher performance drop in our Bayesian model on the DSC (lower

SNR: 12.3%, lower resolution: 12.6%, and changing contrast: 10.4%),

due to the complexity of small lesions and their higher sensitivity to dif-

ferent attacks such as higher noise and lower resolution.

All tested SOTA methods were compared to our Bayesian model

on noisy input data with a sigma 0.2, downsampled data by a factor of

2 across all planes, as well as inputs with contrast changes using a

gamma 0.5 (Figure 8; Suppl. Figures 4 and 5). DeepMedic failed to

generate 62 (out of 158) WMH segmentation masks for downsampled

adversarial cases, and 1 WMH segmentation for noise induced cases.

Failed cases were not included in the analysis or generated figures.

We observed that the clinical adversarial cases had significant effects

on other SOTA methods as apparent by the substantial decreases in

Dice coefficient and increases in Hausdorff distance values (Table 4).

A qualitative comparison between all WMH segmentation methods

on one subject for all three adversarial attacks is included in Figure 9.

The performance of BIANCA and DeepMedic on the selected subject

(Figure 9) were high before any attacks (DSC > 0.80) but dropped sig-

nificantly on adversarial cases.

Our model had better performances across all metrics for the

noise induced cases in comparison to other methods (Figure 8). Spe-

cifically, the Bayesian model had a significantly higher DSC and lower

HD95 relative to other SOTA methods (HyperMapper: DSC: 0.81

± 0.09, HD95: 3.59 ± 4.69 mm; BIANCA: DSC: 0.25 ± 0.13, HD95:

30.47 ± 18.45 mm; DeepMedic: DSC: 0.64 ± 0.22, HD95: 14.09

± 13.63 mm). Similar to noise induced cases, our Bayesian model had

a better performance in comparison to other SOTA methods on

adversarial attacks with lower resolution (DSC: 0.81 ± 0.10; HD95:

5.84 ± 6.48 mm). All other SOTA methods encountered a substantial

decrease in performance as a result of downsampling the input

images. Although DeepMedic's performance was comparable on in-

distribution data, its performance dropped significantly on adversarial

cases with lower resolution (DSC: 0.31 ± 0.21; HD95: 50.05

F IGURE 5 WMH segmentation and uncertainty maps of cases with the highest (a) and lowest (b) Dice similarity coefficients from the test
set. Red arrowheads and circles highlight areas of under-segmented and green arrowheads and circles highlight areas that were over-segmented.
Red boxes represent an enlarged perivascular space (PVS) in the frontal lobe that was mislabelled as WMH in the ground truth data, but
accurately not captured by our model as WMH. WMH, white matter hyperintensity
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± 21.24 mm). A similar trend was observed in the contrast permuta-

tion adversarial experiments, where a slight drop in accuracy was

observed using our Bayesian model (DSC: 0.82 ± 0.10; HD95 5.05

± 6.17 mm); in stark contrast to BIANCA (DSC: 0.39 ± 0.18; HD95:

29.50 ± 17.07 mm) and DeepMedic’s performance (DSC: 0.67 ± 0.19;

HD95: 10.74 ± 10.58 mm).

The performance of our models and SOTA methods were further

evaluated on adversarial attacks in 50 mild WMH subjects (Suppl.

Table 2; Suppl. Figures 6–8), demonstrating that our Bayesian model

had the highest performance and robustness in comparison to tested

SOTA methods across different adversarial attacks. DeepMedic failed

to generate 44 (out of 50) WMH segmentation masks for down-

sampled adversarial cases, and one WMH segmentation for noise-

induced cases. DeepMedic experienced a substantial decrease in per-

formance on adversarial cases with lower SNR (DSC: 0.42 ± 0.20;

HD95: 26.64 ± 17.41 mm), lower resolution (DSC: 0.10 ± 0.09 and

HD95: 76.42 ± 6.63 mm), and contrast changes (DSC: 0.49 ± 0.18

and HD95: 20.94 ± 12.35 mm).

F IGURE 6 An example of WMH segmentation on a FLAIR scan (axial, sagittal, and coronal views), showing the Bayesian model’s total WMH
prediction, dWMH and pvWMH prediction, as well as ground truth labels. Blue labels represent Bayesian model WMH prediction, red labels
represent dWMH, and green labels represent pvWMH. dWMH, deep white matter hyperintensity; FLAIR, fluid-attenuated inversion recovery;
pvWMH, periventricular white matter hyperintensity; WMH, white matter hyperintensity

TABLE 3 Evaluation of WMH segmentation on mild WMH cases

HyperMapper baseline HyperMapper Bayesian BIANCA DeepMedic

Dice similarity coefficient 0.841 (±0.097) 0.842 (±0.097) 0.340 (±0.067) 0.779 (±0.092)

Hausdorff distance (HD95) (mm) # 5.365 (±6.450) 5.252 (±6.505) 44.042 (±9.564) 8.236 (±7.190)

Absolute volume difference (%) # 11.298 (±12.715) 11.393 (±12.812) 275.970 (±324.757) 22.087 (±20.971)

Sensitivity (recall) 0.712 (±0.161) 0.712 (±0.160) 0.780 (±0.187) 0.749 (±0.160)

F-1 score 0.720 (±0.116) 0.721 (±0.116) 0.096 (±0.048) 0.594 (±0.120)

Note: # indicates that smaller values represent better performance.

Values in bold indicate best performance.

Abbreviation: WMH, white matter hyperintensity.
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4 | DISCUSSION

This article presented Bayesian 3D CNNs to segment total, deep and

periventricular WMH, and estimate model uncertainty to provide a

quantitative assessment of confidence in segmentation accuracy. Our

models were trained using a heterogeneous multisite, multiscanner

dataset with different augmentation schemes including the addition

of noise, various resolutions, and changes in contrast, to make the

model more robust to the challenges that commonly result from dif-

ferent MRI scanners and acquisition protocols. We first highlighted

the utility of the resulting uncertainty maps for quality control. Then,

we compared our models to available SOTA methods demonstrating

our model's performance on a test dataset including an unseen multi-

site study. We further validated the performance of all methods on

populations with mild WMH burden. Finally, the performance of our

model was validated against SOTA methods on clinical adversarial

attacks including lower SNR, lower resolution, and changes in

contrast.

4.1 | Uncertainty maps for quality control

For estimating model uncertainty, we implemented a Bayesian

approach, where MC samples from the posterior distribution were

generated by keeping the dropout layers active at test time. Variance

over the MC samples was used to provide a voxel-wise model uncer-

tainty map, whereas maximum likelihood estimation over the MC

predictions provided the final segmentation. Based on our

experiments and visual assessments, the uncertainty maps reliably

represented correctly segmented regions with low uncertainty and

mis-segmented regions with high uncertainty. Generally, the areas of

high uncertainties were localized in the periphery of the segmenta-

tions. Furthermore, the uncertainty increased when the model was

tested on the out-of-distribution datasets (simulating data with low

SNR, low resolution, and different contrast). Uncertainty is a key con-

cept to highlight scans with lower segmentation accuracy. Uncer-

tainty could therefore be used to either guide the expert or

combined with an uncertainty-aware postprocessing method to

improve segmentation.

4.2 | Evaluation of clinical datasets

While many WMH segmentation algorithms exist due to the impor-

tance placed on quantifying WMH in neuroimaging studies and neu-

rodegenerative disorders, these algorithms commonly require manual

parameter tuning and are computationally expensive. In addition,

many current methods do not produce optimal results in populations

with mild vascular lesions. Our models provide an open-source, accu-

rate and robust solution to segment WMH and classifying dWMH and

pvWMH that is fast and require no parameter optimization; highlight-

ing their applicability to segment mild WMH burden. Our Bayesian

model achieved an average DSC of 0.89 ± 0.08 and HD95 of 2.98

± 4.40 mm for WMH segmentation in this difficult test dataset.

The Dice similarity coefficient is commonly used to evaluate the

overlap between segmentation output and ground truth labels;

TABLE 4 Evaluation of WMH segmentation on different adversarial attacks

Adversarial attacks HyperMapper Bayesian BIANCA DeepMedic

Dice similarity coefficient Noise (sigma = 0.2) 0.806 (±0.086) 0.252 (±0.130) 0.639 (±0.217)a

Downsampled (2 � 2 � 2) 0.809 (±0.101) 0.348 (±0.176) 0.306 (±0.208)b

Contrast (gamma = 0.5) 0.822 (±0.102) 0.389 (±0.184) 0.677 (±0.198)

Hausdorff distance (HD95) (mm) # Noise (sigma = 0.2) 3.592 (±4.686) 31.521 (±14.999) 14.092 (±13.626)a

Downsampled (2 � 2 � 2) 5.836 (±6.475) 30.469 (±18.451) 50.049 (±21.236)b

Contrast (gamma = 0.5) 5.047 (±6.172) 29.488 (±17.077) 10.742 (±10.5854)

Absolute volume difference (%) # Noise (sigma = 0.2) 15.037 (±13.169 159.602 (±278.002) 42.627 (±24.601)a

Downsampled (2 � 2 � 2) 19.745 (±18.260) 156.712 (±325.622) 77.265 (±18.012)b

Contrast (gamma = 0.5) 24.454 (±23.178) 176.860 (±365.183) 40.007 (±24.096)

Sensitivity (recall) Noise (sigma = 0.2) 0.720 (±0.136) 0.669 (±0.168) 0.259 (±0.124)a

Downsampled (2 � 2 � 2) 0.677 (±0.148) 0.601 (±0.217) 0.072 (±0.040)b

Contrast (gamma = 0.5) 0.601 (±0.200) 0.759 (±0.186) 0.348 (±0.191)

F-1 score Noise (sigma = 0.2) 0.505 (±0.160) 0.139 (±0.142) 0.376 (±0.134)a

Downsampled (2 � 2 � 2) 0.718 (±0.010) 0.316 (±0.169) 0.131 (±0.066)b

Contrast (gamma = 0.5) 0.662 (±0.135) 0.213 (±0.175) 0.469(±0.166)

Note: # indicates that smaller values represent better performance.

Values in bold indicate best performance.

Abbreviation: WMH, white matter hyperintensity.
aDeepMedic failed on one subject with increased noise.
bDeepMedic failed on 62 subjects with lower resolution.
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however, it is less indicative of mismatch when segmenting larger

ROIs or outlier voxels. Thus, it should be reviewed in conjunction with

surface distance metrics such as the Hausdorff distance as a comple-

mentary evaluation metric for measuring boundary mismatches.

Although the AVD serves as a measurement of the similarity in voxel

counts, it was included as an evaluation metric to provide a fuller con-

text to the segmentation results. To assess over-segmentation and

under-segmentation, the values on recall (sensitivity) and F1-score

were calculated. Evaluating the Dice similarity coefficient and

Hausdorff score, along with AVD, Recall, and F1-score, we demon-

strated that our proposed model improves on current SOTA methods

in terms of accuracy while providing uncertainty maps, performing the

task in seconds.

We chose a multisite and multiscanner dataset to train our model

on ground truth data that were semiautomatically edited by experts

rather than automated outputs produced by other algorithms as they

are expected to be more accurate. It should be noted that while man-

ual segmentation is often considered the gold standard, it may not

necessarily represent the absolute truth. Therefore, some errors in

segmentations could be due to inconsistencies in ground truth rather

than lower model accuracy. Our proposed method outperformed the

semiautomatically edited ground truth in some cases. Figures 2 and 5

highlighted a few instances where “false positives” are indeed positive

voxels and were probably missed in manual editing of the semi-

automated lesion segmentation. For instance, Figure 2a shows two

cases (highlighted by red squares) where errors in segmentations are

probably due to inconsistencies in ground truth rather than model

false positives, while Figure 5b highlights a case where another vascu-

lar lesion (enlarged perivascular space) was mislabelled as WMH in

the frontal lobe in the ground truth data (highlighted by red squares),

but (accurately) not captured by our model as WMH. It should how-

ever be noted that several factors may visually lead to the impression

of underestimation of pvWMH by ground truth. For example, partial

volume effects at the interface between pvWMH and surrounding

normal WM may create a “gray” zone around pvWMH that may be

segmented as WMH by CNNs; additionally, increased brightness and

lower image contrast may cause lesions to look bigger than their

actual size.

When considering the indirect comparison of our model's perfor-

mance to interrater overlap, while the overlap between raters was

marginally higher than the one achieved by the model, this is to be

expected in such a complex segmentation task like WMH

F IGURE 7 WMH segmentation and uncertainty estimates using our Bayesian model under three types of adversarial attacks applied to the
same subject (the addition of noise with a sigma of 0.2, downsampling of resolution by a factor of 2 � 2 � 2, and changing contrast with 0.5
gamma). WMH, white matter hyperintensity
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segmentation, with often small lesions to segment, heterogenous

brain anatomy and other confounding vascular lesions. The consis-

tently higher performance of our model on several multisite studies

highlights its robustness against different scan protocols, disease

groups, and unseen datasets.

4.3 | Evaluation on d/pvWMH and mild cases

Distinguishing the dWMH and pvWMH is important due to different

clinical implications such as classifying vascular dementia. While our

model achieved a high performance on pvWMH, the task of

segmenting dWMH was more challenging due to its shape, size, and

location. Initial preliminary results showed a worse performance when

training a single multiclass model to distinguish dWMH and pvWMH

and then generating a binary WMH segmentation (DSC: 0.85). Future

work will investigate the potential reasons and how we could improve

this single multiclass model performance. Our model’s improvement

in performance over SOTA methods was even more apparent in

populations with mild WMH burdens. The ability to accurately cap-

ture smaller WMH is a more challenging task of lesion detection and

quantification; however, it is important for studying and tracking pre-

clinical stages of neurodegenerative diseases and small vessel disease,

as it has been shown that WMH at baseline predicts future WMH and

is associated with dementia.

4.4 | Clinical adversarial cases

Our results on the “clinical adversarial cases” suggest that our Bayesian
model is largely robust to cases with varying degrees of noise, down-

sampling and contrast changes. There are several reasons why our

model may be more robust than SOTA methods that we compared

against, such as augmentation strategies, residual blocks, dilated convo-

lutions, and skip-connection architecture. Many of the augmentation

strategies have been chosen after developing pipelines (using whole-

brain images) on multiple applications/tasks to make networks more

robust. L-R flipping is one of the most used augmentation strategies.

We also performed bias-field correction using the N4 algorithm as a

preprocessing step. Tested SOTA methods had widely varying results

when segmenting lower SNR data, lower resolution, and data with dif-

ferent contrast than the training set, with substantial volume differences

and drops in quantitative metrics or segmentation fidelity. Notably, they

failed on the majority of cases with lower resolution, highlighting the

sensitivity of some deep learning networks to out-of-distribution data

and the need for further validation of the generalizability of these

F IGURE 8 Evaluation of WMH segmentation on cases with increased noise. Not significant: ns, p < .05: *; p < .01: **; p < .001: ***; p < .0001:
***. WMH, white matter hyperintensity
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networks. Further improvements of our models may also be necessary

in light of some of the weaknesses found, most notably on down-

sampled and noisy data. For future work, we will investigate incorporat-

ing smooth varying maps and other augmentation strategies. In addition

to the simulated attacks we employed, there are other challenges that

could be tested in future work, such as the simulation of significant sub-

ject motion that could have an effect on smaller dWMH.

Though our models performed well compared to other segmenta-

tion algorithms, there are still some future improvements that can be

made. While our models are trained on a dataset without stroke

lesions, the stroke’s penumbra presents with similar contrast to WMH

on FLAIR sequences; hence, one of the main foci of future work is to

train models to distinguish between the two lesions. Future work will

also investigate the effect of a combined loss function (for example a

weighted cross entropy loss and a weighted dice loss) to handle

datasets with varying degrees of contrast and volume sizes.

5 | CONCLUSION

We present a robust and efficient WMH segmentation model, which

also generates an uncertainty map for quality control. In addition, we

present a second model to classify dWMH and pvWMH using the ini-

tial total WMH segmentation. We trained our CNN models with

expert manually edited segmentations from four large multisite stud-

ies including participants with vascular lesions and atrophy, which rep-

resent challenging populations for segmentation techniques, and then

tested them on an unseen multisite study in addition to the four large

multisite datasets. Our segmentation models achieved high accuracy

compared to SOTA algorithms on a wide spectrum of WMH burdens,

especially mild WMH. Additionally, we used an augmentation scheme

to make our model robust to simulated images with SNR, low resolu-

tion, and different contrasts. We are making our pipelines and models

available to the research community and developed an easy-to-use

F IGURE 9 Visual comparison of the segmentation methods under three types of adversarial attacks (the addition of gamma noise with a
sigma of 0.2, downsampling of resolution by a factor of 2 � 2 � 2, and changing contrast with 0.5 gamma)
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pipeline with a graphical user interface and thorough documentation

for making it accessible to users without programming knowledge at:

https://hypermapp3r.readthedocs.io.
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