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Abstract

When engineering a protein for its biological function, many physicochemical

properties are also optimized throughout the engineering process, and the pro-

tein's solubility is among the most important properties to consider. Here, we

report two novel computational methods to calculate the pH-dependent pro-

tein solubility, and to rank the solubility of mutants. The first is an empirical

method developed for fast ranking of the solubility of a large number of

mutants of a protein. It takes into account electrostatic solvation energy term

calculated using Generalized Born approximation, hydrophobic patches, pro-

tein charge, and charge asymmetry, as well as the changes of protein stability

upon mutation. This method has been tested on over 100 mutations for 17 glob-

ular proteins, as well as on 44 variants of five different antibodies. The predic-

tion rate is over 80%. The antibody tests showed a Pearson correlation

coefficient, R, with experimental data from .83 to .91. The second method is

based on a novel, completely force-field-based approach using CHARMm pro-

gram modules to calculate the binding energy of the protein to a part of the

crystal lattice, generated from X-ray structure. The method predicted with very

high accuracy the solubility of Ribonuclease SA and its 3K and 5K mutants as

a function of pH without any parameter adjustments of the existing BIOVIA

Discovery Studio binding affinity model. Our methods can be used for rapid

screening of large numbers of design candidates based on solubility, and to

guide the design of solution conditions for antibody formulation.
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1 | INTRODUCTION

The optimization of protein formulation properties is crit-
ical for the success of the commercial development of
protein biotherapeutics. It is well known that an antibody
with poor formulation properties could lead to low
expression in production, issues in purification, degrada-
tion and precipitation in storage, and difficulties in

administration. It is very difficult and costly to address
these problems in the later stages of the development, so
optimizing and screening the antibody candidates at an
early stage is critical to ensure the success of the project.
However, due to the limited amount and the quality of
the material available at early discovery phase, experi-
ments made to measure the properties often use indirect
methods leading to less reliable results.1,2 Therefore,
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computational methods are useful to quickly screen the
candidates in early-stage and throughout the develop-
ment process. They can also provide insights in under-
standing the problem at a molecular level to enable the
rational design of biologics.

Protein aggregation, viscosity, and solubility are some
of the important properties to optimize for protein formu-
lation. Quite often, similar molecular traits to those
which cause proteins to aggregate could also lower the
protein solubility and likewise, molecular features
increasing protein viscosity could lower protein solubil-
ity. Although they are distinctive biophysical properties,
they may be correlated with each other as they depend
on similar molecular features, such as hydrophobic
molecular surface, net molecular charge, dipole moment,
protein stability, partial unfolding, and so forth. In the
past decade, in silico methods have been developed to
predict protein aggregation propensity,3–6 viscosity,7 and
solubility8–10,13 based on those molecular features.

While some methods take into account of the protein
three-dimensional structures as well as their conforma-
tional heterogeneity using dynamics simulation,3–6,10

others rely on just the sequence information.8,9,11 The
sequence-based methods are fast and allow the screening
of large number of sequence candidates in discovery
phase, however, it is likely to miss some of the hydropho-
bic surface patches or electrostatic properties that are
found to be important descriptors for protein
aggregation,3–6 viscosity,7 and solubility.12,13 Structure-
based methods can give more realistic prediction of those
protein features and have the ability to calculate the
molecular charge and dipole moment as functions of
solution pH and ionic strength, and in theory will lead to
more accurate prediction of the protein solubility.

BIOVIA Discovery Studio14 has several automated
protocols to calculate a number of physicochemical fea-
tures related to the formulation properties of protein mol-
ecules. Here we discuss our structure-based approaches
to predict the solubility of globular proteins. A part of the
study is focused on antibodies, a class of proteins widely
used as biotherapeutics. Given that the antibody struc-
tures are highly conserved and the engineering process
modifies mainly the variable domain (Fv domain) to
select the best candidate, many researchers focus the pre-
diction just on the Fv domain. This approach is valid
when the local features are considered in the prediction,
such as hydrophobic surface patches and charge patches;
however, it will be misleading if total molecular charge
or dipole are used as descriptors in the prediction. Fv and
Fab domain structure prediction is straightforward given
a large number of known antibody structures available in
the public domain and the high conservation of the anti-
body structures, however, full-length antibody structures

are highly flexible around the hinge region leading to the
relative position of the Fab and Fc domain being highly
variable in solution. This flexibility imposes a challenge
in predicting the solubility using molecular descriptors
for antibodies. We will discuss our strategy for predicting
antibody solubility in this article.

Predicting solubility by using surface and molecular
descriptors captures nonspecific molecular interactions of
the protein molecule in the condensed phase. In many
cases, this approach is sufficient to get a good correlation
between the antibody candidates being studied. Several
data sets including different protein types as well as data
sets focused just on antibodies are used in our training
and validation for the first approach we take based on
protein descriptors. However, in some cases, specific and
strong molecular interactions form in crystal environ-
ments, and mutations disrupting strong interactions can-
not be modeled by simple descriptors. Our second
method demonstrates that considering molecular interac-
tions at the atomic level using a molecular mechanics
approach results in a better correlation of the prediction
and experimentally measured solubility data. The anti-
body CNTO607 is used to demonstrate the second
approach.

2 | THEORY

The modeling of the complex physical mechanisms that
govern the forming of crystalline particles or aggregated
complexes is a real challenge. Protein solubility depends
on the delicate balance of different types of interactions
between the protein molecules in the condensed state,
the interactions of the protein molecules with the solvent
molecules, as well as on the properties of the solvent,
such as temperature, pH, ion concentration, and the pres-
ence of excipients. In general, the intermolecular interac-
tions that could affect protein solubility could be viewed
as belonging to two different classes, electrostatic and
non-polar. The important role of the electrostatic, pH-
dependent interactions has been demonstrated in a num-
ber of experiments showing that solubility is minimal
close to isoelectric point.12 The widely accepted explana-
tion of this is that the electrostatic repulsion between
charged molecules of same sign becomes minimal at the
isoelectric point where the protein net charge is zero.
Based on this, as a first approximation, the pH depen-
dence of protein solubility has been related to the net
charge square,12 Z2(pH). However, in a recent study,
Tjong and Zhou10 have shown that the protein solubility
of ribonuclease Sa (RNase Sa) and zinc insulin as a func-
tion of solution pH can be reproduced by the calculated
differences of solvation energies, ΔGslv, when transferring
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the protein from the liquid to the condensed phase, the
latter defined by a lower dielectric constant. Interestingly,
the results in their study were obtained by a model that
completely neglects the intermolecular electrostatic inter-
actions. An explanation of this apparent paradox is the
high correlation between Z2(pH) and ΔGslv pHð Þ, shown
in Figure S1, and both of them might be considered when
analyzing protein properties affecting solubility.

Besides the increasing of electrostatic repulsion with
the net molecular charge, the asymmetry in the distribu-
tion of negatively and positively charged acidic and basic
amino acids in the protein could result in attractive forces
between the protein molecules in both, the liquid and
condensed (crystalline) phase. As a measure of the effect
of the charge asymmetry, in their solubility scoring func-
tion, Long and Labute13 considered the protein dipole
moment, D, calculated as a function of pH.

Another important factor that could affect the protein
solubility is the protein stability. For example, it has been
shown15 that mutations I56T and D67H of human lyso-
zyme facilitates amyloid formation due to partial
unfolding of molecule.

In recent years, we have developed and implemented
a number of methods in BIOVIA Discovery Studio that
can be used to calculate a variety of molecular descriptors
to be used in the creation of solubility and viscosity
models. They include calculations of the electrostatic
properties such as molecular net charge, dipole moment,
and electrostatic contribution to solvation energy,16 and
the effect of mutations on protein stability17 and binding
affinity,18 all of them calculated as a function of pH and
ionic strength.

In this study, we define the protein solubility, S, as
the concentration, Csat (e.g., mol/L) of its saturated solu-
tion in equilibrium with the condensed (crystalline)
phase. At equilibrium, the chemical potential in the con-
densed phase, μc, is equal to the chemical potential in
solution μs.

According to this definition, the solubility is related
to the difference, ΔGtr , between chemical potentials in
the condensed phase, μc, and in solution, μ0s , at a stan-
dard concentration.10,12 Taking into account that

μs ¼ μ0s þkbTln Cð Þ ð1Þ

the solubility can be written as.

S¼Csat ¼ e μc�μ0sð Þ=kbT ¼ eΔμtr=kbT ð2Þ

The term Δμtr ¼ μc�μ0s
� �

can be viewed as the trans-
fer energy of a protein molecule from the liquid to the
solid phase. In our models, all terms forming the transfer

energy are derived from molecular mechanics and proton
equilibria calculations. The solubility values are
reported as:

ΔGtr ¼RTln Sð Þ: ð3Þ

Note that according to the above definition, the more
positive the transfer energy ΔGtr , the more soluble the
protein.

In principle, a protein precipitates in a multistage pro-
cess starting from forming oligomers of different sizes,
for example, dimers, trimers, and so forth. However, at
saturation, it can be assumed that the solid (condensed)
phase consists of relatively large crystalline particles.
Then, at equilibria, the transfer energy term, ΔGtr , can be
regarded as the binding energy, ΔGbnd of a protein mole-
cule to the surface of the crystalline lattice as shown in
Figure 1.

In this study, we developed and tested two different
solubility models, both of them based on combined
CHARMm and protein ionization calculations.

1. BSM, binding affinity solubility model, is a new
completely force-field-based model. In the BSM
model, the protein solubility is evaluated from direct
calculations of protein binding affinity to the crystal
lattice. While the evaluation of the full lattice energy
is unrealistic,12 here for the first time we propose an
approximation, where as a proxy of the crystal lattice,
the atomic coordinates of a multimer constructed
from a central protein molecule surrounded by its
immediate crystal neighbors are used. The coordinates
of the neighboring molecules are generated from the
crystal structure by using the space group and cell
parameters.

2. ESM model is a novel semi-empirical model, devel-
oped for fast calculation of protein solubility as a func-
tion of pH. It has been developed recently, and
implemented in BIOVIA Discovery Studio,14 and

FIGURE 1 Protein binding to the crystalline lattice
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tested on predicting the pH-dependence of solubility,
as well as on the effect of mutations. The method is
validated on a large set of experimental data for a vari-
ety of proteins as well as on several antibody data sets.

2.1 | BSM: Binding affinity model of
protein solubility

The basic hypothesis behind the binding affinity model is
to substitute the crystalline phase with a part of X-ray
crystal lattice, and to approximate ΔGtr with the binding
energy of a protein molecule to the model crystalline
particle.

ΔGtr ¼RTln Sð Þ≈ΔGbnd ð4Þ

A crystalline particle of RNase Sa 5K mutant (Table 1) is
shown in Figure 2.

The model crystalline particles are composed of a cen-
tral molecule (in red) surrounded by all crystal neighbors
with at least one atom within 5 Å from the central mole-
cule. The Generate Crystal Neighbors Discovery Studio
protocol was used to generate the atomic coordinates of
surrounding molecules.

In general, the physical formalism behind the model
of binding a protein, P, to the crystalline particle, C, is
the same as our previous model18 on protein–protein
binding as a function of pH.

In most known physics-based models, such as
MM/FDPB19 and LIE,20 the binding free energy terms
necessary to calculate ΔGbnd are evaluated using three
separate calculations:

ΔGbnd ¼ΔG ABð Þ�ΔG Að Þ�ΔG Bð Þ ð5Þ

where the energy terms for the unbound partners A and
B are calculated separately because of limited dimension
of the FDPB grid or the water box used in explicit solvent
simulation methods. Taking advantage of the pairwise
Generalized Born approximation in CHARMM21 GBIM
method22 from our previous work on protein–protein
binding affinity,18 we used a computationally more

effective scheme, where the calculations were reduced to
two sets.

ΔGbnd ¼ΔG ABð Þ�ΔG A� � �Bð Þ ð6Þ

where the unbound state A� � �B was modeled by separat-
ing the binding partners by a distance that is larger than
the maximum of cutoff distances used in the calculations
of interaction terms, for example, 200 Å. The same
scheme is used in this work.

The evaluation of the ΔGbnd energy terms is challeng-
ing. The most common issues are related to the treatment
of the protein flexibility and the interactions with the sol-
vent. The proteins are flexible molecules that exchange
protons with water and interact with ions and other

TABLE 1 RNase Sa variants and

their experimental and calculated

isoelectric points

Protein Mutation PDB ID pIcalc pI expa

Wild-type 1RGG 4.5 3.5

3K mutant D1K, D17K, E41K Modeled from: 3A5E
1RGG

6.5
6.9

6.4

5K mutant D1K, D17K, D25K, E41K, E74K 3A5E 9.8 10.2

aExperimental pI values from Shaw et al.27

FIGURE 2 The binding of a protein molecule from the liquid

to a model crystalline particle, generated from the structure of the

5K variant of RNase Sa (PDB ID: 3A5E). The central molecule is in

red. (a) The binding energy of a surface molecule. (b) The binding

energy of the central molecule
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additives in the solvent. In principle, the free energy of
bound and unbound states can be derived from the parti-
tion sums of all corresponding microstates. Since any site
of titration can be protonated or unprotonated, the num-
ber of all possible protonation states of a protein in a
given conformation, NP¼ 2Ns, increases very rapidly with
the number of acidic and basic residues Ns. Additionally,
the number of possible conformations in bound and
unbound states is huge. As a result, the combinatorial
problem makes direct calculations unrealistic. The vari-
ous methods use different levels of approximation to
account for protein flexibility and most of the in silico
methods neglect the pH-dependency of the protein ioni-
zation and model the molecule as a system with constant
atomic partial charges. In this study, we use the same
method as in our previous works on protein–protein
binding affinity18 and protein stability17 to calculate the
binding energy as a function of pH. It combines
CHARMM21 molecular mechanics calculations with the
computations of the protein ionization.16 The electro-
static energy contributions are calculated by integration
over the binding isotherms shown below. One of the
most important features of the method is that it takes
into account the energy of proton uptake and the degree
of ionization of all sites of titration. Under certain condi-
tions, the changes in the protonation of the acidic and
basic residues could significantly affect the electrostatic
interactions and consequently binding affinity. To reduce
the complexity of the calculations, like most of the sim-
plified physics-based approaches, the method does not
explicitly treat protein flexibility. The energy terms for
the bound and unbound states are derived from the
corresponding energy-minimized single conformations.
Based on the above approximations, the state free energy
can be split into nonpolar and electrostatic terms:

ΔG pHð Þ¼ΔGel pHð ÞþΔGnp ð7Þ

Neglecting protein flexibility, the electrostatic contribu-
tion23,24 can be expressed as:

ΔGel pHð Þ¼�RTln
XNP
i

exp �Gelec Xi,pH,I,…ð Þ=RT½ � ð8Þ

where Gelec is the electrostatic energy of microstate Xi. The
protonation state i of a molecule with Ns sites of titration is
defined by the microstate vector Xi = [x1, x2,…, xNs] where xi
is 1 or 0 depending on whether the site is protonated or not
and NP¼ 2Ns is the number of possible microstates.

However, calculations using Equation (8) are imprac-
tical, because of the combinatorial problem arising from
the multiple sites of protonation. But if the ionization

characteristics of the protein are known, the electrostatic
contribution to the free energy can be derived by integra-
tion over the proton binding isotherms.25,26 For this pur-
pose, we used the computationally convenient variant
proposed by Schaefer et al.27 referencing the electrostatic
free energy to the energy of the completely deprotonated
moleculeΔG ∞ð Þ:

ΔGel pHð Þ¼ΔGel ∞ð Þ� ln 10ð ÞRT
Z ∞

pH
Q pHð ÞδpH ð9Þ

where Q is the mean number of bound protons to the
molecule, derived from the fractional protonation, θ, of
the sites of titration i.

Q pHð Þ¼
X
i

θi pHð Þ ð10Þ

The details about the calculations of fractional proton-
ation, θi pHð Þ, and electrostatic energy, ΔGel pHð Þ, can be
found in Spassov and Yan.16

Finally, in the BSM model, we use exactly the same
energy function as in our recent work on binding affinity18

and protein stability.17 The free energy ΔG pHð Þ of both
the bound and unbound states is approximated by a sim-
plified potential of mean force. It is a sum of a few energy
terms that are considered as major contributors to the
binding affinity:

ΔG pHð Þ¼ aΔGel pHð ÞþbEvdwþ cΔGentr,scþΔGSA ð11Þ

where Evdw is the standard CHARMm van der Waals
term and ΔGentr,sc is an entropy-related term for the cost
of reduced side-chain flexibility, derived from the relative
solvent accessibility of protein side chains.18

Throughout all calculations in this study, we used
exactly the same weighting parameters a = 1, b = 0.5,
and c = 0.8 and neglecting the surface tension contribu-
tion, ΔGSA, as in our previous works.17,18

2.2 | ESM: Empirical model of protein
solubility

According to the ESM empirical model, the transfer
energy, ΔGtr ¼RTln Sð Þ is approximated by a scoring
function combining pH-dependent and pH-independent
terms, as shown in Equation (12).

ΔGtr pHð Þ¼ αZ2 pHð Þ�βD2 pHð ÞþΔGslv pH, Ið Þ� γASþC ð12Þ

where Z is the total molecular charge and D is the molec-
ular dipole moment. The coefficients α, β, and γ are
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empirical parameters, and the free parameter C accounts
for all contributions that are not included in the model,
such as rotational and translational entropy losses, and
so forth. The first three terms are calculated as a function
of pH, as explained below, and define the pH shape of
solubility curves. The last two terms represent the nonpo-
lar interactions and are modeled as pH-independent.

The αZ2 pHð Þ term accounts for the electrostatic
repulsion between protein molecules and it is propor-
tional to protein net charge square. The second term is
introduced to account for the possibility of attractive elec-
trostatic interactions between molecules because of the
asymmetry of charge distribution, and it is approximated
with the protein dipole moment square, D2 pHð Þ. The cal-
culations of the net charge and dipole moment are evalu-
ated from the fractional protonation, θi(pH), of the acidic
and basic sites of titration using CHARMm GBIM Gener-
alized Born solvation model,22 implemented in Calculate
Protein Ionization and Residue pK16 Discovery Studio pro-
tocol. The ΔGslv accounts for the solvation contribution
to transfer energy, and it is calculated as the difference of
solvation energies between condensed and liquid (water)
phase, defined by their dielectric constants εc and εw, in a
similar way as in the study of Tjong and Zhou.10

ΔGslv pH, Ið Þ¼ΔGel εc,pH, Ið Þ�ΔGel εw,pH,Ið Þ ð13Þ

ΔGel ε,pHð Þ at a given ε, and ionic strength I, is evaluated
from integration over the binding isotherms as in
Equation (9), but in this case instead of from the proton-
ation in the bound and unbound states, the ΔGel terms
are derived from the net protonation of the protein
embedded in a media with dielectric constant of con-
densed phase and in water.

ΔGel ε,pHð Þ¼ΔGel ε,pH¼∞ð Þ
� ln 10ð ÞRT

Z ∞

pH
Q ε,pHð ÞδpH ð14Þ

where Q is the mean number of bound protons to the
molecule, derived from the fractional protonation,
θi(pH), of the sites of titration i. The calculations are also
carried out using the Protein Ionization Discovery Studio
component and the details can be found in our work on
protein ionization.16 A significant difference from the
model of Tjong and Zhou,10 and other solubility models
is, that the energy of proton uptake from the acidic and
basic residues is taken into account in the calculations
of ΔGslv pHð Þ.

The fourth term, γAS represents the effect of the pH-
independent interaction related to the impact of hydro-
phobic surface patches on the solubility, for example, by
making more effective van der Waals contacts in the

condensed phase. In the recent model, we assume it is
proportional to the aggregation propensity scores, pro-
posed by Chennamsetty et al.3 and implemented in the
Calculate Protein Formulation Properties Discovery Studio
protocol.

3 | RESULTS

3.1 | RNase Sa: Parameterization and
testing of the models

Ribonuclease Sa (RNase Sa), shown in Figure 3, is one of
the few examples where the precipitation solubility is
measured by Shaw et al.27 in wide pH intervals not only
for the wild-type, but also for its 3K and 5K mutants. In
addition, Trevino et al.28 measured the effect of single
mutations of Thr76 on all amino acid types. Therefore,
we chose the experimental data of RNase Sa solubility as
the basis to parameterize and test the ESM and BSM
methods.

The input structures and the mutations of the
RNase variants are listed in Table 1. For the wild-type
and 5K mutant, we used the PDB X-ray structures
1RGG and 3A5E. For the 3K mutant, we generated a
model from 5K mutant (3A5E), instead of the wild-
type (1RGG), because the calculated isoelectric point
of the model from 3A5E is closer to the experimental
pI than the calculated pI of the model from 1RGG as
shown in Table 1.

The calculation of dipole moment is a new feature
implemented in the Discovery Studio Protein Ionization

FIGURE 3 RNase Sa wild-type
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component. Figure 4 shows the calculated pH-
dependence of the dipole moment of RNase Sa, and its
mutants, compared to the experimental data29 of
Chari et al.

The most important result of the calculations is that
the 3K variant shows a considerably bigger dipole
moment, about 25% more than the wild-type and the 5K
mutant. It can at least partially explain the lower solubil-
ity at the isoelectric point of 3K variant compared to
wild-type and 5K mutant seen in Figure 5, because of the
possibility of stronger electrostatic attraction between
molecules in the condensed state. Interestingly, the pre-
diction for the wild-type is almost exact as experimental
value at pH 6.7, its pH of crystallization. The dipole
moment of 5K mutant is not measured at the crystalliza-
tion pH of 4.5, but should be quite close to the predicted
value based on the trend of the experimental curve.

3.2 | RNase Sa: ESM Model

The parameterization of the pH-dependent terms of
Equation (12) were carried out by fitting the solubility
curve of the 5K variant. The 5K variant was chosen
because the calculated isoelectric point is very close to
the experimental value which suggests that the calculated
ionization characteristics should be realistic. The same is
also true for the 3K variant. However, the isoelectric
point of the wild-type is overestimated by one pH unit
and this error has been observed earlier by us16 where
RNase Sa is one of the two outliers among the 24 different
proteins studied. Interestingly, we estimated an isoelec-
tric point of 4.1, which is still above the experimental pI,
when using the experimental pKa values. This implies
that at low pH RNase Sa probably binds anions from the

buffer. Therefore, all calculated pH curves for the wild-
type will be shifted left by one pH unit. The second rea-
son for the choice of the 5K variant was the nontrivial
curve shape of the pH-dependent solubility with a sharp
increase after the minimum around the isoelectric point
as shown in Figure 5.

For the precipitation experiment, at the buffer con-
centration of 0.01 M, the best fit of the 5K curve was
achieved when ΔGslv were calculated with the dielectric
constant of the condensed phase εc ¼ 55, and the net
charge square and dipole moment scaling with α¼ 0:1
and β¼ 0:000007, when the dipole moment is calculated
in Debye units.

After fitting the 5K curve, the same parameter values
were applied to calculate the wild-type and the 3K solu-
bility curves. Figure 5a shows the comparison with the
experimental data of the calculated pH-dependence of
the RNase Sa solubility and its mutants, carried out at
ionic strength I = 0.01, α¼ 0:1, β¼ 7�10�6, and εc ¼ 55.
The curves are adjusted to the experimental points by
shifting vertically using the C parameter in Equation (12).
Relative to the 5K variant, the C parameter is about
+0.6 kcal/mol for the wild-type and �0.9 kcal/mol for
the 3K variant.

As Figure 5a shows, the ESM model predicts the pH
shape of solubility with a reasonable accuracy. The mini-
mum values for all three variants are close to the
corresponding isoelectric points while the wild-type curve
has a similar parabolic shape as the experimental one,
the 3K curve shows a wide minimum around pH 6–8,
and the nontrivial shape of 5K curve is predicted almost
perfectly. Based on this result, we decided to use the
above parameters for the pH-dependent terms in all cal-
culations in this study, except rescaling the α parameter
according to the protein radius of gyration relative to

FIGURE 4 The dipole moment of

RNase Sa and its 3K and 5K mutants,

calculated as a function of pH at ion

concentration 0.01 M. The experimental

data are taken from Chari et al.29
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RNase Sa. Assuming that the energy of Coulomb interac-
tions in condensed state is the reciprocal of the distance
D between the centers of mass of two neighboring mole-
cules, the α parameter is recalculated as α = 0.1D (Rnase
Sa)/D, where D = 2(Rgyr + Rc), and Rc = 2.2Å is the
average CHARMm Polar H force-field radius of carbon
atoms. Interestingly, for 3A5E crystal structure with DX-

ray = 30Å and Rgyr = 12.6 Å, the above definition of D is
almost exact.

In the second stage of parameterization, we used the
data from Trevino et al.28 to determine the γ parameter
in Equation 12. The authors engineered 19 variants at the
solvent-exposed position 76 of RNase Sa and measured
the effects of each type of amino acid on protein solubil-
ity. The experimental solubility of the 20 variants of Thr

76 and two additional mutations, Gln32Asp and
Gln77Asp have been measured for this slightly negative
charged protein at pH 4.25 by precipitation with 1.1M
ammonium sulfate. We generated the structures of all
21 variants using the Calculate Mutation Energy
(Stability) Discovery Studio protocol17 from the wild-type
structure, and compared the ESM results to Trevino et al.
solubility data. The calculations were carried out at
pH 5.2 to compensate for the up shift of calculated iso-
electric point pI = 4.5 against the experimental pI = 3.5.
The effect of the mutations was calculated as RTln (S/
Swild) using different values of γ parameter in
Equation (12). The best correlation with the experimental
data, was achieved with γ¼ 0:2 where the calculated
values fit well to the experimental data with an average

FIGURE 5 Protein solubility as a

function of pH at 0.01 M buffer

concentration, calculated for RNase Sa

wild-type and 3K and 5K mutants.

(a) ESM model and (b) BSM model. The

solubility curves are calculated with step

size of 0.1 pH unit. The experimental

values are from Shaw et al.27
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unsigned error of 0.23 kcal/mol and Pearson correlation
coefficient R = .90. As a result, the value of the hydro-
phobic scaling parameter γ¼ 0:2, along with the parame-
ters α¼ 0:1 and β¼ 7�10�6 for the pH dependent terms,
have been used in all subsequent calculations in this
study.

The comparison of the calculated solubility to the
experimental data is shown in Figure 6. As can be seen in
the plot, the prediction of the solubility changes for all
charged, polar, and aromatic residues is quite good, with
the exception of the Thr76Ser mutations. The decrease in
solubility after the mutations to hydrophobic residues
Phe, Leu, Val, and Ile is also predicted correctly, but
about two times overestimated.

3.3 | RNase Sa: BSM Model

The BSM calculations of RNase Sa solubility were carried
out using a modeled crystalline particle, generated from
the X-ray structure of 5K mutant (PDB ID: 3A5E). The
model particle, shown in Figure 2, contains the central
molecule (in red), surrounded by all 12 immediate neigh-
bors. Since the molecules on the surface of the crystal lat-
tice can be in different orientations, instead of evaluating
the average binding energy based on 12 computationally
costly separate calculations, we tested a simpler approach
where the transfer energy is calculated in one step as:

ΔGtr ¼RTln Sð Þ≈ΔGc
bnd=2 ð15Þ

where ΔGc
bnd is the binding energy of the central mole-

cule, as shown in Figure 2b.
As with the ESM model, in the first test of the BSM

method, we calculated the pH-dependence of the

solubility of RNase Sa and its 3K and 5K mutants. For
this purpose, we used the Calculate Mutation Energy
(Binding) Discovery Studio protocol.18 The input struc-
ture was the model crystal particle of 5K mutant, and the
mutations corresponding to 3K and wild-type variants
have been applied simultaneously to all 13 molecules in
the particle.

In Figure 5b, the pH-dependent solubility curves,
RTln Sð Þ¼ΔGc

bnd/2, (see Equation (15)), calculated for
the wild-type, 3K and 5K variants are compared to the
experimental data of Shaw et al.27 The binding energy of
central molecule, ΔGc

bnd, for the 5K variant is calculated
as the electrostatic contribution only, while ΔGc

bnd of the
wild-type and the 3K mutant is the sum of the electro-
static contribution, the relative van der Waals energy
bEvdw, and the relative side chain entropy cΔGentr,sc to the
5K variant.

It is worth emphasizing that the fit of the 5K and
3K variants is achieved without any adjustments,
besides a vertical shift of the calculated curves by
exactly the same amount, �12.4 kcal/mol for both
mutants. The wild-type curve is shifted down by
�11.6 kcal/mol which is quite close to the 5K and 3K
correction.

To test the ability of the BSM method in predicting
the effect of mutations on protein solubility we used the
same set of experimental data,28 as in the ESM calcula-
tions reported above. The model crystalline particle for
the wild-type was the same cluster of 13 molecules gener-
ated from the 5K variant in the pH-dependent solubility
calculation by mutating all five lysine residues to the
corresponding wild-type Asp and Glu, as described in the
previous paragraph. The calculations were carried out at
pH 5.2 and ionic strength I = 3.3 corresponding to 1.1 M
ammonium sulfate.

FIGURE 6 The effect of 21 single

point mutations on RNase Sa solubility,

calculated by ESM model at pH = 5.2

and 1.1 M ammonium sulfate.

Experiment—black bars, calculated—
grey bars
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The comparison with the experimental data of the
predicted effect of mutations on the RNase Sa solubility
is shown in Figure 7. As with the ESM prediction, the
effects of the mutations in increasing or decreasing solu-
bility are predicted correctly for 19 out of the 21 cases
(90%), although the numerical values of the solubility for
some of the substitutions are overestimated. However,
there is one outlier, Thr76Arg. Its solubility is incorrectly
predicted as decreased, opposite to experimental observa-
tion. The reason for the calculated decreased solubility of
Thr76Arg is that the stronger van der Waals interactions
of the mutant in the bound state outperform the electro-
static repulsion and side-chain entropy losses. The overall
Pearson correlation coefficient, R = .86, is somewhat
lower than ESM correlation coefficient, R = .90, but
slightly better, R = .92, without the Thr76Arg outlier.

We would like to note, that all of the RNase Sa BSM
results are achieved without any re-parameterization of
the binding affinity model18 incorporated in the Calculate
Mutation Energy (Binding) Discovery Studio protocol.
The results are obtained using exactly the same parame-
ters as in our previous works on the effect of mutations
on protein–protein binding affinity18 and protein
stability.17

To the best of our knowledge, our BSM method is the
first attempt reported in literature, where the protein sol-
ubility is evaluated using a complete physical, force-field-
based model of protein binding to crystalline lattice.
However, for now, the BSM method is applicable only to
proteins of medium size up to 150–200 amino acid resi-
dues. It is because the iterative procedure in the IMC rou-
tine that calculates the fractional protonation of the sites
of titration in protein ionization method16 occasionally
does not converge when the system is too big. The IMC
routine is based on the Iterative Mobile Clustering
approach30 to treat the combinatorial problem in proteins

with multiple sites of titration, arising from the exponen-
tial growth of protonation states with the number of
titratable groups. With the IMC approach, systems with
up to about 1,500 residues, such as 3A5E crystalline parti-
cle or a full-length antibody are effectively treated. How-
ever, for the cases such as crystalline particle of an
antibody Fab fragment, containing more than 5,000 resi-
dues, the calculation does not converge. Therefore, for
Zn-insulin hexamer and antibodies, the solubility predic-
tions in this study are evaluated by ESM method only.
We believe that this problem could be fixed, for example,
by excluding Arg, Lys, and Tyr residues from the titration
sites and treating them as permanently protonated,
which could be reasonable when solution pH is less than
8–9.

3.4 | Crambin

Crambin is a plant seed protein from Crambe abyssinica.
It is an example of a protein, completely insoluble in
water, which was successfully made soluble by protein
engineering carried out by Kang et al.31 Based on the
sequence analysis with homologous proteins the authors
converted crambin from insoluble to soluble by a triple
mutation Thr1Lys/Phe13Tyr/Ile33Lys (KYK). We
employed the ESM and BSM models to crambin molecule
(PDB ID: 1CRN), with the aim to verify if the calculated
solubility scores capture the significant increase of the
KYK solubility. Crambin is a small protein with a
matching number of acidic and basic residues, that is,
two Arg, one Glu, and one Asp. As a result, shown in
Figure 8, the calculated wild-type net charge, Z, is zero in
a relatively wide pH-interval from 5 to 7. In other words,
for this type of amino acid composition, the isoelectric
point is not a single pH value but a pH range.

FIGURE 7 The effect of the

mutations on RNase Sa solubility,

calculated by BSM model at 1.1 M

ammonium sulfate. Experiment—black

bars, calculated—grey bars
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Figure 9 shows the pH solubility curves of crambin,
calculated using ESM (A) and BSM (B) models. The ESM
calculations were carried out with α¼ 0:125 to account
for the smaller radius of crambin relative to RNase Sa.

The BSM calculation was performed on a crystalline
particle generated using Discovery Studio, shown in
Figure 10, with 13 immediate neighbors of the central
(in red) crambin molecule.

Both methods predict a similar shape of solubility
curves with a minimum at pH 10 for the KYK variant. At
normal pH, the calculated RTln(S) of KYK mutant rela-
tive to the wild-type show a similar increase of 2.3 kcal/
mol for BSM and 2.7 kcal/mol for the ESM model.

A closer look at the ESM energy terms shows that the
increase of KYK solubility is mostly due to the deso-
lvation term ΔGslv (1.0 kcal/mol) and γAS (1.3 kcal/mol),
with a lower contribution from the charge repulsion
(0.5 kcal/mol), and even less from the dipole moment
(�0.1 kcal/mol).

According to the BSM model, the increased
KYK solubility is because of the increased electro-
static term ΔGel ¼ 3:5 kcal/mol and entropy term
cΔGentr,sc ¼ 0:9kcal=mol, but opposed by a negative van
der Waals contribution, bEvdw ¼�2:1kcal=mol.

In conclusion, both the BSM and ESM methods pre-
dict a strongly increased solubility for the KYK mutant.

The transfer energy difference ΔΔGtr ¼RTln Smutð Þ�
RTln Swldð Þ of 2.3 kcal/mol and 2.7 kcal/mol for BSM and
ESM method respectively corresponds to a 50–100 times
increased solubility of the mutant relative to the wild-
type, calculated as Smut=Swld ¼ exp ΔΔGtr=RTð Þ.

Such a significant solubility increase is consistent
with the fact that the KYK mutation converts the insolu-
ble wild-type protein to be soluble in water.

3.5 | Zinc insulin

Insulin was one of the first proteins with an experimen-
tally measured pH-dependent solubility profile.32–34 We
employed the ESM method and compared it to the exper-
imental solubility data of Desbuquois and Aurbach33 for
the porcine zinc-insulin hexamer. The input was the X-
ray structure (PDB ID: 4INS) of the porcine Zn-insulin,
shown in Figure 11.

The ESM calculations were performed at an anionic
strength corresponding to 0.02 M citrate/phosphate
buffer. The value of the parameter α was reduced to 0.07,
according to the calculated radius of gyration of 19 Å of
the insulin hexamer. The calculated value of the isoelec-
tric point, pI = 4.92, is very close to the pI of 5 reported
in the Desbuquois and Aurbach33 paper. The calculated

FIGURE 8 Calculated net charge, Z(pH), of crambin. Solid

line—wild-type, dotted line—KYK mutant

FIGURE 9 pH-dependent solubility of crambin calculated

using (a) ESM, and (b) BSM model. Wild-type—solid line, KYK

mutant—dotted line
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pH-curve of the insulin solubility is compared to the
experimental data in Figure 12. For the purpose of the

visual comparison, the calculated curve is adjusted to the
experimental points by shifting vertically by �2.6 kcal/
mol using the C parameter in Equation (12).

The insulin calculations show that the ESM model
predicts the experimental pH-dependence of solubility
quite accurately. The isoelectric point and the minimum
of solubility are correctly predicted at pH ~ 5 and the cal-
culated and experimental curves show a highly similar
parabolic shape.

3.6 | Predicting the effect of mutations
on protein solubility

The ESM method is developed for quantitative predic-
tions of pH-dependent protein solubility and the effect of
mutations on protein solubility in precipitation experi-
ments. However, quite often the change of the solubility
upon mutations is evaluated by indirect experimental
methods and the results are presented not in numerical
solubility values, but as the trending effect, for example,
as increasing or decreasing the solubility. Tian et al.35

assembled a relatively large data set with the effect of
137 different mutations on the solubility of 18 proteins
with known X-ray structure. We applied the ESM method
to 122 mutations of 17 proteins, taken mostly from Tian
data set with the aim of assessing the ability of the ESM
model to predict the solubility changes regardless of the
experimental method or the type of aggregation. Three
PDB structures, 1WUU, 1J3I, and 1LVM, have been dis-
carded because of large gaps in the structure or non-
standard amino acid residues, and two more cases, 3A5E
and 1CRN, are added.

FIGURE 10 Model crystalline particle of crambin for the BSM

calculations. The central molecule is in red

FIGURE 11 The structure of zinc-insulin hexamer. The zinc

atoms are in magenta

FIGURE 12 The calculated solubility of the zinc-insulin, at

0.02 M citrate/phosphate buffer compared to the experimental

data33

12 of 25 SPASSOV ET AL.



In the calculations based on the Tian data set, we
tested two scoring functions:

SF1¼ΔGtr mutantð Þ�ΔGtr wild typeð Þ

and

SF2¼ SF1 ifΔGmut stabilityð Þ<4:0kcal=mol;

otherwise: decreased solubility.
where SF1 is derived from the ESM transfer energy,

ΔGtr ≈RTln Sð Þ, defined by Equation (12).
The second scoring function, SF2 is an extension of

SF1 taking into account that most proteins are only mar-
ginally stable and “single amino acid substitutions can
dramatically increase or decrease folding energy values
and some substitutions surely lead to unfolding of the
polypeptide chain.”45 Mutations reducing the protein sta-
bility could lead to partial or full protein denaturation

which in turn could increase the chance of amyloid for-
mation and aggregation, due to exposing of the buried
hydrophobic residues to the solvent. The Calculate Muta-
tion Energy (Stability) Discovery Studio protocol has been
used to generate the structures of the mutants and to cal-
culate the folding energy differences,

ΔGmut stabilityð Þ¼ΔGfolding mutantð Þ
�ΔGfolding wild typeð Þ:

For most proteins, the free energy of denaturation is
observed45 to be between 3 and 15 kcal/mol. The SF2
threshold value of 4.0 kcal/mol has been chosen to be
close to the lower limit of the stability energy interval.
The ESM calculations have been carried out using the
Calculate Protein Formulation Properties Discovery Studio
protocol at pH 7, ionic strength I = 0.145, and with all
parameters set to the default values for this study, that is,
α¼ 0:1, β¼ 0:000007 and γ¼ 0:2.

TABLE 2 The effect of mutations on protein solubility

Protein PDB code
Number of
mutants

More soluble Less soluble

Experiment

Correctly predicted

Experiment

Correctly predicted

SF1 SF2 SF1 SF2

RNase Sa 1RGG 21 12 10 10 9 9 9

RNase Sa 5K 3A5E 1 0 0 0 1 1 1

HIV-1 integrase 1BIZ 8 2 2 2 6 6 6

Colicin 1COL 10 4 4 4 6 6 6

Aβ42 peptide 1Z0Q 26 24 24 23 2 0 0

FOP 2D68 9 0 0 0 9 5 5

MS2 coat protein 1MSC 13 0 0 0 13 6 13

Crambin 1CRN 1 1 1 1 0 0 0

Interleukin 1-b 9ILB 6 1 0 0 5 4 5

a-1 prot. inhibitor 8API 3 1 1 0 2 1 1

Hemoglobin 2D60 3 2 1 1 1 1 1

APOBEC3G 3IQS 11 5 4 4 6 4 4

Basic growth factor 1FGA 3 0 0 0 3 2 2

UEP-kinase 2BND 1 1 1 1 0 0 0

GP24 1YUE 1 0 0 0 1 1 1

CD58 1CI5 1 0 0 0 1 1 1

Maltose-binding protein 1JW4 4 0 0 0 4 0 4

122 53 48 46 69 47 61

90% 87% 68% 88%

All Experiment SF1 SF2

122 95 107

78% 88%
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The summary of the results for Tian data set is pres-
ented in Table 2, and the detailed data for each mutation
can be found in Table S1.

As can be seen in Table 2, the results obtained by
using both scoring functions show a relatively high per-
centage of correctly predicted cases. The use of the SF2
function improves the overall accuracy from 78% to 88%,
due to the improved prediction of the mutations that lead
to less soluble protein variants, but slightly worse predic-
tion rate of the mutations with increased solubility. The
most dramatic improvement of the SF2 compared to SF1
predictions of the less soluble variants can be seen for
1JW4 and 1MSC cases. As shown in Table S1, the calcu-
lated ΔGmut stabilityð Þ values are beyond 4.0 kcal/mol for
all 1JW4 mutations and all 1MSC multiple mutations,
indicating that these mutations reduce the stability of the
protein significantly and in turn, lead to the reduction of
the solubility, even though the SF1 score predicts the
mutants as more soluble.

3.7 | Modeling antibody solubility

One of the main problems in predicting the effect of
mutations on antibody solubility by an atomistic model is
that most of the available X-ray structures are of antibody
fragments, such as Fab or Fv domain, while the solubility
measurements usually are carried out on full-length anti-
bodies. However, when the mutations are situated in the
variable fragments only, with identical constant domains,
it makes sense to investigate if the predicted physico-
chemical properties of the Fv domain can correlate with
experimental solubility data. A specific problem arises
when applying the ESM model to antibody molecules
with the aim of ranking full-length mAb solubility, where
the electrostatic repulsion and the dipole attraction are
modeled by single point molecular charge and dipole.
The monoclonal antibodies are big proteins with a Y-
shaped structure consisting of two Fab and one Fc
domains. Modeling the electrostatic repulsion and attrac-
tion forces between mAb molecules in solution and in
crystal form as interactions between two point charges or
point dipoles is a crude approximation and likely to be
inaccurate, especially with the highly variable relative
orientations of the Fab and Fc domains linked by the
hinge region. Taking into account that the mutations of
the Fab or Fv fragment could affect the stabilization of
the crystalline state by both Fab–Fab and Fab–Fc interac-
tions, here we proposed and tested an antibody oriented
variant of ESM scoring function (ESMab):

RTln Sð Þ¼ α Z2
FabþZFabZFc

� ��β D2
FabþDFabDFc

� �
þΔGslv,Fab� γASFab ð16Þ

Equation (16) is applicable to cases with available struc-
tures of both Fab and Fc fragments. ZFab and ZFc are the
net charges of the Fab and Fc fragments, and DFab and
DFc are the corresponding dipole moments.

In this section, we present the predicted effect of
mutations and comparison to experimental solubility
data for five antibody data sets. They are seven variants
of CNTO607 anti-IL-13 antibody,36,37 nine distinct mono-
clonal antibodies targeting nerve growth factor (NGF),9

11 variants of the model antibody mAb-J,38 17 antibody
variants of the humanized anti-trinitrophenyl antibody
HzATNP,2 and 11 variants of VEGF binding G6 synthetic
mAb.39

3.8 | CNTO607

In a study on a modified anti-IL-13 monoclonal antibody
CNTO607 Wu et al.,36 the authors engineered and mea-
sured the solubility of six mutation variants (mAb2–
mAb7) of the parent antibody (mAb1) with the aim of
improving protein solubility. The sequence differences
between mAb1 and all six engineered variants are sum-
marized in Figure S2. In a second work of Bethea et al.,37

the authors evaluated the effect of the double mutation
K210T, K215T (mAbK) that disrupts the salt bridges
between Fab fragments in the crystal tetramer.

We applied the empirical ESM model to evaluate the
antibody solubility scores using the input atomic coordi-
nates from the X-ray structure40 of the CNTO607 Fab
fragment (PDB ID: 3G6A). The calculations are based on
ESM model and carried out using the Calculate Formula-
tion Properties Discovery Studio protocol with all parame-
ters set to default values, except rescaled parameter
α¼ 0:05 to account for roughly doubling the radius of
gyration of the Fab fragment compared to the RNase
Sa. The solubility differences, calculated at pH 7.2 are
compared to the precipitation solubility measurements in
Table 3 and in Figure 13.

Note that the experimental solubilities are measured
at pH 7.2 which is very close to both the experimental
isoelectric point of CNTO607, and the calculated isoelec-
tric point of mAb1 FAB fragment. The small calculated
net charge of the mAb1 Fab domain implies that, at
pH 7.2, the net charge of the rest of the full-length anti-
body should be close to zero. To check this assumption,
we calculated the ionization of the IgG1 (PDB ID: 1HZH)
Fc fragment using the Calculate Protein Ionization and
Residue pK Discovery Studio protocol. The calculated iso-
electric point, pI = 7.38, and the small Fc net charge of
0.6 e.u. at pH 7.2 confirm the neutrality of the CNTO607
Fc domain. Since the Fc domains are the same for all
CNTO607 variants, at pH 7.2 all differences in protein
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ionization will be present in the Fab fragment. Therefore,
it is reasonable to use the 3G6A Fab structure as a proxy
for CNTO607 full-length antibody in the calculations of
the effect of mutations on the solubility.

The first variant (mAb2) engineered by Wu et al.36

was aimed at increasing the antibody molecular repul-
sions and therefore the antibody solubility by a light
chain mutation that increases the pI of Fab domain and
consequently the Fab net charge. The mutations in mAb3
and mAb5 variants are intended to increase the solubility
by reducing the surface hydrophobicity of the light chain.
The mAb4 variant combines the mutations of mAb2
and mAb3.

The mutations of mAb6 and mAb7 variants have
been proposed36 based on the analysis of the structure of
the CNTO607 Fab crystal. The authors suggested that the
aromatic triad 103WHF105 is involved in the specific
binding hotspot for Fab–Fab interactions in the

CNTO607 dimer (Figure 14a). Similarly, this strong inter-
action involving the aromatic triad may have a major
impact on antibody precipitation, since the Fab–Fab
interactions could induce mAb precipitation. The latter
has been confirmed by the more than tenfold increase in
the measured mAb6 solubility when 103WHF105 was
mutated to 103AAA10536 as shown in Table 3. Taking
into account that 103WHF105 is part of the CDR H3 loop
and would affect the antigen binding, the authors pro-
posed another mutation D54N in mAb7 to create an
N-glycosylation site in H-CDR2 which was found in the
original antibody. The increased solubility of mAb7 sug-
gests that the glycosylation on CDR H2 loop would pro-
tect the triad on H3 loop and disrupt the specific
interaction of H3 to reduce dimerization.

As shown in Table 3 and Figure 13, the trend of the
solubility change is predicted by ESM model correctly for
all variants except mAb4. Interestingly, even without

TABLE 3 Comparison of the calculated and experimental solubility data of CNTO607 variants

Variant
Solubility
S (mg/ml)

RTln(S/SmAb1) (kcal/mol)

exp

calc pI Net charge

ESM SB exp calc calc

mAb1(parent) 13.3 0.00 0 – �7.4 7.04 �0.42

mAb2 29.1 0.46 0.55 – 7.8 7.9 1.4

mAb3 25.4 0.38 0.35 – NA 7.01 �0.47

mAb4 12.4 �0.04 1.12 – NA 7.71 1.15

mAb5 29.2 0.46 1.93 – NA 7.62 0.94

mAb6 >164 >1.48 0.61 4.56 NA 7.88 1.25

mAb7 >110 >1.25 1.38 – >7.8 8.52 2.34

mAbK >100 >1.19 1.24 6.94 �6.4 6.22 �2.27

FIGURE 13 Calculated solubility

differences of the Fab CNTO607 variants

(grey bars) compared to the

experimental data (black bars) for

CNTO607 antibody at pH 7.2 in PBS

buffer. The transfer energy differences

are referenced to the mAb1 variant
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taking into account the specific Fab–Fab interactions in
mAb6 and mAbK or glycosylation in mAb7, the solubility
increasing of mAb6, mAb7, and mAbK are predicted, but
the effect of the mAb6 mutation is underestimated as
expected.

3.9 | The impact of specific interactions
on CNTO solubility

The variants mAb6 and mAb736 were engineered with
the aim of increasing solubility by breaking the specific
interactions between the H:103FHW105 triad of the H3
loop and the elbow region of a symmetry-related Fab
molecule, as shown in Figure 14a. Likewise, the mAbK37

mutant was engineered to disrupt Fab–Fab interaction by
eliminating two salt bridges H:K210-B:D106 and H:
K215-A:D50 (Figure 14b). A: and B: denote the light and
heavy chains of the first molecule, and L: and H: of the
second.

We used the mAb6 and mAbK cases to test the ability
of Discovery Studio to predict computationally the effect
of specific interactions on the CNTO607 solubility. For
this purpose, we carried out alanine scanning of all resi-
dues from the Fab–Fab dimer interface that are within
5 Å contact distance using the Calculate Mutation Energy
(Binding)18 Discovery Studio protocol. The atomic coordi-
nates of the Fab dimer are taken from the asymmetric
unit of the 3G6A PDB structure. The results are shown in
Figure S4a and S4b. As shown in Figure S4a, the alanine
scanning results of the 103FHW105 triad are consistent
with the strongly increased solubility of mAb6 mutant.

The results also confirm the suggestion of Bethea et al.37

that the main contribution comes from the W105A muta-
tion (Sexp > 116), while the effect of H104A is minimal.
Our results also predict that another mutation of the Fv
fragment, Y53A, could have a similar impact on the
CNTO607 solubility and will be of interest to evaluate
experimentally.

The alanine scanning of the CH1 region of the other
Fab shown in Figure S4b are also in good agreement with
the high solubility of K210A/K215A mutant.

The BS column of Table 3 shows the calculated Muta-
tion Energy values for the triple mutation 103FHW105–
103AAA105 in mAb6 and the double mutation K210T/
K215T in mAbK. Interestingly, a more close analysis of
the mAbK results shows that the main effect of the
K210T/K215T mutation comes not from eliminating the
salt bridges involving lysine residues, but from the van
der Waals contribution. Figure 14a shows that the two
CH1 lysine residues are part of a cluster with F31 from
the light chain of the other molecule. Based on the calcu-
lated energy of more than 3 kcal/mol for F31A mutation
(Figure S4a), we suggest that F31A could be used as an
alternative to K210 or K215 mutations in engineering sol-
uble CNTO607 variants.

3.10 | Nine distinct monoclonal
antibodies targeting NGF

In a recent study, Sormanni and coauthors9 measured
the solubility in PEG of nine distinct mAb variants of an
antibody targeting the nerve growth factor. This data set

FIGURE 14 CNTO607 Fab–Fab interface. (a) B:Phe103, B:His104, B:Trp105 triad. (b) H:Lys210 and H:Lys215 are involved in a cluster

with A:Phe31, and salt bridges with B:Asp106 and A:Asp50. A (green) and B (red) are the light and heavy chains of the first molecule, L

(magenta) and H (cyan) of the other
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is interesting for testing the in silico predictions because
the variants differ by up to 32 amino acids, located in the
VH and VL domains. The sequences of the mAb variants
are shown in Figure S3. The structure of mAb1 Fv was
kindly provided by Dr Bojana Popovic, AstraZeneca.
Based on the mAb1 Fv structure we generated the struc-
tures of all other eight VH/VL variants using the Calcu-
late Mutation Energy (Stability) Discovery Studio
protocol. The ESM scores were calculated according to
Equation (12) at pH 5.5 and ionic strength corresponding
to 0.01 M citrate buffer. The calculations were carried out
using the default parameters except with α rescaled to
0.05. In Figure 15, the ESM RTln(S/SmAb1) values are
compared to the apparent solubilities derived from the
PEG experiment. Even though the experimental solubil-
ity values were obtained for the full antibody, and the
ESM calculations were carried out on the Fv structures,
the experimental data and calculated results are highly
consistent. Apart from mAb8, all mutants that increase
or reduce the solubility are predicted correctly. Compared
to the PEG1/2 data the Pearson correlation is R = .89
shown in Figure S5.

It is worth noting that compared to CamSol predic-
tions (Sormanni et al. 2017; overall R = .78 and .92
excluding one outlier), the relatively high correlation,
R = .89, of ESM predictions is achieved without exclud-
ing outliers. Unfortunately, for this data set, neither the
sequence nor the structure information of the Fab and
the full-length antibody are available. In general, com-
paring the results calculated by the ESM model based on
the Fv domain with the full-length antibody experimental
solubility data could lead to errors, because the Fv
domain is not a good approximation for the net charge,
dipole moment, and even ΔGslv of the full length or Fab
domain. Interestingly, when we omitted the electrostatic

terms and re-calculated the solubility differences (white
bars in Figure 15) based only on the aggregation scores
(γAS in Equation (12)), the correlation was improved to
R = .95 which indicates that the variation of solubility of
the variants from this data set depends mostly on the sur-
face hydrophobicity.

3.11 | mAb-J

Recently, Shan et al.38 measured a number of physico-
chemical properties of engineered variants of a model
IgG1 antibody, mAb-J. Here, we used their mAb-J PEG
precipitation results to test the ESM method. The list of
mutations and solubility data are shown in Table 4.

The experimental solubility of the different mAb-J
variants is determined at pH 6.0 using a high-throughput
PEG precipitation assay,38 and are reported as apparent
solubility values, Sapp, in mg/mol, evaluated after fitting
the solubility in different PEG concentrations.

We applied the ESM and ESMab models using the
Fab structures of the mutants, generated by the Calculate
Mutation Energy (Stability) Discovery Studio protocol
from the X-ray structure of the wild-type, for example,
the high-affinity anti-IgE antibody (MEDI4212) Fab frag-
ment (PDB ID: 5ANM). All ESM calculations were car-
ried out at pH 6.0 with the default ESM parameter
values, except that the α parameter was reduced to 0.05.
The results are presented in Tables 4 and 5, and in
Figures 17 and S5.

As seen in Figure 16, the effect of mutations is
predicted correctly for 7 out of the 10 variants. Similar to
Shan et al.38 study, the variant H:K98A appears as an out-
lier. Following the suggestions of Shan et al., we excluded
H:K98A from the statistics of the predictions. Without H:

FIGURE 15 The relative solubility

of NGF antibody variants calculated at

pH 5.5 and ionic strength corresponding

to 0.01 M citrate/phosphate buffer. The

ESM solubility scores are compared to

the experimental values of apparent

solubility, reported in Sormanni et al.

(2017)9 paper. Experiment—dark bars,

ESM results—gray bars, nonelectrostatic

term only (γAS in Equation (12))—
white bars
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K98A, both the ESM and ESMab show the same correla-
tion, R = .83, with experimental apparent solubility data,
and outperform the CamSol prediction R = .71 reported
in Shan et al.38 study.

3.12 | HzATNP

Recently, Wolf Pérez et al.2 designed a library of 17 vari-
ants of a humanized mAb, HzATNP, and evaluated their

TABLE 4 List of mutations and solubility data of mAb-J variants

Mutation

ESM model Experiment

DIpI Net charge RTln(S) (kcal/mol) Sapp (mg/ml) RTln(Sapp) (kcal/mol)

Wild 8.26 4.87 �1.73 5.1 0.96 104.22

H:W99N 8.27 4.87 �0.56 7.7 1.20 99.01

H:W99R 8.75 5.76 1.94 16 1.64 99.09

H:W99A 8.23 4.86 �1.05 8.7 1.28 101.08

H:W99D 7.7 4.01 �3.08 <1 <0 99.65

L:F52D 7.7 4.02 �2.57 10.8 1.40 100.37

H:K100AD 7.28 3.42 �6.02 <1 <0 106.36

H:K100AA 7.7 4.04 �5 <1 <0 108.09

L:F52S 8.24 4.85 �0.93 12.7 1.50 100.03

L:R54Q 7.69 3.97 �3.28 5.9 1.05 104.21

H:K98A 7.71 4.31 �3.51 11 1.42 106.48

TABLE 5 mAb-J results obtained

with different variants of ESM models.

All calculations are carried out

at pH 6.0

Structure model RTln(S)

Correlation R

Discovery studio DI CamSol

Fab–Fab Equation (12) 0.83 0.67 0.71

Reduced ESM ΔGslv� γAS 0.46

ESMab Fab–Fab + Fab–Fc Equation (16) 0.83

FIGURE 16 The relative solubility

of mAb-J variants calculated at pH 6.0.

The ESM solubility scores are compared

to the experimental values of apparent

solubility, reported in Shan et al.38

paper. Experiment—dark bars, ESM

results—gray bars
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solubility properties with a number of in vitro and in sil-
ico methods. We find this data set of interest to us for
testing and comparing our ESM and ESMab models,
since all but one of the 16 mutations include at least one
acidic or basic residue (Table 6). We carried out the sol-
ubility predictions at pH 7.0 using homology models of
both the Fab domain and the full-length HzATNP anti-
body and applied different variants of the ESM model,
as shown in Table 7. The results are compared to the
ammonium sulfate (AMS) precipitation estimates of the
relative solubility of the mAb variants. The AMS1/2 solu-
bility data and the atomic coordinates of wild-type full-
length homology model were kindly provided by Dr
Wolf Pérez and coauthors. The experimental AMS1/2
values are used as a proxy for the solubility and corre-
spond to the AMS concentration at which the soluble
antibody concentration is 50%. A known problem of
ammonium sulfate precipitation is that the data are col-
lected at concentrations corresponding to high ionic
strengths and the results do not reflect solubility in
water, but the solubility in the salting-out region.41

Therefore, we carried out the calculations at ionic
strength corresponding to 1 M monovalent salt and with
a reduced αparameter to 0.025 to account for both the
screening effect of the high salt concentration and the
increased radius of the model structures, compared to ref-
erence RNase Sa.

The results in Table 6 show that the calculated pI
values of the full-length mAb variants are quite close to

the experimental values. This result suggests that the DS
protein ionization method16 is applicable to large struc-
tures such as full-length antibodies.

The solubility data calculated by different variants of
the ESM model are shown in Table 7. ESMab calcula-
tions were carried out with precalculated net charge and
dipole moment of the Fc fragment.

ZFc ¼�6:7 and DFc ¼ 360Debye:

The results for this data set, shown in Table 7 and
Figure S7, demonstrate a non-negligible improvement of
the solubility predictions when obtained by ESMab
model. The calculated Pearson's correlation R = .91 out-
performs the CamSol and DI results.

3.13 | G6 VEGF binding mAb2

While our methods are developed to calculate precipita-
tion solubility, it is interesting to investigate if the solubil-
ity predictions are consistent with the protein
aggregation propensity in the environment of gene
expression cells. For this purpose, we used the results
from the study of van der Kant et al.39 on the effect of a
number of “gate-keeping” mutations on the aggregation
and expression titer of the G6 VEGF binding mAb2. We
employed both the ESM and ESMab methods using the
X-ray structure of the Fab fragment (PDB ID: 2FJF) and

TABLE 6 List of HzATNP mAb mutations and the calculated full-size antibody isoelectric points compared to experimental values

mAb Variant Heavy chain Light chain pI calc pI exp Net charge calc

WT – – 8.32 8 7.5

1 T68G/Q108E T5D/V99R 7.9 8.3 5.42

2 T68G/Q108E V99R 8.29 8 7.37

3 T68A/Q108D V99G 7.9 7.8 5.53

4 T68A V99K 8.64 8.1 9.22

5 T68D V99R 8.29 7.9 7.27

6 S70E V99D 7.58 7.4 3.64

7 T68G/S70G/Q108L V99Q 8.3 7.9 7.36

8 T68D – 7.9 7.6 5.39

9 D72Q – 8.65 8.3 9.31

10 – K193V 7.91 7.7 5.67

11 E16K/D72V E86V 9.22 8.4 15.06

12 E16L/K120F – 8.3 8.1 7.41

13 E16V/K120V – 8.3 8.1 7.41

14 E16F/D72Q E86F 9.11 7.9 13.12

15 E16V/K120F K193Y 7.91 8.3 5.74

16 E16F/D72F/K120W K193F 8.3 8.1 7.61
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the Fc fragment taken from the IgG1 structure (PDB
ID:1HZH).

The calculated ESM solubility data are compared to
the relative expression titer in Table 8 and Figure S8. As
it is seen in Figure S8, the correlation between the experi-
mental aggregation propensity and the ESM solubility is
quite good. The results of the ESMab model show the
same correlation with R = .83. Note, that the TANGO
and Solubis scores reported by the authors39 show a cor-
relation of R = .6, and R = .59 respectively.Apart from
the mutation L:Ser50Asp, the increased solubility of the
mutation variants relative to the wild-type is predicted
correctly.

3.14 | Summary of antibody ESM
calculations

The main results of ESM predictions of the effect of
mutations on antibody solubility are summarized in
Table 9 and compared to the performance of the other
methods reported in the referenced studies. The correla-
tion coefficient for CNTO607 is not calculated, because

for a number of variants the experimental solubility is
reported with its lower limit.

The overall prediction accuracy of the ESM method
for antibody data set is close to the accuracy of the pre-
dictions on the globular protein data set of 17 proteins,
showing an average rate of prediction above 80% indicat-
ing that the ESM method should be effective in the
design of antibodies with improved formulation
properties.

4 | DISCUSSION

In this study, we proposed and tested two novel in silico
approaches for modeling protein solubility: an empirical
model, ESM, for fast calculations of protein solubility,
and a completely force-field-based method, BSM. The lat-
ter is based on direct calculations of the binding affinity
of a protein molecule to a model crystalline particle, used
as proxy of the condensed phase. Both of them were
designed with the aim of modeling protein solubility as a
continuous function of pH and to predict the solubility
changes upon mutations. For these purposes, as a

TABLE 7 HzATNP results obtained

with different variants of ESM models
Structure model RTln(S)

Correlation R

Discovery studio DI CamSol

ESM Equation (12) 0.87 0.85 0.82

Reduced ESM model ΔGslv� γAS 0.86

ESMab Fab–Fab + Fab–Fc Equation 16ð Þ 0.91

Full length model Equation (12) 0.22 0.82

Reduced ESM full-length model ΔGslv� γAS 0.82

Note: All calculations are carried out at pH 7.0.

TABLE 8 G6 VEGF binding mAb2: Relative titer and calculated ionization and solubility properties at pH = 7.0

mAb2 variant Net charge pI RTln(S) (kcal/mol) Relative titer

WILD 6.28 9.41 0.34 1

L:S52R 7.27 9.54 2.6 2.9

L:S50K 7.26 9.51 2.63 1.8

L:S50D 5.34 9.25 �1.29 1.4

H:F101P 6.28 9.41 0.66 4.3

H:V100R 7.24 9.48 2.75 3.2

L:S50K/H:F101P 7.28 9.51 2.98 4.5

L:S50K/H:S21R/H:S85R/H:F101P 9.2 9.72 5.58 6.3

L:S52R/H:F101P 7.27 9.54 2.95 4.7

L:S52R/H:S21R/H:S85R/H:F101P 9.22 9.75 5.79 6.2

L:S50K/H:S21R/H:S85R 9.22 9.73 5.27 5.6
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measure of protein solubility, the methods use approxi-
mations of the transfer energy, ΔGtr ¼RTln Sð Þ, of the
protein from the liquid to condensed phase. In both
methods, the transfer energy is calculated as a combina-
tion of electrostatic and nonpolar terms. The pH-
dependence of electrostatic contribution is derived from
the protein ionization properties calculated by the exis-
ting Protein Ionization Discovery Studio component16

based on the GBIM22 Generalized Born solvation model,
and Iterative Mobile Clustering, IMC, approach.30

The ability of the methods to predict the pH-
dependence of the solubility was initially validated on
the data from the study of Shaw et al.27 on the solubil-
ity of RNase Sa and its 3K and 5K mutants. The results
in Figure 5a show that the ESM calculations reproduce
sufficiently well the pH-shape of the solubility of wild-
type and its 3K and 5K mutants. However, as it is seen
in Figure 5b, the BSM calculations carried out by the
Calculate Mutation Energy (Binding) Discovery Studio
protocol, succeeded in an almost perfect fit to the
experimental pH-solubility curves of RNase Sa and its
mutants without any additional parameterization, that
is, using exactly the same parameters for the free
energy function as in our previous works on protein–
protein binding affinity18 and protein stability.17 It is
worth noting that the BSM method predicts not only
the pH shape, but the relative vertical shift of RTln(S)
curves. Our analysis shows that to some extent the lat-
ter is due to the decreased side-chain entropy in the
crystalline environment. For now, an entropy term is
not included in the ESM model, but the BSM results

imply that adding an entropy term could improve the
ESM scoring function.

The ESM and BSM methods were also tested on the
solubility data from Trevino et al.28 for 21 single mutation
variants of RNase Sa surface residues. Interestingly,
although the experimental solubility data are obtained at
a relatively high concentration of the 1.1 M ammonium
sulfate, both ESM and BSM methods achieved relatively
high accuracy, correctly predicting the effect of 19 from
21 mutations (90%) with a Pearson correlation coefficient
R about .9.

In the interesting case of dramatic solubility change
after the Thr1Lys/Phe13Tyr/I33Lys (KYK) mutation of
the plant protein crambin,31 both ESM and BSM methods
predict a 50–100 times solubility increase, which is con-
sistent with the fact that the KYK mutation transforms
this plant protein from completely insoluble to soluble.

The results achieved with BSM method are of certain
theoretical interest. To the best of our knowledge, it is
the first example of a structure-based model where the
protein solubility is derived from atomistic calculations of
protein binding affinity to its crystal lattice.

Unfortunately, because of technical problems, the
more robust BSM approach is for now only applicable to
small and medium size proteins of up to 150–200 residues
and the calculations are considerably slower than using
the empirical model.

Besides RNase Sa, we tested the ability of ESM
method to predict solubility as a function of pH, using
the pH-dependent solubility of zinc-insulin.33 As shown
in Figure 12, the ESM calculations achieve a good fit to

TABLE 9 Summary of the predictions of antibody solubility changes upon mutations

Antibody
Input structure/
PDB ID Nv

Experimental details Results

pH I Reference

Others Discovery studio

Method R Method R CP

HzANTP Fab homology model 17 7.0 1.0 Wolf Pérez et al.
20192

CamSol .82 ESM .87 11/16
69%

ESMab .91 13/16
0.81%

NGF Fv crystal 9 5.5 0.01 Sormanni et al.
20179

CamSol .68 ESM .89 7/8
88%

mAb-J Fab crystal
5ANM

11 6.0 0.05 Shan et al. 201838 CamSol .71 ESM .83 7/10
70%

G6-VEGF binding
mAb2

Fab crystal
2FJF

11 7.0 0.145 van der Kant et al.
201739

TANGO
Solubis

.60

.59
ESM .83 9/10

90%

CNTO607 Fab crystal
3G6A

8 7.2 0.1 1. Wu et al. 201036

2. Bethea et al.
201237

NA NA ESM NA 6/7
86%

Abbreviations: CP, the rate of correctly predicted effects of mutations on protein solubility; I, ionic strength; Nv, number of variants; R, Pearson correlation.
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the experimental data, using the same parameters as
those in the RNase Sa calculations. This result suggests
that using point molecular charge and dipole to approxi-
mate the intermolecular electrostatic interactions in ESM
method is reasonable.

While the theoretical basis of the ESM model repre-
sents the behavior of protein molecules in precipitation
experiments, it is interesting to assess the ability of the
method in predicting the solubility changes upon muta-
tions measured by different experimental techniques and
following different mechanisms of aggregation, for exam-
ple, amyloid formation or amorphous aggregation. For
this purpose, we used the ESM method to evaluate the
effect of 122 mutations taken from a data set assembled
by Tian and co-authors35 where the effects of mutation
are reported as increasing or decreasing of solubility. The
comparison of ESM results to the experimental data,
shown in Table 2 is encouraging, where the ESM method
correctly predicts 78% of all cases. On this data set, we
also tested an extension of the ESM scoring function,
SF2, taking into account the protein stability changes
upon mutation. The folding energy differences are calcu-
lated by the Calculate Mutation Energy (Stability) Discov-
ery Studio protocol along with the generation of the
mutant structures. At the cost of a couple of false nega-
tives, the use of the extended SF2 scoring function
improved the general accuracy from 78% to 88% correct
predictions. The latter is consistent with the view that the
mutations which cause partial or full protein unfolding
could lead to a decrease of solubility, for example, by
exposing internal hydrophobic residues.

The high interest in improving antibody
developability and formulation properties inspired us to
test the ability of our methods in predicting antibody sol-
ubility changes while introducing mutations to optimize
biological function. For this purpose, we used the solubil-
ity data of the mutants from five different monoclonal
antibodies. The experimental solubilities are measured
for full-length antibodies for all five data sets using differ-
ent techniques, such as precipitation in PEG (NGF anti-
body and Mab-J), in ammonium sulfate (HzATNP), or
measuring the relative titer (VEGF binding G6 antibody).
Our predictions are carried out using Fab domain struc-
tures when possible, except NGF for which only the Fv
sequence was given in the original experimental paper.
The ESM results show a good accuracy with correctly
predicted solubility changes in the range of 80% (Mab-J)
to 90% (G6). Apart from CNTO607, the Pearson correla-
tion coefficient R varies between .83 and .89 and outper-
forms the reported correlation obtained by other methods
such as CamSol, TANGO, and Solubis as summarized in
Table 7. In all data sets, except NGF, the ESM method
also shows a better correlation between ESM and

experimental values, than the developability index, also
calculated by the Calculate Protein Formulation Properties
Discovery Studio protocol. We believe it is because the
ESM model takes into account more interactions related
to solubility, than DI scoring function, such as the pH-
dependent solvation term and dipole–dipole interactions.

The CNTO607 case was of special interest because the
X-ray structure of the Fab domain and the mutation
experiments suggest that the low solubility of this anti-
body is caused by specific bivalent interactions36,37

between the Fab fragments, that could lead to aggrega-
tion. To investigate this feature, besides the ESM calcula-
tions, we calculated the protein–protein binding energy
between the molecules in the Fab dimer. The results,
obtained by employing the Calculate Mutation Energy
(Binding) Discovery Studio protocol are consistent with
the highly improved solubility of 103FHW105–
103AAA105 triple mutant and K210T/K215T double
mutant. We also performed alanine scanning of the Fab–
Fab binding interface. Besides identifying the impact of
residues included in the experimental mutations, the ala-
nine scanning found some other mutations that could
improve the CNTO607 solubility, such as L:F31A and
H:Y53A.

In an attempt to improve the predictions, we tested
an extension of the ESM method, ESMab, applicable to
antibody by adding terms approximating the Fab–Fc
charge–charge and dipole–dipole interactions to the ESM
scoring function. For two of the three tested sets, ESMab
accuracy is the same as the ESM accuracy, but for the
data set with the largest number of mutants (HzATNP)
the correlation improves from R = .87 to R = .91, and the
correctly predicted cases from 69% to 81%. While some-
what promising, more validation of the ESMab model
with additional data sets is desirable.

Both of our methods, ESM and BSM are applicable to
globular proteins and as shown above, have been vali-
dated based on the mutations of 17 globular protein data
sets, and five monoclonal antibodies. In this study, we
tested the ESM model with Fab domain and full-length
mAb. In theory, using the full-length mAb in our ESM
model will result in poor prediction, given the high flexi-
bility of the mAb hinge region which leads to the high
variability of the orientation between the two Fab and Fc
domains. Indeed, the solubilities predicted based on the
modeled full-length HzATNP structure and its 16 mutants
showed poor correlation to experimental data (results
available upon request). It is reasonable to assume that
the Fab–Fab, Fab–Fc, and Fc–Fc interactions represent
the intermolecular interaction of the full-length mAb in
crystal and in solution. Given that the Fc domain is kept
constant in most antibody engineering projects, consider-
ing the Fab–Fab interaction as in the ESM model and in
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addition, the Fab–Fc interactions in the ESMab model
are reasonable approximations of the mAb inter-
molecular interaction for the prediction of mAb solubil-
ity. The study of the five antibody data sets, where 4 out
of 5 data sets are calculated using the Fab domain vali-
dated our approach.

The ESM method is implemented in the existing Cal-
culate Protein Formulation Properties Discovery Studio
protocol, along with calculations of the developability
index,3 DI and viscosity scores.7 Although our structure-
based approach requires protein 3D structures as input to
the calculation, the results are more accurate compared
to sequence-only approaches, such as CamSol.8 For
mAbs, the structure can be modeled using the fully auto-
mated Antibody Modeling Cascade Discovery Studio pro-
tocol, and the accuracy of the model is well suited to the
study of formulation properties as validated by the cur-
rent work. When the structure of the original protein var-
iant is known, either from experiment or from a
homology model, the structures of the mutants can be
modeled using Calculate Mutation Energy (Stability) Dis-
covery Studio protocol automatically and the relative
folding energy can be used as a filter to rank the solubil-
ity of the mutants and rule out the mutants with signifi-
cant decrease of stability. The ESM method is a general
approach for the prediction of solubility for globular pro-
teins and the results are validated based on a large num-
ber of different globular proteins as well as five sets of
full-length mAbs. It is suitable for studying the solubility
of different antibody formats, such as scFv, VHH single
domain antibody, mAb, and so forth. The calculation is
fast and can screen a large number of design candidates.
We intend to integrate our formulation property calcula-
tion, including protein solubility, into our automated
multi-objective optimization for the purposes of the anti-
body design.

5 | MATERIALS AND METHODS

The BIOVIA Discovery Studio implementation of the
ESM model uses a number of CHARMM scripts, C++,
and Perl program modules wrapped in a single BIOVIA
Calculate Protein Formulation Properties Discovery Studio
protocol. For data set with known wild-type PDB struc-
tures, the input structures are prepared by the Prepare
Protein Discovery Studio protocol, using the ChiRotor42

algorithm to generate the atomic coordinates of any
incomplete or missing side chains, and the LOOPER
algorithm43 for any missing structure fragments and
mutation variants with insertions. For the antibody data
set, HzATNP, without known experimental structure, the
Antibody Modeling Cascade protocol in BIOVIA

Discovery Studio is used to predict the Fab domain of the
wild-type.

In ESM calculations the structures of the mutants are
generated by the Calculate Mutation Energy (Stability)
Discovery Studio protocol in pH-dependent mode with
all parameters set to default values. The same protocol is
used to evaluate the folding free energy differences upon
mutations.

BSM calculations are carried out in pH-dependent
mode of the Calculate Mutation Energy (Binding) Discov-
ery Studio protocol. The structure of the mutants are gen-
erated simultaneously for all molecules in the model
crystalline particles, along with the calculations of the
binding energy.

The pH-dependent electrostatic properties in both
the ESM and BSM implementations are calculated by
the new version of the previously reported Calculate
Protein Ionization component,16 extended with calcu-
lations of the dipole moments. All calculations of elec-
trostatic terms are carried out using the default value
of 10 for the intramolecular dielectric constants. In
ESM calculations the solvent dielectric constant set to
80 for the liquid phase and 55 for the condensed
phase. The electrostatic calculations are based on
GBIM22 CHARMM21 version of Generalized Born
model.

The calculations of the pH-dependent ionization
properties are based on the Bashford and Karplus23,24

model, and the IMC (Iterative Mobile Clustering)
approach30 to the combinatorial problem in systems with
multiple sites of titration. The IMC approach allows the
treatment of protein molecules with several 1,000 amino
acid residues.

The methods are implemented for both CHARMm
and CHARMm Polar H (hydrogen) Momany and Rone44

force fields, but the results reported in this study were
obtained using CHARMm Polar H.
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