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Abstract

Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, 

aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on 

neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained 

increasing interest among researchers for its role in improving aging-related neurodegenerative 

disorders. Additionally, numerous studies have illustrated metformin’s role in ischemic stroke, a 

cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent 

life-threatening disabilities. Considering metformin’s beneficial preclinical actions on various 

disorders, and the drug’s role in alleviating severity of these conditions through involvement in 

commonly characterized cellular pathways, we discuss the potential of metformin as a suitable 

drug candidate for repurposing in CNS disorders.

Graphical abstract

Corresponding author: Thomas Abbruscato, Ph.D., Chair and University Distinguished Professor of Pharmaceutical Sciences at 
TTUHSC, Jerry H. Hodge School of Pharmacy, Office 314, 1300 Coulter Drive, Amarillo, TX, 79106, USA. Office: +18064149234, 
thomas.abbruscato@ttuhsc.edu.
Authors’ contribution:
Conceptualization, S.S., S.N.; investigation, S.S., S.N., B.V., TJA.; original draft preparation, S.S, S.N; review and editing, S.S., S.N, 
B.V., TJA.; funding acquisition, TJA.
1These authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of interest:
The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Life Sci. Author manuscript; available in PMC 2022 June 01.

Published in final edited form as:
Life Sci. 2021 June 01; 274: 119343. doi:10.1016/j.lfs.2021.119343.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Metformin; Anti- Aging; Neurodegenerative diseases; Ischemic Stroke; Tobacco smoking; 
Electronic cigarette vaping; Diabetes

1. Introduction

Aging, a major risk factor for neurodegenerative diseases (NDs), is time dependent 

anatomical and physical change that reduces the functional and physiological capacity of 

a living organism [1]. NDs represent a wide number of diseases among which Alzheimer’s 

disease, Parkinson’s disease and Multiple Sclerosis are the commonly encountered ones 

that affect more than 6 million people in the United States [2–6]. They are generally 

associated with microvascular degeneration, neurovascular disintegration and blood brain 

barrier (BBB) dysfunction [7–9], and represent a substantial danger to human health because 

of their complex pathophysiology involving loss in memory and cognition which can affect 

a person’s ability to speak, walk and even breathe [10, 11]. Another central nervous system 

(CNS) disorder, ischemic stroke is one of the leading causes for mortality and long-term 

disability in the US with limited therapeutic approaches [12]. The most common cause for 

ischemic stroke is the partial or complete blockade of blood flow to the brain from a clot 

occlusion resulting in loss of neurological function [13, 14] Unfortunately, there are few or 

no efficient treatments available for slowing down the progress of these diseases, which can 

be attributable to age as one of their major risk factors.

Over the last two decades, there have been limited drugs approved as a first line treatment 

by the Food and Drug Administration (FDA) for NDs and ischemic stroke with probability 

of just 3% for CNS drugs getting launched after entry into the phase-I clinical trial [15–18]. 

Therefore, development of effective therapies is pivotal but only will arise from extensive 

understanding of mechanism of each disease. Additionally, repurposing of drugs that 

have shown significant results in pre-clinical studies could accelerate developing effective 

therapies [19]. Drug repurposing is a strategy that involves searching for new applications 

of prevailing therapeutics that will allow drugs to reach a greater number of patients for a 

wider indication. This procedure can bypass several steps of drug development including 

determination of mechanism of action, formulation and pharmacokinetics which would take 

on average 10-17 years in contrast to development time of 3-12 years for repurposed drugs 

[20, 21]. Interestingly, there are 103 compounds listed by geroprotectors.org to facilitate 

drug repurposing approaches in targeting aging related CNS diseases that have already been 

approved for use in humans [22]. This database compiles data of existing substances through 

pharmacological modeling and biostatistical analysis. One of them is the most promising 

anti-diabetic drug, metformin, because of substantial experimental studies supporting its 

beneficial effects in CNS diseases.

2. Metformin

Metformin, class biguanide, is a synthetic derivative of French Lilac (Galega Officinalis), a 

herbal plant traditionally employed in Europe for diabetes treatment [23]. In 1957 French 

diabetologist Jean Sterne first published the drug’s properties and result of administration in 
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humans for diabetes [24]. The drug was first approved for use in UK in 1958 and became 

available in the British National Formulary in the same year [25]. Metformin was first 

approved by the FDA in the year 1994 for treatment of type 2 diabetes mellitus (T2D). In 

2009, metformin got approval by American Diabetic Association (ADA) and the European 

Association for the Study of Diabetes (EASD) as a first line oral anti-diabetic drug because 

studies showed drastic improvement in morbidity and mortality [26]. Metformin lowers 

the glucose level in the blood not by sensitizing insulin secretion from beta cells of the 

pancreas but inhibition of peripheral and hepatic glucose production. Thus, the drug does 

not cause hypoglycemia [27]. Moreover, there have not been any major safety concerns on 

the usage of the drug for over sixty years [28]. The only exception is that the drug has been 

reported to cause lactic acidosis in high doses. As a result, the drug is not recommended in 

severe liver impairment and chronic kidney disease patients [29]. Outside of its application 

in the treatment of diabetes, metformin has anti-inflammatory, anti-cancer, cardioprotective, 

hepatoprotective and antioxidant properties and currently it is being investigated as a drug 

directly acting on the CNS [30–32]. With its mild side effects and a multi-action drug 

profile, metformin is a favorable candidate for repurposing.

Considering metformin’s pharmacokinetic profile, there have been numerous studies that are 

able to demonstrate a clear picture of how the human body pharmacokinetically processes 

this drug [33–36]. Metformin is slowly and incompletely absorbed from the gastrointestinal 

tract at doses of 0.5-2 grams per day and the bioavailability after oral administration 

is 50-60%. Additionally, the drug is not bound to plasma proteins and has an apparent 

volume of distribution (Vd) of approximately 600L after an oral administration of 2 grams. 

Moreover, this high value of Vd of metformin suggests that the drug can be absorbed by 

various tissues across the body. The drug is not affected by any significant biotransformation 

by liver or biliary secretion and finally it is eliminated through active renal tubular secretion 

with an elimination half-life of 4-5 hours.

Metformin has capacities to balance survival and death signaling in the primary 

neurons which improves energy metabolism, oxidative stress and proteostasis [37]. Pre-

clinical studies have suggested that the AMP-activated protein kinase (AMPK) dependent 

mechanisms of the drug are responsible for the antioxidative effects in aging related 

CNS disorders [31, 38, 39]. Basically, the drug exerts its activities with two proposed 

mechanisms; AMP-activated protein kinase (AMPK) dependent and AMPK independent 

manner [40]. Firstly, Metformin inhibits the complex I in mitochondrial respiratory 

chain and decreases cellular respiration. This increases ADP:ATP and AMP:ATP ratios 

which activates the AMPK and leads to increased production of ATP and decreased 

consumption [41]. Also, AMPK activation by metformin inhibits phosphorylation of acetyl-

CoA carboxylase (ACC) that increases β oxidation and fatty acid uptake which ultimately 

results in improved lipid metabolism and insulin sensitivity [42]. Furthermore, AMPK 

activation promotes glucose consumption and inhibits glucose output [43]. Secondly, an 

AMPK- independent mechanism of metformin inhibits mitochondrial glycerophosphate 

dehydrogenase which decreases gluconeogenesis [44]. Moreover, metformin’s role in 

reducing hyperglycemia as well as hyperinsulinemia, known accelerators of aging, makes 

it an attractive anti-aging drug [31].
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The NF-κB pathway is one of the most prominent inflammatory mediators of aging. A 

bioinformatic analytical study from various aged tissues showed that NF-κB is the most 

associated transcription factor altered in gene expression during aging [45]. Similarly, 

reducing NF-κB activity has been reported to decrease accelerated aging in a mouse model 

of progeria [46]. In fact, its activation leads to transcription of gene coding for survival 

signals, inflammatory cytokines, cell cycle modulators and finally angiogenic and growth 

factors, which eventually creates a replenishing tumor growth environment [47]. Metformin 

inhibits the phosphorylation of IΚB and IKKα/β by preventing the translocation of NF-κB 

to the nucleus [48]. These effects support AMPK independent activation and further provide 

evidence for metformin’s potential as an anti-aging drug and possibly as an anti-neoplastic 

agent.

The mechanistic target of rapamycin (mTOR) is a nutrient response pathway whose 

inhibition extends lifespan in animal models and ensures protection against age related 

conditions. Thus, drugs that target the mTOR pathway can be possible therapeutic 

options in treatment of aging related diseases [49]. Metformin has been demonstrated 

to depress the mTOR pathway in both an AMPK dependent, where it inhibits protein 

synthesis via mTOR and suppresses ATP consumption, and an AMPK independent manner 

through downregulation of insulin like growth factor-1 (IGF-1). This leads to cell growth, 

proliferation and autophagy [50].

3. The Neurovascular Unit (NVU) and CNS disorders

The BBB is the major site of blood and CNS exchange at the brain microvessel endothelium 

level [51]. It is a dynamic structure regulates several mechanisms within the brain that 

involve changes in tight junctional function and activity of enzymes and transporters 

present at the brain microvascular endothelium. This dynamic barrier accounts for synaptic 

signaling, neurotransmission, restricted entry of macromolecules into the brain, protection 

from neurotoxins and selectively provide the necessary supply of solutes and nutrients to 

the brain [52]. Brain endothelial cells (BECs) are the primary anatomical unit of the BBB, 

providing a physical separation between the blood and CNS. The “barrier” function of the 

NVU is conferred by four distinct phenotypes of the endothelial cells that include expression 

of efflux transporters, metabolic enzymes, tight junctional proteins and reduced levels of 

pinocytosis [53, 54]. This BBB phenotype of BECs, is greatly influenced by the surrounding 

cells that function collectively as the NVU. The other important cell types for the BBB 

induction and maintenance are pericytes, which share a basement membrane with the brain 

endothelium and astrocytes, and reside in close proximity to the BBB [55]. Neurons, the 

extracellular matrix, microglia and oligodendrocytes are the other components of the NVU 

that are responsible for maintenance of normal BBB function under both physiological and 

inflammatory conditions [56]. Figure 1 illustrates the paracrine interactions between NVU 

cells and their effects on each other.

3.1 Pathophysiological changes in the components of NVU with aging in CNS diseases

The global decrease in cerebral blood flow as well as neurovascular uncoupling are 

considered as hallmarks of normal aging and neurodegenerative diseases [57]. There is 
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reduced expression of specialized tight junction proteins such as occludin, claudin-5 and 

occludens-1 in the NVU that causes BBB dysfunction [58–60]. Additionally, pericyte 

deficiency results from their detachment from endothelial cells [9]. This causes neurotoxic 

macromolecules to leak or accumulate into the brain. Moreover, there is accumulation of 

iron in astrocytes which reduces expression of ceruloplasmin in the CNS [61]. Excessive 

iron can generate free radicals and cause BBB alteration. Furthermore, detachment of 

astrocytic end foot from the BECs results in weak communication between neurons and 

the endothelium, eventually causing neurovascular uncoupling and hence neurodegeneration 

[62].

Data from a human study showed significant increase in albumin leakage through the 

BBB in aged healthy individuals compared to young healthy population [63]. Similarly, 

morphological changes in the BBB and leakage of albumin and IgG to the brain 

parenchyma were confirmed for brain regions that encompass cognitive functions, such 

as the hippocampus [64]. Furthermore, some brain regions of old senescence-accelerated 

prone mouse strain 8 (SAMP8), showed increased transport of TNF-α [65]. Also, in both 

physiologically aged and SAMP8 mice, the BBB has decreased expression of GLUT-1 

transporter, which results in decreased transport of necessary glucose to the brain [66]. The 

activity of efflux transporter, P- glycoprotein, is also decreased in experimental models of 

ageing which results in reduced elimination of toxins from brain to the blood capillaries 

[67].

Hypoxia increases the permeability of various macromolecules such as albumin and dextran 

across the BBB [68, 69]. This occurs as a result of increased exposure to free radicals 

and/or inflammatory cytokines at the levels of tight junction proteins. Angiogenic factors 

like vascular endothelial growth factor (VEGF) and hypoxia-induced factor 1-α decrease 

with age. Brain-derived neurotrophic factor, a growth factor secreted by both neurons and 

BECs, which contributes to synaptic plasticity, decreases with age. Furthermore, age-related 

decreases in nitric oxide bioavailability alters BECs sensitivity to VEGF. Figure 2 illustrates 

the effects of ageing on the NYU components and the subsequent outcomes.

3.2. Regional brain distribution of metformin

Pre-clinical studies have shown that with a single oral dose of 50-150 mg/kg, metformin 

can cross the BBB [70, 71] and it was able to restore brain AMPK activity [72, 73]. 

However, because of disturbances of AMPK activity in inflammatory CNS conditions 

such as NDs and ischemic stroke, it is important to determine the drug’s specific 

pharmacological target within the brain. The analysis of brain specific distribution of 

metformin under normal and inflammatory conditions in one study showed a higher level 

of drug accumulation in pituitary gland, olfactory bulb, striatum and hypothalamus [74]. In 

contrast, the hippocampus, cerebellum and frontal cortex showed low accumulation of the 

drug in inflamed brain samples. Furthermore, it was suggested that various concentrations 

of the drug in different parts of brain may result from either up or down regulation of 

determinants of intracellular accumulation of the drug, such as membrane-bound organic 

cationic transporters or mitochondria. It is apparent that future studies are required to 
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determine the regional brain distribution of metformin and decipher the drug’s action in 

molecular level.

4. CNS disorders and role of Metformin

4.1. Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of dementia and progressive 

neurodegenerative disorder that causes memory loss and cognitive dysfunction. In fact, 

with growing evidences of AD’s pathogenesis it could be suggested that impaired insulin 

signaling is responsible for neurodegeneration [75]. Interestingly, studies have shown 

that metformin has potent anti-inflammatory actions and it ameliorates AD-associated 

neuropathological changes and decreases cognitive impairment in diabetic mice model and 

also in patients with T2D [76, 77]. A study showed that oral and intranasal metformin 

administration can improve memory and cognition in AD patients [78]. Furthermore, 

another study compared data of the pro-neurogenic potential of metformin to that of 

donepezil, a first-line acetylcholinesterase inhibitor, in an aluminum chloride induced mouse 

model of neurodegeneration [79]. The study concluded that the mice treated with metformin 

exhibited an enhanced number of post-mitotic NeuN positive cells compared to that treated 

with donepezil. Therefore, metformin mediated neurogenesis could eventually be a potential 

treatment option in neurodegenerative diseases that cause cognitive impairment.

Pathologically, AD is characterized by deposition of intracellular neurofibrillary tangles and 

extracellular amyloid-β(Aβ) plaques. The extracellular deposition of Aβ plaque surrounded 

by microglia and astrocytes is reported to be due to overactivation of glia which causes 

excessive release of pro-inflammatory factors such as IL-1β and TNF-α [80, 81]. However, 

activation of glia is important for the clearance of Aβ deposition through phagocytosis, 

linking dual role for neuroinflammation on Aβ pathology [82, 83]. Epidemiological studies 

have shown that long term use of anti-inflammatory agents has helped in reducing risk 

of developing AD [84]. However, with these agents, contradictory results in AD treatment 

have been observed, highlighting the need for more specific anti-inflammatory therapies. 

Interestingly, metformin administration was shown to attenuate spatial memory deficits, 

decrease Aβ plaque load and chronic inflammation via activation of microglia and astrocytes 

as well as pro-inflammatory mediators in the hippocampus and cortex of APP/PS1 mice [82, 

83, 85, 86]. These studies suggested that metformin can enhance functional recovery via 

regulating AMPK, mTOR and NF-kB signaling pathways in hippocampus, thus improving 

neurologic defects.

4.2. Parkinson’s Disease

Parkinson’s disease (PD) is one of the most common NDs that is accompanied by 

progressive loss of dopaminergic neurons in the substantia nigra compacta and aggregation 

of Lewy bodies and Lewy neurites in various parts of the affected brains [87, 88]. 

Mitochondrial dysfunction, oxidative stress, neuroinflammation, ubiquitin proteasome 

system and disturbed proteostasis due to impaired autophagy-lysosomal pathway are the 

hallmarks of PD [89, 90]. A previous study demonstrated that metformin reduces the 

number of nonfunctional mitochondria and ROS generation by promoting mitophagy in 
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an AMPK-dependent manner [91]. Additionally, metformin was shown to activate the ATF2/

CREB pathway in an AMPK-independent manner and stimulate peroxisome proliferator-

activated receptor gamma coactivator-1a (PGC-1a) and its target genes [92]. PGC-1a is a 

transcriptional cofactor that is actively involved in regulation of mitochondrial anti-oxidative 

defense mechanism [92]. Moreover, in the mid brain of MPTP mouse model of PD, 

metformin restored anti-oxidative mediators such as superoxide dismutase, catalase and 

glutathione [93]. PD is characterized by various motor and non-motor symptoms such as 

rigidity, bradykinesia, freezing of gait, cognitive abnormalities and depression [94].

The effect of metformin on the substantia nigra, a critical brain structure affected in PD, has 

not been studied in detail. Nevertheless, data from a study suggests effect of metformin on 

microglial activation in the substantia nigra in a pro-inflammagen lipopolysaccharide (LPS) 

at both the cellular and molecular levels [95]. This study supports that metformin inhibits 

microglia activation as measured by immunoreactivity markers and it minimizes expression 

of pro and anti-inflammatory cytokines by phosphorylation of mitogen activated protein 

kinase (MAPK) as well as by ROS generation through inhibition of NADPH enzyme. 

However, metformin failed to protect the dopaminergic neurons of the substantia nigra in 

response to intranigral LPS.

4.3 Multiple sclerosis

Multiple sclerosis (MS) is a chronic demyelinating disease characterized by delayed 

remyelination of axons making it susceptible to irreversible degeneration. This substantiates 

progressive neurologic decline as associated with later stages of MS and can extend over 

decades [96]. The delayed remyelination occurs with aging due to delayed differentiation 

of oligodendrocytes progenitor cells (OPCs) to oligodendrocytes, the myelin forming cells 

of the CNS [97, 98]. In fact, studies demonstrate that regulatory mechanism that control 

OPC differentiation are nonfunctional in aging brain [99, 100]. Additional studies found that 

chronically demyelinated MS lesions contain OPCs that were undifferentiated and increase 

in number of OPCs in white matter lesions of aged animals [101, 102]. These OPCs did 

not contribute in remyelination, indicating that differentiation of OPCs into oligodendrocytes 

is crucial for remyelination. It has also been shown that, remyelination could be enhanced 

by adding pro differentiating factors lacking in aged brain [103, 104]. However, aged 

OPCs differentiate very slowly and become unresponsive to pro-differentiation signals. 

The diminished functional capacity is associated with hallmarks of cellular aging such as 

mitochondrial dysfunction, unfolded protein response, autophagy, NF-kB and p-38 MAPK 

signaling. When metformin was used as a pharmacological approach targeting endogenous 

OPCs, it stimulated remyelination via AMPK-dependent mechanism and led to increased 

mitochondrial function as required for differentiation of OPCs. Also, metformin reduced 

oxidative stress with activation of antioxidative defense in oligodendrocytes exposed to 

cytokines via AMPK activation. Hence, metformin has potential to limit neurologic deficits 

in MS and related neurodegenerative diseases. In Table 1 we have summarized some of the 

effects of metformin treatment in NDs from experimental studies.
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4.4. Ischemic stroke

Ischemic stroke can result in cerebral ischemia/reperfusion (I/R) injury, which is 

characterized by transient loss followed by rapid return of the blood flow to the brain and 

can lead to a higher amount of neuronal death, enhanced brain infarction and substantial 

cognitive dysfunction compared to ischemia alone [113, 114]. The ischemic cascade 

follows in seconds to minutes after the blockage and is comprised of multiple, continuous 

biochemical events leading to severe focal hypoperfusion, excitotoxicity and oxidative 

damage eventually leading to BBB dysfunction and inflammation [115]. White matter 

injury, as well as damage and death of astrocytes, also contribute to cerebral impairment 

[116, 117]. Inflammation initially causes release of harmful radicals and cytokines; however, 

it also enables synaptic remodeling that helps to remove damaged tissues [118]. Similarly, 

glial cells promote angiogenesis and neurogenesis to regulate the BBB, but conversely forms 

glial scar that may further prevent neuronal plasticity [119]. Below we have discussed the 

pathways through which metformin exerts its protective effect in ischemic stroke.

4.4.1. AMPK activation—As with NDs, AMPK activation is believed to be metformin’s 

key pathway involved in ischemic stroke. There are several studies suggesting that 

metformin acts through the AMPK signaling pathway in reduction of the cerebral infarct 

area and neuronal apoptosis in ischemic rat models [39, 120, 121]. Metformin’s AMPK 

activation in suppression of post ischemic neuroinflammation has been reported to be either 

because of NrF2 anti-oxidant pathway activation or inhibition of NF-κB cascade [38]. 

An in-vitro study showed that metformin treatment following oxygen-glucose deprivation 

and reperfusion (OGD/R) reduces NF-κB and intercellular adhesion molecule-1(ICAM-1) 

in BECs [38]. Similarly, metformin reduced TNF-a induced inflammation in BECs by 

activation of AMPK [122]. Furthermore, metformin treatment improved apoptosis of 

primary fetal rat derived hippocampal neurons that were subjected to OGD [123]. An 

in-vitro study showed metformin’s effect in primary rat cortical astrocytes subjected to OGD 

and found out that AMPK is critical for the regulation of apoptosis in a caspase independent 

manner [124].

AMPK consists of an α catalytic subunit and a β and γ regular subunits and all of 

them play important roles in regulation of energy metabolism [125]. All these subunits 

are highly expressed in neurons, glia and astrocytes of the NVU. Studies have shown that 

diverse cellular combination of AMPK subunits may account for various effects of AMPK 

activation following stroke. For instance, in an experimental stroke model, systemic gene 

depletion of α-2 subunit confers neuroprotection while cell-specific deletion of α-2 subunit 

in astrocytes after cerebral ischemia has been found to be detrimental [126]. Additionally, 

administration of metformin caused increased neuronal damage in post-ischemic conditions 

[127]. The differential effects of metformin are contributable to several causes that include 

type and length of ischemia, dosage, duration and route and timing of administration of 

metformin and co-existing conditions like diabetes [128]. chronic kidney diseases [129] 

and tobacco smoking [130]. Figure 3 illustrates the neuroprotective effects of metformin in 

ischemic stroke through AMPK signaling pathway.
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4.4.2. Alleviation of oxidative stress mediated inflammation—ROS induced 

tissue damage is one of the most important components of cerebral I/R injury [131]. An 

I/R event leads to detrimental effects to the BBB, causing increased leucocyte infiltration 

into the brain tissue due to the upregulation of ICAM-1 and activation of microglia that leads 

to increased production of ROS and RNS [132]. Therefore, alleviating the damage caused 

by I/R injury induced by oxidative stress can be promising in the treatment of ischemic 

stroke. A study showed that metformin treatment significantly increased endogenous 

antioxidants enzymes such as superoxide dismutase (SOD) and glutathione (GSH) levels 

in the brain tissue [133]. This reversed the oxidative injury caused by increased levels 

of ROS. Moreover, metformin treatment following I/R injury leads to reductions in both 

the expression of ICAM-1 and subsequent leucocyte infiltration. This was confirmed with 

decreased myeloperoxidase+ and GrL+ cells after I/R event in brain tissue [38].

An I/R event leads to upregulation of microglia M1 signature genes including IL-1B and 

CD32, leading to inflammation. It was shown that post metformin treatment reversed the 

polarization of microglia M1 to M2 signature genes, including CD206 and arginase-1, as 

well as anti-inflammatory cytokines IL-4 and IL-10, resulting in reduced brain inflammation 

[120, 134]. Moreover, a study conducted in LPS stimulated microglial cells, used to mimic 

an I/R event and treated with metformin, showed that the cells produced higher levels of 

anti-inflammatory cytokine, interleukin-10, compared to control group [120]. This suggests 

that metformin could have anti-inflammatory activity following I/R injury in microglial 

cells. Also, elevated numbers of angiogenic structures were seen with bEnd.3 cells when 

they were exposed to medium that contained metformin-treated microglia.

4.4.3. Neurogenesis—It has been shown that, following an ischemic injury, there is an 

increased production of neurons and subsequent neuroblast migration to damaged area of 

the brain as a part of endogenous repair mechanism [135]. Hence, therapies that promote 

post-ischemic neurogenesis can be a potential target for ischemic stroke. A study tested 

long-term neuroprotection effects of metformin following hypoxic ischemia injury and 

found reduced neuronal degeneration in the CA1 region of hippocampal area [136]. The 

CA1 region of hippocampus is highly sensitive to HI injury. Similarly, metformin treatment 

reversed increasing levels of cleaved caspase 3, promoted anti-apoptosis protein BCL-2 

expression, inhibited pro-apoptosis protein BAX in the cortex and hippocampus.

Another study confirmed that metformin promoted neuroblasts proliferation and 

differentiation in the hippocampal area [137]. It was supported that metformin enhances 

regulation of neurogenesis and has a likely contribution in treatment of cerebral ischemic 

injury. An I/R event can also induce activation of astrocytes leading to increase in production 

of glial fibrillary acidic protein (GFAP). This causes formation of glial scar in the brain 

that eventually reduces regeneration of neurons, impeding recovery after an ischemic event 

[138, 139]. Also, metformin treatment post I/R injury reduces GFAP+ cells, suggesting the 

regeneration of neurons and thereby functional recovery [140].

4.4.4. Other important pathways—PI3K/Akt1/JNK3/C-Jun pathway is one of the 

crucial signaling pathways in cell survival. Cellular growth factors such as platelet derived 

growth factor can stimulate release of phosphatidylinositol 3 Kinase (PI3K) after activation 
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of Akt1, which simultaneously inactivates c-Jun N- terminal kinase-3 (JNK-3) molecule 

that is found in heart and brain. JNK-3 is associated with expression of apoptotic proteins 

and is negatively correlated with neuronal survival in stroke model [141]. Interestingly, 

a study has demonstrated the involvement of this pathway when metformin improved 

impairment of hippocampal controlled behaviors and reduced cell apoptosis in an I/R rat 

model.. Thus, PI3K/Akt1/JNK3/C-Jun pathway incorporates metformin’s neuroprotective 

role in hippocampal deficits caused by I/R injury [142]. Additionally, pre-treatment of BECs 

isolated from a diabetic rat model with metformin and exposure to OGD/R, resulted in 

reduced formation of nitrotyrosine and p85 (PI3K regulatory subunit) nitration compared 

to the control group. The mechanism behind this is reduced reactive nitrogen species in 

the BECs that would eventually result in restored regulation of the apoptotic pathway and 

alleviation of I/R injury [143].

Arterial baroreflex pathway is one of the few important pathways for stroke prevention [144] 

and its dysfunction has been reported to be an important risk factor for the development 

of stroke [39]. In fact, the α7nAChR pathway, a ligand gated ion channel that is highly 

expressed in the macrophages of different tissues in the brain, is demonstrated to be the 

downstream of arterial baroreflex pathway and involved in neuroprotection against ischemic 

cerebral injury [145, 146].

The activation of this receptor inhibits the production of inflammatory cytokines and thus 

reduces local inflammatory response. Studies have shown that metformin reduces chronic 

inflammation by inhibiting proinflammatory cytokines levels, in both animal and human, 

labelling it as a promising anti-inflammatory agent [39, 147]. Additionally, metformin 

regulates the action of vagal nervous, one arm of arterial baroreflex in the CNS, which in 

turn is mediated mainly by α7nACh receptor [148, 149]. Moreover, metformin increases 

the life span of stroke-prone spontaneously hypersensitive rats, reducing the middle cerebral 

artery occlusion (MCAO) induced infarct size in the brain and upregulating the expression of 

α7nACh receptors. This resulted in downregulation of pro-inflammatory cytokines in serum 

and peri-infarct area of ischemic brain. However, this effect of metformin was markedly 

attenuated by deactivating the arterial baroreflex by sinoaortic denervation in rats. This 

further confirms the involvement of the pathway in metformin mediated protection against 

stroke.

4.4.5. Dose, duration and timing of metformin treatment in ischemic stroke
—Investigators have conducted a study based on dose, duration and timing of metformin 

administration in male C57BL/6 mice that were subjected to both transient and permanent 

MCAO surgery [150]. A 7-day treatment of 10mg/kg prior to permanent MCAO, showed 

significant improvement as compared to shorter duration treatments. Therefore, pretreatment 

time window is an essential factor in metformin administration. In contrast, in transient 

MCAOs, mice did not show any significant improvement suggesting that metformin may not 

be beneficial in cases of blood reperfusion.

A different study treated Wistar rats with metformin at 200 mg/kg orally for 7 days and 

subjected to I/R for the next 7 days [151]. In the same way, the study also conducted both 

post and continuous (pre-post) administration and compared results with pre-administration. 

Sharma et al. Page 10

Life Sci. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The results showed significant reduction in malonaldehyde level, an oxidative stress marker, 

in metformin pre-treatment group as compared to continuous group. However, studies have 

also shown that treatment with 200 mg/kg metformin for a longer duration of 14 days after 

transient MCAO (tMCAO) reduced the brain atrophy volume [30, 122]. Below we have 

summarized the results of various studies based on the timing and duration of metformin 

treatment in experimental stroke models.

5. Metformin’s role in ischemic stroke comorbidities

T2D and smoking are common risk factors, as well as coexisting conditions, that can 

aggravate ischemic stroke prognosis and recovery [163–165]. People with diabetes have 

higher risk of developing ischemic stroke and myocardial infarction because of increased 

atherosclerosis and endothelial cell dysfunction, concomitantly causing slower recovery 

after cerebral I/R injury [166]. A diabetic situation can promote higher bleeding following 

an ischemic event slowing down the brain recovery process [167]. In addition, T2D has 

been shown to impair post stroke reparative neovascularization and impede the recovery due 

to vascular regression in the brain [161]. One study suggests that metformin reduces post 

stroke nitrotyrosine levels in the brain parenchyma and cerebrovasculature in a diabetic rat 

model [143]. Furthermore, these diabetic rats were observed to have increased caspase-3 

activation with I/R injury induction and treatment with metformin reduced caspase-3 

cleavage causing reduced apoptotic cell death. Interestingly, a recent study has suggested 

exacerbation of ischemia in chronic kidney disease-induced female mice and reports that 

chronic pre-treatment with metformin is beneficial in stroke recovery. The underlying 

mechanism is AMPK phosphorylation and activation of canonical NF-kB pathway, as shown 

by decreased expression of microglia/macrophages M1 signature genes within the ischemic 

lesions of CKD-induced mice treated with metformin [129].

Tobacco smoking (TS) is considered as a contributing etiology in some NDs and stroke. 

Moreover, TS promotes glucose intolerance and increases risk of developing T2D [168]. 

Several studies have shown that TS is associated with decreased vascular endothelial 

function in a causative and dose dependent manner [169, 170] which is primarily related 

to ROS content of tobacco smoke, nicotine and oxidative stress driven inflammation 

[171, 172]. This suggests that TS shares common pathogenic traits similar to that of 

T2D in stroke [173]. Furthermore, studies show that the release pattern of angiogenic, 

oxidative and inflammatory factors of BECs in response to hyperglycemia and TS-induced 

stroke conditions are similar, which supports common pathogenic involvements in BBB 

impairment [39]. A study investigated effects of nicotine exposure on neuronal glucose 

utilization in an in-vitro stroke model and found out that it caused decreased neuronal 

GLUT-1 uptake, up-regulated α7 nicotinic acetylcholine receptor and eventually led to 

decreased glycolysis. This caused a state of glucose deprivation at the NVU in the 

brain and could possibly lead to enhanced ischemic brain injury and/or stroke risk [164] 

[174]. Furthermore, studies from our group show that metformin also activates the Nrf2 

pathway, independent of AMPK phosphorylation, in both in-vitro and in-vivo cigarette 

smoke-induced cerebrovascular models [175]. Metformin induced renormalization of tight 

junction proteins, BBB integrity, inflammation and oxidative stress markers, and expression 

of Glut-1 and thrombomodulin.
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Electronic Cigarettes (E-Cigs), also known as Vapes, Blues or Juuls, have gained popularity 

among young adults, as they are marketed as a safer alternative to TS. It is also believed 

to be a useful tool for smoking cessation, however information on nicotine dependence 

and various cerebrovascular toxicities from e-cigs remain less known [176, 177]. A recent 

Surgeon General’s Report showed that it is challenging to make conclusions about the 

efficacy of e-Cigs for cessation based on clinical trials, mainly due to the heterogenous 

group of products[178]. In addition, there are limited studies on effects of e-cigs on stroke 

outcome in comparison to that of TS. Investigations from our lab have attempted to decipher 

the brain effects of nicotine in both adult and adolescent rodent models. We have shown that 

exposure to nicotine and e-Cig vapor in adult mice causes downregulation of brain GLUT1 

and GLUT3 expression and leads to decreased brain glucose uptake under both normoxic 

and ischemic conditions [164]. Another study compared effects of e-cigs versus that of TS in 

brain and found out that oxidative stress promoted by e-cigs extract was not dissimilar from 

that induced by extracts from traditional ones on BECs in a mouse model. In fact, they found 

out that both of their exposures worsen stroke outcomes in mice that underwent tMCAO by 

downregulating NrF2 and thrombomodulin. Moreover, animals that received daily doses of 

metformin with either TS or e-cigs exposure, exhibited better stroke outcome as compared 

to the untreated counterparts. This was demonstrated by reduced infarct size and better 

neurological scores in animals receiving metformin. Also, the NrF2 levels in brain of these 

animals were significantly higher compared to untreated group [130]. Additional studies 

in our lab have shown that prenatal e-Cig exposure increases the sensitivity of offspring 

to neonatal hypoxia. This caused motor and cognitive deficits and enhanced edema in 

adolescent offspring after neonatal hypoxia. Interestingly, prenatal e-Cig exposure decreased 

brain GLUTs expression in offspring after neonatal hypoxia [179]. Future studies should 

investigate the protective effects of metformin in the developing as well as aged brain, with 

respect to NDs and ischemic stroke.

6. Conclusions and future directions

Despite significant advances in the development of therapeutics for symptomatic treatment 

of neurodegenerative diseases, there is still a critical demand for novel therapeutic agents 

that can modify diseases and target the contributing pathways. Numerous studies mentioned 

in this review suggest metformin as a potential new treatment for neurodegenerative 

diseases and ischemic stroke because it has been demonstrated to improve functional 

recovery through affecting the injury mechanisms in experimental animal models. It has 

also been shown that metformin has promising effects on cognition and could be effective 

in counteracting the deleterious effects of aging which is due to its ability to affect 

several biological pathways including energy production. Metformin easily crosses the 

BBB and distributes in several brain regions. Therefore, safety, pharmacokinetic profile 

and multi-functional properties of metformin, make it a promising neurotherapeutic agent. 

However, it is still unclear what brain levels are necessary at what time to exert the 

neuroprotective effects and what type of regional brain distribution is necessary for 

protective efficacy. Hence, brain pharmacokinetic, biodistribution, time window selection 

and focused molecular studies are warranted in diseased animal models to further develop 

metformin as a neurotherapeutic to treat NDs.
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Abbreviations:

NDS neurodegenerative diseases

NVU neurovascular unit

BBB blood brain barrier

CNS central nervous system

FDA Food and Drug Administration

T2D type 2 diabetes mellitus

Vd volume of distribution

AMPK AMP-activated protein kinase

mTOR mechanistic target of rapamycin

IGF-1 insulin like growth factor-1

BECs brain endothelial cells

MMPs matrix metallopeptidases

VCAM-1 vascular cell adhesion molecule-1

SAMP8 senescence-accelerated prone mouse strain 8

ROS reactive oxygen species

VEGF vascular endothelial growth factor

AD Alzheimer’s disease

Aβ amyloid-β

PD Parkinson’s disease

PGC-1a peroxisome proliferator-activated receptor gamma coactivator-1a

LPS lipopolysaccharide

MAPK mitogen activated protein kinase

OPCs oligodendrocytes progenitor cells

I/R ischemia/reperfusion

OGD/R oxygen-glucose deprivation and reperfusion
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ICAM-1 intercellular adhesion molecule-1

MCAO middle cerebral artery occlusion

eNOS endothelial nitric oxide synthetase

GFAP glial fibrillary acidic protein

PI3K phosphatidylinositol 3 Kinase

JNK-3 c-Jun N- terminal kinase-3

CKD Chronic Kidney Disease

TS Tobacco smoking

E-Cigs Electronic Cigarettes
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Highlights:

1. Aging-related CNS disorders have complex pathophysiology with few or no 

treatments

2. Studies show that, metformin, an anti-diabetic drug, has neuroprotective 

action

3. Consideration of dose, duration and timing of treatment is important for 

metformin use

4. Metformin has the cerebroprotective potential for ischemic stroke

5. Metformin is a suitable candidate for repurposing in aging-related CNS 

disorders
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Figure 1: Functional interactions among neurovascular unit components.
Interactions between the neuronal, glial and vascular compartments within the NVU are 

crucial for maintaining normal function of the brain. Also, different cells within each 

compartment are functioning and interacting cooperatively to regulate brain homeostasis.
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Figure 2: 
Effects of ageing on the NVU components and their interactions. Ageing can influence all 

the cells within the NVU and results in neurovascular uncoupling and neurodegeneration. 

In endothelial cells, ageing induces the secretion of pro-inflammatory factors such as 

TNF-a, IL-1B and VCAM-1, tight junctional protein disruption as a result of chronic 

neuroinflammation, and BBB impairment. It also increases astrocytic reactivity and 

impairs the role of astrocytic endfoot in connecting neurons and endothelial cells. BBB 

disruption and loss of communication with other cells result in neuronal dysfunction and 

neurodegeneration. Therefore, the regenerative capacities of neurons including synaptic 

plasticity, neurogenesis and synaptogenesis decrease significantly.
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Figure 3: 
Neuroprotective effects of metformin in ischemic stroke through AMPK signaling pathway. 

During an ischemic event, a series of neuroprotective mechanisms are stimulated by 

activated AMPK in order to maintain the energy homeostasis of the brain. Activated 

AMPK promotes autophagy, reduces neuroinflammation and oxidative stress by decreasing 

the levels of inflammatory factors (NF-KB, TNF-B, IL-1B, IL-6) and ROS production 

respectively. Also, it restrains apoptosis, glutamate excitotoxicity through inhibiting 

glutamate release and mitochondrial dysfunction therefore, promoting energy metabolism 

and glucose uptake.
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Table 1:

Effect of Metformin treatment in Neurodegenerative diseases in experimental animal models and cultured cells

Neurodegenerative 
disease

Description of study Outcome(s) References

Alzheimer’s disease -Male db/db mice -200 mg/kg/day 
intraperitoneal metformin for 18 weeks

-Metformin mitigated the increase of total and 
phosphorylated tau and decreased the JNK activation.
-Attenuated the reduction of synaptophysin

[77]

-Primary cortical neurons and Neuro2a 
neuroblastoma cells treated with metformin

-Metformin significantly increased the generation of 
intracellular and extracellular AB species
-Upregulated transcription of B-secretase (BACE1)
-In combination with insulin, metformin enhances 
insulin’s effect in reducing AB level

[71]

-In vitro model of “type 3 diabetes”
-Differentiation of neuronal cell line 
Neuro-2a under prolonged presence of insulin 
and treatment with metformin

Metformin ameliorated neuronal insulin resistance
Insulin sensitization by metformin prevented AD-
associated neuropathological changes

[105]

-db/db mice treated with 200 mg/kg 
metformin by oral gavage

-Metformin decreased AB influx across the BBB and 
decreased level of AB in hippocampus
-Significant reduction of nuclear NF-kB p65 of 
brain microvessel endothelial cells -Suppression of 
caspase-3 activity and inhibited neuronal apoptosis

[106]

-Primary cortical neurons treated with up to 
2.5 mM metformin for 1-24 hours

-Metformin induces PP2A activity by inhibiting 
mTOR activity and reduces tau phosphorylation

[107]

Human neural stem cells exposed to AB and 
treated with metformin

-Decreased Aβ-mediated mitochondrial deficiency
-Significant restoration of mitochondrial morphology
-Rescued cell viability through AMPK pathway 
activation

[108]

Parkinson
disease

-Adult male swiss albino mice
- Induction of parkinsonism in mice
-Post metformin 500mg/kg treatment for 21 
days

-Long-term metformin treatment resulted in 
significant improvement of the locomotor and 
muscular activities
- Brain-derived neurotrophic factor significantly 
increased in metformin treatment group

[93]

-Ten-week-old male C57BL/6 mice
Induction of parkinsonism in mice
Treatment with metformin 5mg/ml in 
drinking water for 5 weeks

Attenuated degeneration of substantia nigra compacta 
dopaminergic neurons by inhibiting microglial 
overactivation induced neuroinflammation
Elevated striatal dopaminergic levels and improved 
motor impairment

[91]

-10-week-old adult male C57BL/6 mice
-MPTP injection (30 mg/kg/day) for the first 
7 days to induce PD -Post metformin (200 
mg/kg/day) for the next 7 days

-Metformin rescued tyrosine hydroxylase-positive 
neurons and attenuated astroglial activation in the 
nigrostriatal pathway.
-Metformin restored dopamine depletion and 
behavioral impairments exerted by MPTP
-Metformin ameliorated MPTP-induced synuclein 
phosphorylation which was accompanied by 
increased methylation of protein phosphatase 2A 
(PP2A), a phosphatase related to α-synuclein 
dephosphorylation

[109]

-In-vitro pre-metformin treatment in SH-
SY5Y cells

-Metformin’s AMP activation induced microtubule 
mediated autophagy and eliminated mitochondrial 
reactive oxygen species
- Reduced MPP+ induced cytotoxicity and neuronal 
apoptosis

[91]

Multiple Sclerosis - C57BL/6 J mice were administered with 
0.2% cuprizone for 5 weeks for
demyelination
induction.
-Post metformin treatment of 50 mg/kg/day 
for 1 weeks

-Increased localization of precursor oligodendrocytes 
and their renewal in the corpus callosum via AMPK/
mTOR pathway
-Reduced brain apoptosis markers and attenuated 
motor dysfunction

[110]

Male C57BL/6 mice were fed with 0.2% 
cuprizone plus metformin by oral gavage of
100 mg/kg body weight in saline every day 

-The myelinated axons within corpus callosum of 
cuprizone-induced demyelination animals increased 
after administration of metformin
-Metformin ameliorated the oxidative stress induced 

[111]
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Neurodegenerative 
disease

Description of study Outcome(s) References

from day 0 until to the end of 6 weeks one 
time in a day

by cuprizone
-Metformin upregulated expression of mitochondrial 
biogenesis genes
-Metformin ameliorated the oxidative stress induced 
by cuprizone
-Astrogliosis and microgliosis were decreased after 
metformin administration while it enhanced the 
number of oligodendrocytes

-Female C57BL/6 wild-type mice, 8– 10 
weeks of age
-Induction of experimental autoimmune 
encephalomyelitis induced by subcutaneous 
injection of 250 μg of MOG35-55 peptide
-100 mg/kg Metformin dissolved in saline 
solution was intraperitonially administered 
for
20 days

-Metformin reduced Th17 and increased Treg cell 
percentages along with the levels of associated 
cytokines
-Metformin inhibited activation of mTOR and its 
downstream target, HIF-1α

[112]
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Table 2:

Therapeutic effects and underlying mechanism(s) of action of metformin in experimental stroke models based 

on timing/duration of metformin treatment.

Mechanism of metformin outcome Timing/duration of 
metformin treatment

References

AMPK activation and AMPK-
dependent M2 polarization of 
microglial cells

-Improved angiogenesis and neurogenesis -Functional 
recovery

Post- stroke chronic (30 
days) treatment

[152]

AMPK activation, promoted eNOS 
phosphorylation

-Reduced ischemia-induced brain atrophy volume
-Promoted focal angiogenesis and neurogenesis

Post- stroke (2 weeks) 
treatment

[121]
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inflammatory and antioxidant 
pathways
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cytokines and ICAM-1 expression
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treatment
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Brain NF-κB suppression, reduction 
of pro-inflammatory cytokines and 
iNOS,

- Reduced infarct volume and improved neurological 
deficits
-Ameliorated microgliosis and astrocytosis

Pre-treatment (3 weeks) [147]

AMPK-dependent
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Pre-treatment (2 weeks) [157]

AMPK activation -Attenuated apoptotic cell death
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direct antioxidative effect
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Post-stroke (2 weeks) 
treatment
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Activation of Akt1, reducing
phosphorylation of JNK3 and c-Jun, 
elevation of cleaved caspase-3
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Post-stroke (1 week) 
treatment
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Pre- activation of AMPK - dependent 
autophagy

-Reduced infarct volume
-Reduced neurological deficits
-Reduced cell apoptosis

Pre-treatment (single dose) [159]

Activation of peripheral AMPK -Reduced ischemic neuronal damage
-Decreased development of post-ischemic glucose 
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Post-stroke (1-3 days) 
treatment
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Glycemic
intervention

Improved neurovascular repair
Improved functional outcome

Post-stroke (2 weeks) 
treatment
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intervention,
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AMPK activation and anti oxidative 
effects

-Decreased edema
-Improved functional recovery

Decreased expressions of total and 
phosphorylated AMPK

- Ameliorated brain infarct
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