Skip to main content
. 2022 Mar 31;12(7):886. doi: 10.3390/ani12070886
Algorithm 1 Separable Confident Transductive Learning Network. B(·) denotes the mini-batch sets, I is the number of iterations. pT={pt}t=1T, and T is the number of adjustment learning. itert is the t-th adjustment learning.
  • 1:

    Input: labeled training data DR={(XRi,YRi)}i=1NR and unlabeled test data DT={XTj}j=1NT

  • 2:

    Output: predicted test labels

  • 3:

    repeat

  • 4:

       Derive batch-wise data (B(XR),B(YR)) and B(XT) from DR and DT

  • 5:

       for iter=1 to I do

  • 6:

            Train classifier f using Equations (1) and (2)

  • 7:

            if iter=itert then

  • 8:

                Get pt

  • 9:

            end if

  • 10:

          Generate confident pseudo test labels C(YTPt) using Equation (6)

  • 11:

          Optimize f using Equation (7)

  • 12:

          Minimize the differences between training and test data using Equation (8)

  • 13:

          Minimize overall loss with Equation (9)

  • 14:

       end for

  • 15:

    until converged

  • 16:

    Make prediction for test samples based on trained classifier f