Skip to main content
. 2022 Mar 28;14(7):1711. doi: 10.3390/cancers14071711

Table 3.

Mean training and validation scores for the best performing machine learning models using the 4.0 SUV threshold segmentation technique.

Machine Learning Model Hyperparameters Features AUC Mean Training AUC Mean Validation
SUVmax/130
Ridge Regression C: 1 × 10−5, penalty: l2, solver: liblinear Stage One, PET wavelet-LLH GLSZM Large Area Emphasis, PET wavelet-HHH GLSZM Grey Level Non-Uniformity Normalised, PET square 10th Percentile, PET square GLDM Grey Level Non-Uniformity 0.75 (0.02) 0.74 (0.07)
Support Vector Machine C: 1, gamma: 0.008915428868611115, kernel: sigmoid PET wavelet-HHH GLSZM Grey Level Non-Uniformity Normalised, PET square 10th Percentile, PET lbp-3D-m1 Interquartile Range, PET lbp-3D-m1 GLDM Large Dependence Low Grey Level Emphasis, PET lbp-3D-k 90th Percentile 0.74 (0.02) 0.73 (0.07)
Random Forest bootstrap: False, max depth: 1, max features: log2, min samples leaf: 50, min samples split: 50, n estimators: 10 PET original shape Maximum 2D Diameter Column, MTV, PET original first order Kurtosis, PET original GLSZM Large Area Emphasis, PET wavelet-LHL GLCM Correlation, PET wavelet-LHL GLCM Imc2 0.76 (0.02) 0.71 (0.08)
SUVmax/64
Ridge Regression C: 0.001, penalty: l2, solver: newton-cg Stage Four, PET original GLSZM Large Area Emphasis, PET wavelet-HHL GLSZM Small Area Emphasis, PET wavelet-HHH GLSZM Grey Level Non-Uniformity Normalised, PET square 10th Percentile 0.77 (0.02) 0.75 (0.06)
Support Vector Machine C: 0.1, gamma: 0.07938667031015477, kernel: rbf PET original GLDM Large Dependence Low Grey Level Emphasis, PET wavelet-HHH GLSZM Grey Level Non-Uniformity Normalised, PET square 10th Percentile, PET lbp-3D-k 90 Percentile, PET lbp-3D-k GLSZM Size Zone Non-Uniformity Normalised 0.75 (0.02) 0.72 (0.06)
Random Forest bootstrap: True, max depth: 1, max features: log2, min samples leaf: 44, min samples split: 6, n estimators: 243 PET original shape Maximum 2D Diameter Column, PET original shape Surface Volume Ratio, PET original 10th Percentile 0.71 (0.02) 0.69 (0.08)

l2 = Ridge regression penalty, liblinear = A library for large linear classification, GLSZM = grey level size zone matrix, GLDM = grey level dependence matrix, lbp-3D-m1 = local binary pattern filtered image at level 1, lbp-3D-k = local binary pattern kurtosis image, GLCM = grey level co-occurrence matrix, rbf = radial basis function.