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Abstract: Cervical cancer is one of the leading causes of death in gynecology cancer worldwide.
High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer. Still,
other factors also contribute to cervical cancer development because these cancers commonly arise
decades after initial exposure to HPV. So far, the molecular mechanisms underlying the pathogenesis
of cervical cancer are still quite limited, and a knowledge gap needs to be filled to help develop
novel strategies that will ultimately facilitate the development of therapies and improve cervical
cancer patient outcomes. Long non-coding RNAs (lncRNAs) have been increasingly shown to be
involved in gene regulation, and the relevant role of lncRNAs in cervical cancer has recently been
investigated. In this review, we summarize the recent progress in ascertaining the biological functions
of lncRNAs in cervical cancer from the perspective of cervical cancer proliferation, invasion, and
metastasis. In addition, we provide the current state of knowledge by discussing the molecular
mechanisms underlying the regulation and emerging role of lncRNAs in the pathogenesis of cervical
cancer. Comprehensive and deeper insights into lncRNA-mediated alterations and interactions in
cellular events will help develop novel strategies to treat patients with cervical cancer.

Keywords: cervical cancer; lncRNAs; gene expression; chromatin architecture; mRNA stability;
sponge for miRNAs; ceRNA; epitranscriptomics; signaling pathways; p53

1. Introduction

Cervical cancer is a malignant neoplasm that arises from the uterine cervix cells. The
cervix is made of two parts and is covered with two different types of cells. The endocervix
is the part closer to the uterus and is made up of glandular cells, and the exocervix is the
part next to the vagina, made up of squamous cells. The region where these two cell types
converge, the transformation zone, is the region where most cervical cancers originate.
Based on their origins, cervical cancers can be classified as squamous cell carcinomas,
arising from the exocervical squamous cells and corresponding to about 80% of cervical
cancer cases, adenocarcinomas, arising from the glandular cells of the endocervix and
contributing to about 10–20% of cases, and adenosquamous carcinomas, wherein cancer
possesses the features of both of the aforementioned cell types and is reported in a rare
proportion of cases [1–3].

With an incidence of more than 600,000 and mortality of over 340,000 in 2020 [4],
cervical cancer currently ranks as the fourth most common cancer worldwide, in both
incidence and mortality. Despite the progress in diagnosis and therapeutic strategies,
cervical cancer remains a leading cause of cancer deaths [5]. Human papillomavirus (HPV)
is considered the major contributor to cervical carcinoma. Two oncogenic viral proteins, E6
and E7, can orchestrate diverse molecular mechanisms that may result in malignant cervical
cancer progression. E6- and E7-induced altered transcriptional regulation resulted in
genomic instability and distinguished the process of cell transformation from a productive
viral infection and provided subsequent important steps towards malignancy [6]. For
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example, the constitutive expression of E6/E7 immortalizes primary epithelial cells and
promotes tumor formation in vivo. E7 interacts with and stabilizes the retinoblastoma
tumor suppressor family (RB1 and RB2), facilitating cell cycle transition from G1 to S
phase. Similar to cell growth dysregulation, E6 interacting with ubiquitin ligase E6AP
promotes tumor suppressor P53 degradation and cell proliferation [7,8]. In addition, other
risk factors, including smoking, a weakened immune system, and chlamydia infection, also
contribute to cervical cancer progression and carcinogenesis. To date, surgery (hysterectomy
and trachelectomy), radiation therapy (external beam radiation and brachytherapy), and
chemotherapy (cisplatin, cisplatin plus 5-fluorouracil (5-FU), carboplatin, paclitaxel, and
topotecan) are the three main options for treatment of cervical cancer [5,9]. However, these
clinical applications often have serious toxicity and side effects leading to their abrogation,
resulting in the development of resistance by cancer cells. Moreover, about 80% of cervical
cancer cases are reported at advanced stages, contributing to the poor prognosis and high
mortality rates. Therefore, novel targeted therapeutic strategies are urgently needed to
improve clinical outcomes.

2. Long Non-Coding RNAs and Potential Therapeutic Targeting in Cancer

Non-coding RNA (ncRNA) is commonly employed by RNA that does not encode a
protein. These ncRNAs include microRNA, snoRNAs, other small regulatory RNAs, and
lncRNAs [10–12]. The latter is a class of ncRNAs typically longer than 200 nucleotides.
LncRNAs are mainly transcribed by RNA polymerase II, typically by a 5′7-methylguanosine
cap and a 3′ poly (A) tail. Similar to messenger RNAs, they are involved in the patho-
genesis of cancer [11,13–18]. Different classes of lncRNAs are generated from introns,
exons, intergenic regions, telomerases, enhancers, or promoters [19]. Of the approximately
60,000 lncRNAs identified in human tumor tissues and cancer cell lines, the role and reg-
ulatory mechanisms of the majority of lncRNAs are still largely unknown. Nonetheless,
the functional roles of numerous lncRNAs, whose expression is often dysregulated in
various cancers, have been investigated. Accumulated studies have demonstrated that
lncRNAs can regulate gene expression networks via the control of chromatin architecture
and transcription in the nucleus, as well as via the modulation of mRNA stability, together
with translation and post-translational modifications in the cytoplasm [20,21]. Furthermore,
their functions and mechanisms are related to their genomic and intracellular localization.
lncRNAs display functional similarity to typical protein-coding oncogenes and tumor
suppressors involved in tumor initiation, progression, and metastasis. For example, HOX
antisense intergenic RNA (HOTAIR) is one of the most well-studied oncogenic lncRNAs
involved in the carcinogenesis of several types of cancer. An elevated HOTAIR expression
is associated with resistance to chemotherapeutics, suggesting that inhibitors of HOTAIR
could potentially resensitize a patient’s tumor to a specific chemotherapy [19,22–24]. One
of the first-identified lncRNAs, H19, acts as a decoy for several tumor-suppressor miR-
NAs [25]. MEG3 lncRNA may serve as a tumor suppressor, and its downregulation has
been associated with the development of a variety of human cancers [26].

LncRNAs are involved in a wide range of biological processes, including immune
responses, a variety of disorders such as neuronal disorders, and cellular fate programs
in cancer stem cells [27]. The latter plays a vital role in the origin and progression of
malignancy and therapy resistance [28–31]. The regulatory network of lncRNAs includes
EMT, drug resistance, and others via multiple mechanisms. LncRNAs have been shown
to act as competing endogenous RNAs (ceRNAs) for specific microRNAs, thus regulating
the expression of their downstream target genes [28]. LncRNAs promote cancer stem cells
stemness and drug resistance [32]. In addition, lncRNAs regulate cell reprogramming,
altering the transcriptome [33].
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Detection of lncRNAs in body fluids (i.e., blood, saliva, urine, etc.) was also consid-
ered as a potential biomarker for the diagnosis, prognosis, and monitoring of the disease
progression, as they acted as novel and potential drug targets for therapeutic options in
carcinogenesis [34]. Furthermore, using body fluids to detect circulating lncRNAs is much
less invasive when compared to collecting biopsies.

3. LncRNAs-Regulated Pathways in Cervical Cancer

Aberrant expression of lncRNAs has been previously and extensively reported in
cervical cancer [35]. However, current studies (since March 2021) provide more progress
about the importance of lncRNA dysregulation in promoting cervical cancer development,
invasion, and metastasis through their interactions with several signaling pathways.

3.1. The Wnt Signaling Pathway

The Wnt signaling pathway is involved in various cellular processes such as embryo-
genesis, tissue renewal, cell proliferation, differentiation, and tumorigenesis. In canonical
Wnt on signaling, Wnt binds to and activates the seven-pass transmembrane Frizzled
(Fzd) receptor and the activated Fzd receptor recruits Dishevelled (Dvl) protein and AXIN.
This blocks the formation of an AXIN-APC (adenomatous polyposis coli) complex and
inhibits GSK3β. As a result, β-catenin avoids destruction in the cytoplasm and translocates
into the nucleus. Subsequently, the nuclear β-catenin binds to the TCF/LEF transcription
factors and triggers a β-catenin-regulated gene expression. In canonical Wnt off signaling,
a combination of AXIN and APC allows GSK3β to phosphorylate β-catenin and targets it
for proteasomal degradation [36].

Accumulated evidence demonstrates that LncRNAs play an essential role in the
development and progression of a variety of cancers via the Wnt signaling pathway.
For example, in cervical cancer, several lncRNAs, including RP11-480112.5, ASB16-AS1,
HOTAIR, CASC11, CALML3-AS1, and DANCER, are involved in modulating Wnt Signaling
pathways [35]. More recently, several additional lncRNAs, including SNHG6 [37], EGFR-
AS1 [38], SPINT1-AS1 [39], HNRNPU-AS1 [40], and LINC00665 [41] have been identified
that contribute to the proliferation, migration, invasion, and EMT in cervical cancer via the
Wnt signaling pathway (Table 1, Figure 1).
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Figure 1. Schematic representation of Wnt, TGF-β, and Hippo pathways regulated by lncRNAs in
cervical cancer.

3.2. The Mitogen-Activated Protein Kinase (MAPK) Pathway

The MAPK pathway plays a pivotal role in many cellular events, including cell mi-
gration, growth, apoptosis, and differentiation. The central components of this signaling
pathway are ERK1/2, c-JNK N-terminal kinase, p38 MAPK, and ERK5, and after cascade
phosphorylation, they are transmitted to the nucleus and regulate the expression of down-
stream targets [42]. Among them, JNK and p38 MAPK are activated by chemical, physical,
and biological stimuli, while ERK1/2 are activated by cell growth factors. Tyrosine kinase
receptors are the main receptors involved in the regulation of the MAPK signaling pathway.
After receptor activation, RAS recruits RAF to phosphorylate MAPK, which subsequently
activates ERK1/2. ERK1/2 in the nucleus activates several transcription factors such as
MNK1, Elk-1, and c-Ets1. The MAPK pathway is upregulated in a variety of cancers. MAPK
affects the secretion of extra growth factors and cytokines, leading to EMT progression.

Several lncRNAs are involved in the MAPK pathway contributing to cervical cancer
progression. For example, over-expression of lncRNA CASC2 inhibits cell proliferation
and migration by negatively regulating the MAPK pathway. In addition, TDRG1 activates
MAPK1 by sponging miR-326, and TUG1 regulates cervical cancer sensitivity to cisplatin
via the MAPK pathway. More recently, a study [43] showed that LOXL1-AS1 bound to miR-
423-5p, and miR-423-5p targeted ENC1, which served as a regulator of the transcription
factor Nrf2 played a key role in malignant transformation. A further study demonstrated
that ENC1 knockdown decreased the protein levels of p-p38, p-MEK1/2, and p-ERK1/2,
inhibiting the activation of the ERK/MEK pathway and reducing cell proliferation, suggest-
ing that the LOXL1-AS1/miR-423-5p/ENC1 axis accelerates cervical cancer development
through the MEK/ERK pathway. In addition, lncRNA LINC00997 was shown to activate
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the MAPK pathway-associated protein CUL2 by interacting with miR574-3p, demonstrat-
ing that the LINC00997/miR-574-3p/CUL2 axis contributes to proliferation, migration,
invasion, and autophagy by activation of MAPK signaling in cervical cancer [44].

3.3. The TGF-β Signaling Pathway

TGF-β directs association with receptors on the plasma membrane, initiating the
cascade of signal transduction that elicits biological actions on responding cells. The
central mechanism of signal transduction by the TGF-β family receptors follows a well-
characterized process of interactions and receptor-mediated phosphorylation. During
the first step of TGF-β signaling, the TGF-β ligand binds to a heteromeric complex of
type II and type I receptors. Upon ligand binding, the type II receptor phosphorylates
and activates the type I receptor. The activated type I receptor, in turn, phosphorylates
and activates the receptor-activated SMADs (R-SMADs), SMAD2, and SMAD3. SMAD7
competes with R-SMADs for interacting with type I receptors, thus preventing R-SMAD
activation and proper propagation of the signaling. Activated R-SMADs dissociate from the
type I receptors to form a complex with the common mediator SMAD4. Then, the trimeric
complex (SMAD2, 3, 4) translocates into the nucleus, where it associates with high-affinity
DNA binding transcription factors and chromatin remodeling proteins, therefore positively
or negatively regulating the transcription of the TGF-β-responsive genes [45].

LncRNAs have been shown to be associated with the TGF-β pathway in various
cancers [46]. Several studies have demonstrated that lncRNAs regulate TGF-β signaling,
promoting cervical cancer progression. LncRNA DANCR regulates miR-665, which targets
TGFBR1 through the ERK/SMAD pathway [47]. CDKN2B-AS1 is upregulated in cervical
cancer tissues and cell lines and directly interacts with miR-181a-5p. TGF-β1 is a target of
miR-181a-5p, suggesting that the CDKN2B-AS1/miR-181a-5p/TGF-β1 axis might play a
vital role in cervical cancer development. LncRNA NEF suppresses HPV-negative cervi-
cal squamous cell carcinoma’s migration and invasion by inhibiting the TGF-β pathway.
lncRNA loc285194 expression was downregulated in tissue samples and plasma from cervi-
cal squamous cell carcinoma patients. Plasma levels of loc285194 and TGF-ß1 significantly
correlated with the presence of cervical squamous cell carcinoma. Moreover, lncRNA
loc285194 overexpression downregulated TGF-β expression and resulted in a decrease in
the cell migration of cervical cancer cells [48] (Figure 1).

3.4. The Hippo Signaling Pathway

The hippo signaling pathway is highly conserved and plays a critical role in tumori-
genesis. It is characterized by phosphorylation of YAP1 and TAZ. Several factors can
regulate the localization of YAP, which controls cell proliferation and apoptosis. Upon
activation, MST1/2 kinase is phosphorylated and forms a complex with SAV1 to phos-
phorylate LATS1/2, which in turn phosphorylates the transcriptional co-activator YAP.
The phosphorated YAP binds to the 14-3-3 proteins and is retained in the cytoplasm or is
degraded by the ubiquitin-proteasome pathway [49]. In the absence of an active Hippo
signaling pathway, unphosphorylated Yap and Taz enter the nucleus, interact with the
transcription factors, and stimulate the expression of genes involved in proliferation and
anti-apoptotic processes. In addition, the Hippo pathway also plays a critical role in stem
cell and tissue-specific progenitor cell self-renewal and expansion.

Accumulated evidence demonstrates that lncRNAs can promote the oncogenic sig-
naling of YAP in a variety of cancers [50–54]. In cervical cancer, several studies showed
that lncRNAs regulated the Hippo pathway contributing to the progression of cancer. The
expression of lncRNA NOC2L-4.1 was upregulated in cervical cancer, and the downregula-
tion of NOC2L-4.1 suppressed cell migration and proliferation. Further studies revealed
the critical role of the NOC2L-4.1/miR-630/YAP regulatory network in promoting cervical
cancer progression [55]. Another LncRNA, SNHG3, is involved in the occurrence and
development of various cancers. In cervical cancer, SNHG3 promotes the proliferation,
migration, and invasion of cervical cancer cells in vitro, and facilitates cervical cancer



Cells 2022, 11, 1149 6 of 20

growth in vivo. Notably, SHHG3 interacted with YAP1, thus inhibiting its degradation,
concomitantly with altered expression of several YAP1 target genes [56] (Figure 1).

3.5. DNA Damage Repair (DDR) and Genomic Integrity

The DNA damage response (DDR) pathway is a complex regulatory network re-
sponsible for identifying disruptions in DNA structure, integrity, and stability. DDR is
an evolutionarily conserved process that maintains genomic integrity but is frequently
dysregulated in cancer. Damaged DNA bases and DNA single-strand breaks are the most
abundant types of DNA damage. Although DNA double-strand breaks are less common,
they are considered the most deleterious types of DNA damage [57]. Although this system
normally protects healthy cells from tumorigenic DNA damage and replication errors, most
cancer cells acquire some form of enhanced DDR that eventually results in radiotherapeutic
or chemotherapeutic resistance. The function and capacity of DDR machinery are essential
to ensure the maintenance of normal cycling cells and prevent the accumulation of muta-
tions that increase the potential for malignancy. Recently, several studies demonstrated
that DDR is associated with the dysregulation of lncRNAs that are implicated in cancer
progression [58]. lncRNA LINP1 was upregulated in cervical cancers compared to adjacent
tissues. LINP is associated with the non-homologous end joining (NHEJ) pathway proteins
Ku80 and DNA-PKcs in cervical cancer cell lines by RNA pull-down assay. Knockdown
of LINP1 increased irradiation-induced cell apoptosis and delayed the repair of DNA
double-strand breaks [59]. Another lncRNA, LINC02535, cooperated with PCBP2 and
regulated RRM1 mRNA stability to accelerate cell proliferation and EMT by facilitating the
repair of DNA damage in cervical cancer cells [60].

3.6. The Phosphatidylinositol 3- kinase/Protein Kinase B (PI3K/AKT) Pathway

PI3K is a member of the lipid kinases family. In the normal state of the cell, various
extracellular factors, such as hormones, growth factors, and cytokines, send signals to
activate PI3K through an interaction with a phosphorylated tyrosine receptor. A PI3K
downstream cascade generates signals received by its targets, the most important one being
the protein kinase B (AKT) that dominates the signal transduction of the PI3K pathway [61].
Activation of AKT is a common phenomenon in human cancers, leading to the promotion of
cell proliferation [62]. The entire PI3K/AKT signaling pathway regulates the cell physiology
and pathology, including apoptosis, cell proliferation, invasion, and metastasis [62–64].
This pathway is abnormally activated in different tumors, including cervical cancer [65,66].

Several lncRNAs regulate the PI3K/AKT pathways in cervical cancer. Decreased ex-
pression of lncRNA ANRIL suppressed cell proliferation, migration, and invasion when the
PI3K/AKT pathway was inactivated, suggesting that ANRIL inhibits cervical cancer pro-
gression via the PI3K/AKT pathway. In addition, downregulating RP1-93H18.6 decreased
cell proliferation and EMT, while promoting apoptosis by blocking the PI3K/AKT/mTOR
signaling pathway [35].

More recently, several additional lncRNAs were found to be involved in cervical cancer
progression via the PI3K pathway. Knockdown of lncRNA KCNQ1OT1 caused apoptosis
by sponging miR-1270, thereby altering the expression of LOXL2. Moreover, decreased
expression of KCNQ1OT1 reduced the p-AKT levels in cervical cancer cells [67]. LncRNA
HOTAIR triggered the migration and proliferation of cervical cancer cells and promoted
chemoresistance by facilitating EMT via the miR-29b/PTEN/PI3K axis [67]. LINC00861
functions as a ceRNA for miR-513b-5p to inhibit the progression of cervical cancer cells and
modulate the PTN/AKT/mTOR signaling pathway [68]. Similarly, lncRNA LINC00673
exerts oncogenic function in cervical cancer through the PTEN/AKT pathway [69].

3.7. The Hypoxia Signaling Pathway

Hypoxia is an environmental stressor instigated by low oxygen availability and
is one of the major factors that contribute to cancer progression and the acquisition of
chemotherapeutic resistance in many ways. Hypoxia-inducible factors-1 and -2 alpha (HIF-
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1α and EPAS1/HIF-2α) function as master regulators of the adaptive response to hypoxia.
HIF-induced genes promote characteristic tumor behaviors, including angiogenesis and
metabolic reprogramming. Therefore, targeting the signaling pathways associated with
hypoxia is deemed attractive for achieving tumor suppression, as well as for mitigating
immunosuppression and improving therapeutic outcomes [70].

Accumulating evidence shows that lncRNAs are modulated by hypoxia during onco-
genesis [71]. Several studies have demonstrated that lncRNAs are involved in the hypoxia
pathway regulation in cervical cancer. SNHG15 is upregulated in cervical cancer tissues
and promotes cervical cancer progression via the miR-4735-3p/HIF1a axis [72]. The expres-
sion of LncRNA OIP5-AS1 is increased in cervical cancer and correlates with unfavorable
outcomes. For example, OIP5-AS1 expression in cervical cancer tissues is significantly
related to tumor size, differentiation, lymph node metastasis, and FIGO stages of cervical
cancer. In addition, the high levels of OIP5-AS1 correlate with poor 5-year overall survival.
OIP5-AS1 is also a hypoxia-responsive lncRNA and is essential for hypoxia-enhanced gly-
colysis, which is dependent on IDH2 or hypoxia-inducible factor-1α (HIF-1α) [73]. TDRG1
promotes hypoxia-induced glycolysis via the miR-214-5p/SEMA4C axis in cervical cancer
cells [74]. LncRNA ANCR downregulates hypoxia-inducible 1 alpha and suppresses the
growth of HPV-negative cervical squamous carcinoma cells under hypoxic conditions [75].

3.8. The p53 Pathway

p53 is a nuclear transcription factor and transactivates numerous target genes involved
in cell cycle arrest and apoptosis [76]. Under normal conditions, p53 is expressed at an
extremely low level and is caused by proteasomal degradation mediated largely by the
RING-finger type E3 ubiquitin protein ligase, MDM2, in a functionally latent form. Upon
DNA damage, p53 accumulates in the cell nucleus through post-translational modifications
such as phosphorylation and acetylation. These chemical modifications convert p53 from a
latent to an active form, which might be due to the dissociation of MDM2 from p53. The
activation of the p53 protein as a transcription factor initiates several cellular events, in-
cluding a program of cell cycle arrest, cellular senescence, or apoptosis. The transcriptional
network of p53-responsive genes produces proteins that interact with many other signal
transduction pathways in the cell, and a number of positive and negative autoregulatory
feedback loops act upon the p53 response [77].

The link between lncRNAs and the p53 pathway has been investigated in several types
of cancer [78–84]. Notably, p53-related lncRNAs in cervical cancer have also been reported.
For example, lncRNA RPL34-AS1 induces RPL34, therefore inhibiting cervical cancer cell
proliferation, invasion, and metastasis through modulation of the MDM2-P53 signaling
pathway [85]. LncRNA DINO is a p53 transcriptional target that has been reported to
bind to and stabilize p53, thereby amplifying p53 signaling. In cervical cancer, DINO is
downregulated, and upregulation of DINO causes p53 reactivation in HPV-positive cervical
cancer cells [86]. lncRNA WT1-AS suppresses cell proliferation, migration, and invasion
via the miR-330-5p/p53 axis in cervical cancer [87]. In addition to lncRNAs that regulate
p53, a number of p53-induced lncRNAs, including PINCR, PINT, PURPL, LincRNA-p21,
TUG1, NEAT, and DINO, among others, have been identified and reported in several
diseases [84,88–96]. These p53-induced lncRNAs play a critical role in multiple cellular
processes, including cell proliferation and apoptosis. Moreover, reciprocal modulation
of lncRNAs and p53 has been shown to regulate tumorigenesis [91]. Importantly, p53 is
wild-type or non-mutated in most cervical cancer patients. Therefore, the identification of
p53-induced lncRNAs in cervical cancer will help better understand the role and regulatory
mechanism of the p53 pathway in cervical cancer.

3.9. Other lncRNA-Related Targets in Cervical Cancer

The high-throughput approach has been used to determine the differentially expressed
lncRNAs in cervical cancer extensively and has identified over 3000 differentially expressed
lncRNAs, including sense, antisense, intronic, intergenic, and bidirectional lncRNAs, in
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cervical cancer tissues compared with adjacent non-cancerous tissues. These lncRNAs with
different expression patterns may play important roles in the development and progression
of cervical cancer [97]. Another experiment was performed using a high-throughput
RNA sequencing approach and identified 19 differentially expressed lncRNAs in HPV16-
mediated cervical squamous cell carcinoma and matched adjacent non-tumor tissues.
Among them, 11 lncRNAs participated in at least one pathway related to cancer, and some
lncRNAs may also be involved in the immune system, signal transduction, and cellular
community [98]. lnc_000231, as one of the 19 identified differentially expressed lncRNAs,
was further investigated, and it was demonstrated that HPV oncoprotein E6 increased
lnc_000231 expression by triggering H3K4me3 modification in the lnc_000231 promoter
region by destabilizing histone demethylase KDM5C. Furthermore, a functional analysis
demonstrated that lnc_000231 promoted cervical cell proliferation and tumor formation.
Notably, a series of studies, including ChIP-PCR, site-directed mutation, knockdown, and
promoter activity experiments, revealed the close link between lnc_000231 and miR-497-
5p [7].

LncRNAs can indirectly regulate RNA expression by sequestering miRNAs and acting
as ceRNAs or as sponges [99], therefore lncRNAs decrease miRNAs regulatory effect on
mRNAs and introduce an additional layer of complexity in the miRNA-related network.
Recently, lncRNA-miRNA interactions have been investigated in cervical cancer (Table 1).
For example, LncRNA MAGI2-AS3 suppresses the proliferation and invasion of cervical
cancer cells by regulating the miR-15b/CCNE1 axis. LncRNA ZFAS1 (Zinc finger antisense
1) impacts cervical cancer growth through miR-190a-3p. KLF6 is negatively regulated by
MiR-190a-3p, but positively regulated by ZFAS1. Inhibition of ZFAS1 reduces cervical
cancer tumor growth and the expression levels of KLF6 but increases the expression levels
of miR-190a-3p. Therefore, ZFAS1 could regulate cervical cancer pathogenesis by regulating
the miR-190a-3p/KLF6 axis [100]. LncRNA 885 (LINC00885) exerts oncogenic function
in cervical cancer by regulating the miR-3150b-3p/BAZ2A axis [101]. Several lncRNAs
are involved in cell proliferation, apoptosis, and cell cycle correlating to abnormal cell
proliferation of cervical cancer cells. For example, OTUD6B-AS1 targets cyclinD2 via miR-
206. LINC00313 alters CDK6 via sponging miR-4677-3p. FOXD2-AS1 promotes cervical
cancer progression by decreasing the p21 transcription [102] (Table 1). In addition, one
lncRNA can interact with many miRNAs via the sponge mechanism and therefore target
multiple mRNAs and signalings in cervical cancer. For example, HOTAIR interacted with
miR-29b, miR-203, and miR-214-3p, and targeted PI3K and Wnt pathways of cervical cancer
(Table 1). FEZF1-AS interacted with miR-1254 and miR-367-3p involved in the proliferation,
migration, and invasion of cervical cancer (Table 1). NEAT1 sponged miR-377 and miR-
34a, and targeted FGFR1 and LDHA, respectively. KCNQ1OT1 interacted with MiR-1270
and miR-296-5p and altered the expression of LOXL2 and HYOU1, respectively (Table 1).
Identified lncRNAs that interacted with miRNAs in cervical cancer are summarized in
Table 1.
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Table 1. Role and mechanisms of lncRNAs in cervical cancer (Papers published Since March 2021).

LncRNA Biological
Samples

Interaction
with RNA Targets/Pathway Biological Processes Publication Time Ref.

AC010198.2 Cells miR-34b-3p STC2 Drug resistance Oct. 2021 [103]
AFAP1-AS1 Cells miR-27b-3p VEGF-C stemness July 2021 [104]

AL592284.1 Cells and
tissues miR-30a-5p Vimentin/EMT proliferation,

metastasis Nov. 2021 [105]

ALOX12-AS1 Tissues miR-3171 NA proliferation Jan. 2022 [106]

ANXA2P2 Cells and
tissues miR-361-3p SOX9 cisplatin-resistant Jan. 2022 [107]

CASC9-1 Cells miR-383-5p MAPKAP1
proliferation,

migration, invasion,
apoptosis

Nov. 2021 [108]

CCAT2 Cells and
tissues miR-493-5p CREB1 proliferation, EMT,

tumor growth Dec. 2021 [109]

DANCR Cells and
tissues miR-145-3p ZEB1 tumor growth,

metastasis July 2021 [110]

DARS-AS1 Cells and
tissues NA ATP1B2,

cGMP-PKG
proliferation,

invasion, migration June 2021 [111]

DLEU2 Cells NA
ZFP36, p53,

notch signaling,
p53

proliferation, cell
cycle May 2021 [112]

DUXAP8 Cells miR-1297 RCN2 malignancy, tumor
growth Nov. 2021 [113]

EGFR-AS1 Cells miR-2355-5p
ACTN4-

mediated
Wnt

proliferation,
migration, invasion,

apoptosis
Jan. 2022 [38]

FBX19-AS1 Cells miR-193a-5p COL1A1

proliferation,
migration, invasion,

EMT, apoptosis,
metastasis

Aug. 2021 [114]

FEZF1-AS1 Cells and
tissues miR-1254 NA proliferation,

migration, invasion July 2021 [115]

FEZF1-AS1 Cells miR-367-3p SLS12AS
proliferation,

migration, invasion,
apoptosis

Jan. 2022 [115]

FGD5-AS1 Cells miR-129-5p BST2 macrophage M1
polarization Oct. 2021 [116]

FOXD2-AS1 Cells and
tissues NA METTL3,

LSD1/p21

proliferation,
migration, tumor

growth
July 2021 [102]

FOXD3-AS1 Cells and
tissues miR-128-3p LIMK1 proliferation,

migration, invasion May 2021 [117]

HAND2-AS1 Tissues miR-21-5p TIMP3/VEGFA

proliferation,
migration, invasion,

apoptosis, tumor
growth

June 2021 [118]

HNRNPU-
AS1

Cells and
tissues miR-205-5p AXIN2, Wnt

proliferation,
apoptosis, tumor

growth
Sep. 2021 [40]

HOTAIR Cells and
tissues NA Wnt drug resistance Oct. 2021 [119]
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Table 1. Cont.

LncRNA Biological
Samples

Interaction
with RNA Targets/Pathway Biological Processes Publication Time Ref.

HOTAIR Cells miR-29b PTEN/PI3K proliferation, drug
resistance, EMT Sep. 2021 [120]

HOTAIR Stem cells miR-203 ZEB1 EMT Sep. 2021 [121]

HOTAIR Cells miR-214-3p NA proliferation,
apoptosis July 2021 [122]

HOTAIR
HOXA-AS2

Cells and
tissues miR-509-3p BTN3A1

proliferation,
migration, invasion,

tumor growth
Sep. 2021 [123]

HOXC13-AS Cells, and
tissues NA FTO, Wnt, FZD proliferation,

invasion, EMT July 2021 [124]

HOXC-AS3 Cells and
tissues miR-105-5p SOS1

proliferation,
migration, invasion,

apoptosis
Oct. 2021 [125]

HOXD-AS1 Cells NA FRRS1
proliferation,

apoptosis, tumor
growth

Jan. 2022 [126]

ILF3-AS1 Cells and
tissues miR-454-3p PTEN

survival rate,
migration, apoptosis,

EMT
Aug. 2021 [127]

KCNQ1OT1 Cells miR-1270 LOXL2,
PI3K/Akt viability, apoptosis Feb. 2022 [67]

KCNQ1OT1 Cells and
tissues miR-296-5p HYOU1

proliferation,
migration, invasion,

tumor growth
Dec. 2021 [128]

LIN01006 Cells and
tissues miR-28-5p PAK2

proliferation,
migration, invasion,

tumor growth
April 2021 [129]

LINC00313 Cells and
tissues miR-4677-3p CDK6 migration, EMT Mar. 2021 [130]

LINC00514 Cells and
tissues miR-708-5p HOXB3 Proliferation,

invasion Jan. 2022 [131]

LINC00662 Cells miR-103a PDK4 proliferation,
apoptosis June 2021 [132]

LINC00665 Cells NA CTNNB1, Wnt
signaling

proliferation,
migration, invasion,

EMT
April 2021 [41]

LINC00673 Cells and
serum NA cell cycle, p53

pathway
proliferation, cell

cycle, tumor growth May 2021 [133]

LINC00707 Cells and
tissues miR-382-5p VEGFA proliferation, tumor

growth June 2021 [134]

LINC00885 Cells and
tissues miR-3150b-3p BAZ2A

Proliferation,
apoptosis, tumor

growth
Jan. 2022 [101]

LINC00885 Cells and
tissues NA NA proliferation,

invasion, EMT June 2021 [135]

LINC00899 Cells and
tissues miR-944 ESR1 proliferation,

migration, invasion June 2021 [136]

LINC00997 Cells miR-574-3p CUL2, MAPK
proliferation,

migration, invasion,
autophagy

July 2021 [44]
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Table 1. Cont.

LncRNA Biological
Samples

Interaction
with RNA Targets/Pathway Biological Processes Publication Time Ref.

LINC01133 Cells and
tissues miR-30a-5p FOXD1 proliferation,

metastasis, apoptosis June 2021 [137]

LNMAS Tissues NA TWIST, STC1 metastasis, EMT,
immune evasion Feb. 2022 [138]

LOXL1-AS1 Cells and
tissues miR-423-5p

ENC1,
MEK/ERK
pathway

proliferation,
migration, invasion,
angiogenesis, tumor

growth

Jan. 2022 [43]

MAG12-AS3 Tissues miR-15b CCNE1 proliferation,
invasion Jan. 2022 [139]

MALAT1 Cells and
tissues NA NA proliferation,

invasion, migration Aug. 2021 [140]

MALAT1 Cells miR-485-5p MAT2A proliferation Nov. 2021 [141]

MALAT1 Cells and
tissues miR-124-5p NA proliferation, tumor

growth Nov. 2021 [142]

MEF2C-AS1 Cells and
tissues miR-592 RSPO1 proliferation,

migration, invasion June 2021 [143]

MEG3 Cells and
tissues miR-7-5p STC1 ERs-mediated

apoptosis May 2021 [144]

MiIR503HG Cells and
tissues miR-191 CEBPB proliferation,

metastasis, apoptosis April 2021 [145]

NEAT1 Cells and
tissues miR-377 FGFR1 proliferation,

migration, apoptosis Jan. 2022 [146]

NEAT1 Cells and
tissues miR-34a LDHA drug-resistant,

glycolysis rate July 2021 [147]

OIP5-AS1 Cells and
tissues miR-124-5p IDH2/HIF1a

proliferation,
Hypoxia, Warburg

effect
Aug. 2021 [73]

OIP5-AS1 Cells and
tissues MiR-147a IGF1R,

E-cadherin
migration, invasion,

EMT Mar. 2022 [148]

OTUD6B-AS1 Cells miR-206 cyclinD2 drug-resistant Oct. 2021 [149]

RPL34-AS1 Cells NA RPL34 proliferation,
migration, invasion, May 2021 [85]

SNHG15 Cells and
tissues miR-4735-39 HIF1a tumor progression Jan. 2022 [72]

SNHG17 Serum miR-375-3p NA proliferation,
migration, invasion June 2021 [150]

SNHG3 Cells and
tissues NA YAP1

proliferation,
migration, invasion,

tumor growth
Jan. 2022 [56]

SNHG5 Cells and
tissues miR-132 SOX4 proliferation,

migration, invasion Mar. 2021 [151]

SNHG6 Cells and
tissues miR-485-3p UCK2, Wnt

proliferation,
migration, invasion,

EMT
Nov. 2021 [37]

SPINT1-AS1 Cells and
tissues miR-214 Wnt

proliferation,
migration, invasion,

tumor growth
July 2021 [39]

TDRG1 Cells and
tissues miR-214-5p SEMA4C

invasion, tumor
growth,

hypoxia-induced
glycolysis

April 2021 [74]
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Table 1. Cont.

LncRNA Biological
Samples

Interaction
with RNA Targets/Pathway Biological Processes Publication Time Ref.

UCA1 Cells and
tissues miR-299-3p NA proliferation,

invasion Nov. 2021 [152]

UNC5B-AS1 Cells and
tissues miR-4455 RSPO4

proliferation,
migration, invasion,

apoptosis
Dec. 2021 [153]

USP30-AS1 Cells and
tissues miR-299-3p PTP4A1

proliferation,
migration, invasion,

tumor growth
July 2021 [154]

WT1-AS Cells and
tissues NA SPL1/PIK3AP1

proliferation,
autophagy, apoptosis,

tumor progression
July 2021 [155]

WTA-AS Cells and
tissues miR-205 NA

cell cycle, apoptosis,
migration, invasion,
EMT, tumor growth

Dec. 2021 [156]

ZFAS1 Cells MiR-190a-3p KLF6 proliferation,
invasion, migration Feb. 2022 [100]

Note: NA: not available.

4. Epitranscriptomic Regulation of lncRNAs in Cervical Cancer

The epitranscriptome refers to the complete ensemble of chemical modifications
affecting the RNA transcripts (coding and non-coding RNAs), and epitranscriptomics is
an emerging field in molecular medicine with vast potential. Epitranscriptomics research
encompasses many RNA modifications (more than 160 types of modifications) without
changes in their sequences, which are widespread among RNA transcripts. Three kinds
of key proteins manage the tunable modifications of RNA between generations: writers,
erasers, and readers [157–160]. In the lncRNA transcriptome, N6-methyladenosine (m6A)
contains the highest amount and a wide range of important functions, followed by m5C
and ψ [161]. Elucidating the modification of lncRNAs provides a fundamental pathway for
understanding gene regulation and relevant cellular processes that contribute to disease
development.

m6A-modified lncRNAs were reported to serve as potential biomarkers for predicting
prognoses and immune response in patients with cervical cancer [162]. Several lncRNAs
have been regulated via an epitranscriptomic mechanism. lncRNA FOXD2-ASZ1 expres-
sion was significantly upregulated in cervical cancer cells and tissues, correlating with the
unfavorable prognosis. The functional assays demonstrated that FOXD2-AS1 promoted mi-
gration and proliferation of cervical cancer cells, while FOXD2-AS1 silencing repressed the
tumor growth in vivo. Notably, m6A “writer”, METTL3, enhanced the stability of FOXD2-
AS1 and recruited lysine-specific demethylase 1 (LSD1) to the promoter region of p21 to
silence its transcription abundance [102]. Dysregulation of another lncRNA KCNMB2-AS1
correlated with poor cervical cancer outcomes. The higher KCNMB2-AS1 expression associ-
ated with a shorter survival time. Mechanically, KCNMB2-AS1 was predominantly located
in the cytoplasm and served as a ceRNA to abundantly sponge miR-130b-5p and miR-4294,
resulting in the upregulation of IGF2BP3, a well-documented oncogene in cervical can-
cer. Moreover, IGF2BP3 acted as an m6A “reader” to bind m6A-modified KCNMB2-AS1,
therefore stabilizing KCNMB2-AS1. Thus, KCNMB2-AS1 and IGF2BP3 formed a posi-
tive regulatory circuit that enlarged the tumorigenic effect of KCNMB2-AS1 in cervical
cancer [163]. In addition, the lncRNA GAS5-AS1 expression in cervical cancer tissues
was markedly decreased compared to adjacent normal tissues. The downregulation of
GAS5-AS1 significantly correlated with poor outcomes in patients with cervical cancer.
The Kaplan-Meier survival curve and the log-rank test demonstrated that patients with
high-level GAS5-AS1 had better overall survival than those with low-level GAS5-AS1.
GAS5-AS1 drastically reduced cell proliferation, migration, and invasion in vitro. It also re-
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markably suppressed tumorigenicity and metastasis in vivo via interacting with the tumor
suppressor GAS5 and increased its stability by interacting with RNA demethylase ALKBH5
and decreasing m6A modification of GAS5. Moreover, m6A-mediated GAS5 RNA degra-
dation was shown to rely on the m6A reader protein YTHDF2-dependent pathway [164].
LncRNA HOXC13-AS is also regulated via the m6A mechanism. HOXC13-AS was elevated
in cervical cancer and positively correlated with FZD6, a ‘Frizzled’ gene family member
serving as a receptor for Wnt signaling proteins. FTO acted as an m6A “eraser” to reduce
m6A and stabilize HOXC13-AS linking to the upregulation of HOXC13-AS in cervical
cancer [124].

5. Conclusions and Future Perspectives

Considerable progress has been made in recent years to study the role and molecular
mechanisms underlying the lncRNA-mediated cellular events which contribute to the
initiation, development, and progression of cancers, including cervical cancer. LncRNAs
can be regulated via epitranscriptomic and epigenetic mechanisms. LncRNAs can interact
with epigenome and miRNAs resulting in altering the transcriptome and dysregulating
the oncogenes and tumor suppressors, therefore leading to cervical cancer progression
(Figure 2). However, several aspects need to be further elucidated, including (1) charac-
terizing the interaction of lncRNAs with other RNAs, (2) elucidating the interaction of
lncRNA with chromatin structure and other epigenetic regulations, (3) characterizing the
role of lncRNAs in transcriptional regulation via interacting with DNA and proteins, and (4)
investigating the role of lncRNAs in post-transcriptional regulation in cervical cancer. This
deep mechanistic investigation will better understand the drug resistance, immune escape,
and environmental impact in cervical cancer. Thorough research of lncRNAs is needed
to characterize their functional role in cervical cancer. Clinical application of molecular
inhibitors targeting unique lncRNAs might provide a novel option for the personalized
treatment of cancer patients.

Figure 2. Role and regulatory mechanism of lncRNAs in cervical carcinogenesis. lncRNAs can regu-
late gene expression networks via regulating microRNAs, histone modifications, DNA methylation
dynamics and others, resulting in altering the key pathways and oncogenes/tumor suppressor genes
triggering the pathogenesis of cervical carcinogenesis. In addition, aberrant expression of lncRNAs
in cervical cancer is modulated by epitranscriptional, epigenetic, and other mechanisms.

In conclusion, lncRNAs play a critical role in abnormal proliferation, migration, inva-
sion, EMT, and tumor growth in cervical cancers via multiple mechanisms, which provide
potential targets for treating female patients with cervical cancer. Comprehensive and
deep insights into molecular mechanisms underlying the pathogenesis of cervical cancer
will offer novel and better options for early detection, diagnosis, and treatment for this
aggressive disease.
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