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Abstract: Invertebrates do not possess adaptive immunity but have evolved a variety of unique
repertoires of innate immune sensors. In this study, we explored the immune diversity and specificity
of invertebrates based on the lophotrochozoan RLRs, a major component in antiviral immune recog-
nition. By annotating RLRs in the genomes of 58 representative species across metazoan evolution,
we explored the gene expansion of RLRs in Lophotrochozoa. Of note, the N-terminal domains of
lophotrochozoan RLRs showed the most striking diversity which evolved independently by domain
grafting. Exon–intron structures were revealed to be prevalent in the domain grafting of lophotro-
chozoan RLRs based on an analysis of sibling paralogs and orthologs. In more than half of the cases,
the mechanism of ‘exonization/pseudoexonization’ led to the generation of non-canonical N-terminal
domains. Transcriptomic studies revealed that many non-canonical RLRs display immune-related
expression patterns. Two of these RLRs showed obvious evidence of positive selection, which may be
the result of host defense selection pressure. Overall, our study suggests that the complex and unique
domain arrangement of lophotrochozoan RLRs might result from domain grafting, exon–intron
divergence, expression diversification, and positive selection, which may have led to functionally
distinct lophotrochozoan RLRs.

Keywords: RIG-I-like receptor; lophotrochozoan; innate immune; molecular evolution; gene
expression; domain grafting; exon–intron structure; positive selection

1. Introduction

The immune system has long been known for its remarkably rapid evolution due to
strong selective drivers, such as fast-evolving pathogens [1,2]. Lophotrochozoa is one of the
most species-rich superphyla, including mollusks, segmented worms, and other inverte-
brates. Despite lacking adaptive immunity, these animals exhibit a high level of biodiversity
and a wide range of ecological adaptations, including adaptation to a complex pathogenic
environment [3]. Innate immunity is not only the main defense mechanism of crown rotors
against pathogens, but also the most conservative defense mechanism of multicellular
organisms against pathogens [4,5]. Innate immunity is characterized by a rapid, nonspecific
response to infection and injury. Invertebrates lacking immunoglobulin-mediated adaptive
immunity have evolved a variety of broad, unique, and complex repertoires of innate
immune sensors [6,7]. An alternative strategy for invertebrates is the large-scale expansion
and diversification of multigene families encoding genome-encoded pattern recognition
receptors (PRRs) [8–10].
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Animals distinguish self from non-self by using a variety of PRRs [11,12]. PRRs interact
with pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) [13–15]. PRR-binding events typically trigger signaling cascades that
lead to the transcription of immune effector genes encoding products such as antibacterial
and antiviral proteins, leading to the production of proinflammatory cytokines and the
death of host cells [16,17]. PRRs are divided into the following major categories: cytoplasmic
NOD-like receptors (NLRs), membrane-bound Toll-like receptors (TLRs), C-type lectin
receptors (CLRs), scavenger receptors, AIM2-like receptors (ALRs), and RIG-I-like receptors
(RLRs) [14].

RLRs are a family of three DExD/H box-containing RNA helicases [18]. In vertebrates,
RLRs include retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated
gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2) [19]. MDA5 and
RIG-I contain two N-terminal caspase (cysteine-dependent aspartate-specific proteases)
recruitment domains (CARDs), followed by an intermediate DEAD/DEAH box helicase
domain (DEXDc + HELICc domains) and a C-terminal RIG-I_C-RD domain [20]. Helicases
use the energy provided by the hydrolysis of ATP to catalyze the unwinding of nucleic
acid duplexes. CARD is a structural domain composed of amphipathic α-helices and is
predicted to function through protein–protein interactions with apoptotic and antiapoptotic
proteins. In contrast, LGP2 lacks CARDs and retains the DEAD/DEAH box helicase domain
and RIG-I_C-RD domain. The simultaneous presence of CARD and RNA helicase domains
in a single molecule, as observed in MDA5 and RIG-I, is unique [21]. According to previous
studies, this unique mechanism for preventing viral infection is caused by the shuffling
of domains [21]. Recent studies have shown that the domain organization of RLRs in
early animals differs from that in vertebrates. Four types of structural compositions of
RLR proteins are found in the brachiopod Lingula anatina [22]. The N-terminus of these
LanRLRs presents different domains, including a death effector domain (DED) and caspase
catalytic (CASc) domains, in addition to CARD. Only one CARD has been found at the N-
terminus of the RLRs in cnidarians [23]. However, the evolutionary lineage of RLRs across
all metazoans is unknown, especially the evolutionary pattern of their domain architecture.

As one of the main cytoplasmic PRRs, RLRs are responsible for the intracellular
dsRNA sensor induced by type I IFN [20,24]. An analysis of MDA5 or RIG-I knockout
mice revealed that this TLR-independent pathway is central to innate immunity against
viral infection [25–27]. Moreover, as both MDA5 and RIG-I are IFN-stimulated genes, a
positive feedback loop that generates a potent antiviral state is established [28,29]. The
prototypical RLRs contain three types of functional domains: the two CARD domains at
the N-terminus that are responsible for downstream signaling transduction, the DEXDc
domain and the HELICc domain in the center that are responsible for RNA recognition,
and the C-terminal RIG-I_C-RD domain that assists in pathogen recognition by binding
to specific viral RNAs [30]. MDA-5 and RIG-I interact with the CARD domain of the
mitochondrial protein IFN-β promoter stimulator-1 (IPS-1, also known as MAVS, VISA,
and CARDIF). Thereafter, TNF-receptor-associated factor-3 (TRAF-3) is recruited, and TRAF
family member-associated NF-κB-activator binding kinase-1 (TBK1) and inducible IκB
kinase (IKK) are activated [31–33]. These kinases phosphorylate IRF-3 and IRF-7 and
activate NF-κB, which translocates to the nucleus to induce type I IFN expression [34].
MAVS-dependent RLR signaling has been shown to be involved in viral immunity in
mollusks [35]. Further, as LGP2 lacks CARDs, it does not trigger immune responses;
however, it can regulate RIG-I and MDA5 signaling [36,37]. The regulatory function of
LGP2 is attributed to its retained helicase domain and RD [38,39].

Evolutionary studies have painted a complex picture of how RLRs emerge, and their
functional diversity. Previous studies suggested that full-length RLRs are a vertebrate-
specific evolutionary novelty, although the building blocks of RLRs may have been present
in closely related prevertebrate animals [21,40]. These studies differ in the ordering of gene
duplication events leading to the three RLRs present in mammals; however, the studies
ultimately concluded that RLR evolution was driven by a complex series of domain grafting
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and gene fusion events in CARD domains. Based on recent studies, the RLR-based immune
system is not vertebrate-specific but originates in the earliest multicellular animals [41].
RLRs functionally diversified through a series of gene duplication events followed by
protein coding changes, which modulate the RNA-binding properties of different RLRs
by altering key contact residues within the C-terminal RD [41]. There is strong evidence
that RLRs are involved in a long-term evolutionary arms race with viral RNA molecules,
suggesting that the structure of viral RNA may have shaped the evolution of animal innate
immunity [41]. Although there is no consensus on the exact evolutionary history of RLRs,
these receptors (and/or their building blocks) have been reported to originate early in
metazoan evolution [41,42] and, most importantly, are evolutionary hot spots [42]; this is
illustrated by the lineage-specific loss of RLR genes in many species. For example, most
mammals possess RIG-I; however, RIG-I is lost in at least one mammalian species, the
Chinese tree shrew [43]. Interestingly, with the loss of RIG-I, both MDA5 and LGP2 have
undergone strong positive selection in Chinese tree shrews, and positively selected sites
in MDA5 endowed the substitute function for the lost RIG-I [44]. Adaptive evolution
analysis of the RLR gene family in reptiles, birds, and other chordates also revealed that
purification selection was dominant [45,46]. However, an overview of large-scale metazoan
macroevolution is lacking.

Here, we explored the immune diversity and specificity of the RLR gene family in
lophotrochozoans. Briefly, we annotated 227 RLR genes from 58 species across the metazoan
phylogeny, with emphasis on the molecular evolutionary dynamics of RLRs in lophotro-
chozoans. Further, we explored their phylogeny and domain composition, which revealed
that lophotrochozoan RLRs exhibited highly diverse and complex N-terminal domain
integration. We also established an exon–intron structure to investigate the molecular
mechanism underlying domain grafting. Evolutionary selection signals and tissue and
infective gene expression levels were also calculated. Overall, a comprehensive molecular
evolution analysis of the RLR gene family, which is not only associated with rapid domain
grafting but also with the potential for an immune response by positive selection, was
carried out.

2. Results
2.1. Identification of the RIG-I-like Receptor Repertoires

To investigate the composition difference in the RLR gene family across all metazoans,
we first annotated 227 RLRs in the genomes of 58 representative species with different
evolutionary positions (Supplementary Tables S1 and S2). Two RLR genes were identified in
the sponge of the phylum Porifera (Amphimedon queenslandica), suggesting potential origins
of RLRs in early metazoans (Figure 1). The RLR gene was completely lost in arthropods
of the 58 species investigated (Figure 1), which is consistent with the results of previous
studies [41]. Two or three RLRs in most (88%) of the chordates were annotated, while seven
RLRs were annotated in Branchiostoma floridae. Compared with chordate animals, RLRs were
extensively expanded in most (60%) lophotrochozoans. Further, 13 RLRs in the genome of
Crassostrea gigas, 12 in Bathymodiolus platifrons, and 19 in Mytilus coruscus were predicted.
The expansion of RLRs was also identified in the echinoderm Strongylocentrotus purpuratus.

Further genomic distribution exploration found that the expansions of the lophotro-
chozoan RLRs can be attributed to multiple local tandem duplication events (Figure 2 and
Supplementary Table S3). The tandem duplication phenomenon is the most noticeable in
the bivalve species with extensive expansion of RLRs. Specifically, 8 of 13, 6 of 12, and 6 of
19 RLRs were found to be linked in tandem arrays in the bivalves C. gigas, B. platifrons, and
M. coruscus.
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Ctenophora

Xenacoelomorpha

Lophotrochozoa

Ecdysozoa

Echinodermata

Chordata

Porifera

Cnidaria

Death DEXDc HELICc RDCARD DED CASc IG SAM

Metazoa

Eumetazoa

Bilateria

Protostomia

Deuterostomia

X

No. of genes
Monosiga brevicollis - - - - - - - - - - 0
Mnemiopsis leidyi - - - - - - - - - - - 0
Amphimedon queenslandica 2 - - - - - - - - - - 2
Hydra vulgaris - - - - - - - - - - - 0
Acropora digitifera - 2 - - - - - - - - - 2
Acropora millepora - - 2 - - - - - - - - 2
Discosoma sp - - 2 - - - - - - - - 2
Dendronephthya gigantea - - 2 - - - - - - - - 2
Pocillopora damicornis - - 3 - - - - - - - - 3
Stylophora pistillata - - 2 1 - - - - - - - 3
Nematostella vectensis - - 2 - - - - - - - - 2
Exaiptasia pallida - - 3 - - - - - - - - 3
Amplexidiscus fenestrafer - - 1 - - - - - - - - 1
Hofstenia miamia - - - - - - - - - - - 0
Phoronis australis - 1 - - 1  - - - - - 2
Notospermus geniculatus - 1 2 - - 1 - - 1 1 - 6
Bugula neritina - 1 - - - - - - - 1 - 2
Lingula anatina - 3  - 1 2 - - - - 2 8
Acanthopleura granulata - - 1 1 - 2 2 - 1 - - 7
Octopus bimaculoides - 1 - - - - - - - - - 1
Octopus vulgaris - - - - - 1 - - - - - 1
Biomphalaria glabrata - 3 - - - - - - - 1 - 4
Pomacea canaliculata - 4 - - - 2 - - - - - 6
Elysia chlorotica - 3 1 - - - - - - - - 4
Aplysia californica - 2 - - - - - - - 1 - 3
Lottia gigantea - 2 - - - - - - - 1 - 3
Haliotis rufescens - 1 - - - 2 3 - - - - 6
Haliotis laevigata - - 1 1 - 1 - - 1 2 - 6
Scapharca broughtonii - - 1 - - 4 - - - - - 5
Saccostrea glomerata - 2 - - - 3 - - - 1 - 6
Crassostrea gigas - 4 1 - - 6 - - - 1 1 13
Crassostrea virginica - 2 - - - 5 - - - - - 7
Argopecten purpuratus 1 1 - - - 2 - - - - - 4
Mizuhopecten yessoensis 2 - - - - 2 - - - 1 - 5
Pinctada imbricata - 1 1 - - - - - - - 1 3
Chlamys farreri - - - - - 2 - - - 1 - 3
Bathymodiolus platifrons - 4 1 - - - - 2 - 5 - 12
Mytilus coruscus - 3 1 - - 4 - 9 - 1 1 19
Pinctada fucata 1 1 1 - - 1 - - - - - 4
Capitella teleta - 2 - - - 1 - - - - - 3
Lamellibrachia luymesi - 2 - - - - - - - 1 - 3
Dimorphilus gyrociliatus - 1 - - - - - - - - - 1
Eisenia foetida - 2 - - 3 2 - - - - - 7
Helobdella robusta - 2 - - - - - - - - - 2
Daphnia pulex - - - - - - - - - - - 0
Drosophila melanogaster - - - - - - - - - - - 0
Tribolium castaneum - - - - - - - - - - - 0
Penaeus vannamei - - - - - - - - - - - 0
Strongylocentrotus purpuratus - 12 - - - 3 - - - 2 - 17
Acanthaster planci - 2 - - 1 3 - - - - - 6
Branchiostoma floridae 1 1 - 1 2 2 - - - - - 7
Ciona intestinalis - - - - - 2 - - - - - 2
Danio rerio - 1 - - - 2 - - - - - 3
Xenopus tropicalis - 1 - - - 2 - - - - - 3
Gallus gallus - 1 - - - 1 - - - - - 2
Mus musculus - 1 - - - 2 - - - - - 3
Myotis brandtii - 1 - - - 1 - - - 1 - 3
Homo sapiens - 1 - - - 2 - - - - - 3

A1 V2 C L1 L2 V1 L3 L4 L5 L6 X

X1

X2
X3

X4

N-terminal

C-terminal

intermediate

Figure 1. Comparison of gene families encoding RLR immune receptors in representative animals
across metazoans. Domain architecture in the lophotrochozoans is more complex than that in
other clades. Species colors represent different phyla. Short lines indicate none of the RLRs in the
subtype were annotated in this species. Phylogenetic relations among species are indicated by the
red cladogram on the left of the table, and dashed lines represent unresolved phylogenetic positions
for ctenophores and sponges. The column on the right counts the total number of RLR genes in
each species and draws a yellow column chart. RLR diagrams show death family domain in purple,
CARD domain in red, DED domain in light blue, CASc domain in light green, IG domain in light
yellow, SAM domain in pink, DEXDc domain in yellow, HELICc domain in green, and RD domain in
blue. Specifically, the top diagrams show A1, Amphimedon-like type 1; V1, vertebrate-like type 1; V2,
vertebrate-like type 2; C, cnidaria-like type; L1, lophotrochozoa-like type 1; L2, lophotrochozoan-like
type 2; L3, lophotrochozoan-like type 3; L4, lophotrochozoan-like type 4; L5, lophotrochozoan-like
type 5; and L6, lophotrochozoan-like type 6. X implies four specific structural features (X1–X4).
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Lingula anatina

NW_019775380.1

LanRLR2 LanRLR1

NW_019776013.1

LanRLR6 LanRLR4

Acanthopleura granulata Scaffold_100013

AgrRLR3 AgrRLR2 AgrRLR1

Haliotis rufescens Scaffold_359

HruRLR4 HruRLR1HruRLR5

Crassostrea gigas

CHR07

CgiRLR5 CgiRLR8CgiRLR7CgiRLR6

CgiRLR12 CgiRLR10CgiRLR11

CHR08
CgiRLR9

Eisenia foetida CHR10

EfoRLR3 EfoRLR5EfoRLR4

RLR

other gene

Bathymodiolus platifrons

Scaffold_997

BplRLR11 BplRLR10BplRLR12

Scaffold_58803

BplRLR5 BplRLR9 BplRLR2

Mytilus coruscus

CACVKT020007631.1

McoRLR11 McoRLR12 McoRLR13

CACVKT020009642.1

McoRLR17 McoRLR18 McoRLR19

Figure 2. Local tandem duplication of RLRs in the seven representative lophotrochozoan species.
Green arrowheads indicate RLR genes and their transcriptional direction; purple arrowheads indicate
other genes. Phylogenetic relations among species are indicated by the red cladogram on the left.

2.2. RLR Domain Annotation

Canonical RLRs have a typical C-terminal RNA recognition domain (RD) that binds
viral RNA and N-terminal CARDs to interact with the signal adaptor. We proceeded
to explore the domain architecture of the RLRs. With the inclusion of the canonical ver-
tebrate types (V-type), we classified metazoan RLRs into 11 major types based on their
domain architecture (Figure 1). Most (83%) vertebrates expressed three RLRs, including
two V1 types (RIG-I and MDA5) and one V2 type (LGP2). In the ancestral branch, Porifera
(A. queenslandica), two A1-type RLRs with death as the N-terminal domain were annotated.
Nine of the ten cnidarians were identified to possess two or three RLRs, and most (89%)
cnidarian anthozoan RLRs were C (cnidarian-type), with only one CARD domain in the
N-terminus. The types of RLRs that only occur in one species are classified as group X,
which includes four species (X1–X4). Intriguingly, the domain architecture of RLRs showed
the most striking diversity in lophotrochozoans, which contain the eleven divided RLR
types. The N-termini of those eleven RLR types include: canonical V1 and V2 types, the
A1 type of the death domain, the C type of the N-terminal CARD, the six L types (L1–L6)
obtained from lophotrochozoans, and the X type. This observation may reflect a high level
of domain grafting, resulting in significant expansion of RLRs in lophotrochozoans.

2.3. Phylogenetic Distribution of Three Discrete Domains

To determine the molecular evolutionary history of the RLR gene family in these
species, we traced the phylogenetic origins of three representative domains, including
RIG-I_C-RD, the DEAD/DEAH box helicase domain, and the N-terminal domain. First, a
phylogenetic tree was constructed using the C-terminal conserved domain RIG-I_C-RD cod-
ing sequences of all metazoan RLRs (M). This tree suggested that ancestral RLRs duplicated
in lophotrochozoans, with no RIG-I/MDA5/LGP2 divergence detected in this phylum.
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Further, most lophotrochozoan RLRs were found to be derived from the ancestral RLR
gene and were divided into two groups (Cluster I and Cluster II) (Figure 3). Cluster I was
clustered with the ancestral porifera and vertebrate RLRs, indicating that lophotrochozoan
RLRs in Cluster I might have originated from the same ancestor as those in vertebrates.
Three types of N-terminal domains were detected in the RLRs of Cluster I, including the
canonical CARD and ancestral death type. Compared with lophotrochozoan RLRs in
Cluster I, diversity and plasticity in the N-terminal domain architecture were observed
in RLRs in Cluster II. Six of the seven N-terminal domains (Death, CARD, CARD-CARD,
(immunoglobulin) IG, DED, (Sterile alpha motif) SAM) in this cluster were annotated. In
Cluster II, the RLRs with N-terminal IG and DED domains were found to be independently
clustered, which suggested that the L2 (DED) and L4 (IG) types of RLRs were independent
in lophotrochozoans.
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Figure 3. Phylogenetic analysis of RLRs based on C-terminal conserved domain RIG-I_C-RD. Maxi-
mum likelihood trees were constructed using IQ-TREE. The species used for the tree generation were
30 lophotrochozoans (as shown in Figure 1), the poriferan A. queenslandica, cnidaria, and the chordate
Homo sapiens. The lophotrochozoan RLRs can be majorly classified into two divergent classes, Cluster
I and Cluster II. The background color on the gene name represents the phylum to which it belongs,
as shown in the legend ‘Species’. The different colored shapes in the outer circles represent different
types of domains, as shown in the legend ‘Domain’.

We proceeded to investigate the evolutionary history of the RLR gene family based on
the intermediate helicase domain (DEXDc + HELICc domains) (Figure 4). Generally, the
phylogenetic tree topology of the helicase domain is very similar to that of the RIG-I_C-RD
phylogenetic tree, indicating that the integration of RIG-I_C-RD and helicase domains
originated before the divergence of metazoans. In contrast to the phylogenetic tree based
on RIG-I_C-RD, the lophotrochozoan RLRs with an N-terminal DED domain belonged to
Cluster II in the helicase tree instead of Cluster I. In addition, the RLRs with the N-terminal
death domain were within Cluster I in the helicase tree but belonged to Cluster II in the
RIG-I_C-RD tree. These results support the hypothesis that linked domains of intermediate
helicases and RIG-I_C-RD have ancient origins in metazoans; however, fusion events of
the two domains in RLRs with an N-terminal DED or death domain might independently
occur later under certain selection pressures.
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Figure 4. The evolution of intermediate helicase domains (DEXDc + HELICc domains) of the
lophotrochozoan RLRs. (a) Phylogenetic tree constructed with the maximum likelihood method
showing the evolution of DEXDc + HELICc domains of RLRs in loptrochozoans. The different
background colors of the gene names represent the phyla to which they belong, as shown in the
legend ‘Species’. The different colored shapes represent different domains, as shown in the legend
‘Domain’. The blue arc in the outermost circle represents Cluster I, and the green arc represents Cluster
II. The orange circles on the branches marked on the tree correspond to the evolutionary divergent
nodes as shown in (b). (b) A schematic diagram of the evolution of the intermediate helicase domains
of lophotrochozoan RLRs based on the phylogenetic tree. Lop stands for the lophotrochozoan. Solid
black lines indicate duplication events.

To clarify the evolutionary relationship of the diverse N-terminal domains of RLRs
in lophotrochozoans, we conducted phylogenetic analysis using sequences of N-terminal
domains of RLRs in lophotrochozoans, the ancient death domain in porifera, and the CARD
domain in cnidaria (Figure 5). The two different CARD domains (CARD1 and CARD2) in
the typical type of lophotrochozoan RLRs were separately extracted and used for phylo-
genetic analysis. Based on the phylogenetic tree (Figure 5a), the evolutionary histories of
N-terminal domains displayed overall different patterns compared to the helicase and RIG-
I_C-RD trees, especially for RLRs with lophotrochozoan-specific N-terminal domains. Such
pheromones suggest the occurrence of multiple independent fusion events in lophotro-
chozoan RLRs. The simultaneous presence of death and helicase domains occurred in
porifera, which might be the ancient state in metazoans. Further, lophotrochozoan RLRs
with the death domain may not be orthologs of the poriferan RLRs; instead, these RLRs
shared the same ancestor with cnidarian RLRs containing the CARD domain. Based on the
evolutionary history of the CARD domain, cnidarian C-type RLRs encode only one CARD
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instead of two CARD domains in canonical V1-type RLRs. The second CARD domain
of lophotrochozoan RLRs clustered with the ancestral cnidarian CARD, indicating that
the fusion of the CARD1 and CARD2 domains in the common ancestor of the lophotro-
chozoan ancestor might have occurred through an independent process. Of the N-terminal
domains of L (lophotrochozoan)-type RLRs, DED and IG clustered with the CARD1 branch,
while SAM and CASc clustered with the CARD2 branch. These results indicate that the
highly diverse and dynamic N-terminal domains in lophotrochozoan RLRs could have
independently emerged from domain grafting.
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Figure 5. The evolution of N-terminal domains (CARD, DED, IG, death, CASc, SAM) of lophotro-
chozoan RLRs. (a) Phylogenetic tree constructed with the maximum likelihood method showing
the evolution of N-terminal domains of RLRs in lophotrochozoans. The different background colors
of the gene names represent the phyla to which they belong, as shown in the legend ‘Species’. The
different colored circles represent different domains, as shown in the legend ‘Domain’. The blue arc in
the outermost circle represents Cluster I, and the green arc represents Cluster II. The orange circles on
the branches marked on the tree correspond to the important nodes in (b). (b) A schematic diagram of
the evolution of the N-terminal domains of RLRs in lophotrochozoans based on the phylogenetic tree.
Cni stands for Cnidaria, and Lop stands for the lophotrochozoan. Ancestor1 indicates an ancestor
where a duplication produced the first N-terminal death domain and a common ancestor of all other
N-terminal domains. Cni/Lop ancestor2 indicates an ancestor where a duplication occurred that
produced different N-terminal domains. Lop N1 represents the first domain of the N-terminal RLR,
and Lop N2 represents the second. Solid black lines indicate duplication events. Colors of N-terminal
domains correspond to color labels in the trees in (a).
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2.4. Intron–Exon Structure Analysis of Lophotrochozoan RLRs with Diverse N-Terminal Domains

Previously, exon shuffling was believed to be one of the major forces driving domain
grafting [47]. Accordingly, we aimed to determine whether exon–intron structure-related
mechanisms contribute to the highly diverse N-terminal domains of lophotrochozoan-
specific RLRs. Our hypothesis was tested by identifying sibling paralogs/orthologs with
the highest sequence similarity based on the RIG-I_C-RD phylogenetic tree and comparing
their exon–intron architecture (Figure 6). We first manually optimized all the shown
gene models by transcriptomic read mapping to make sure the sequences of these sibling
paralogs/orthologs had high confidence. Exon–intron structure divergence was found
to be prevalent in the RLRs in all N-specific domains studied, including domains CASc,
DED, Death, and IG. Further, the exon–intron structure was classified into three types,
including ‘gain/loss of exon/intron,’ ‘exonization/pseudoexonization,’ and ‘intraexonic
insertion/deletion’ [48]. Among the examples of the nine homologous RLR groups with a
difference in the N-terminal domain in Figure 6, ‘gain/loss of exon/intron’ was found to
be prevalent in four cases, ‘exonization/pseudoexonization’ in five cases, and ‘intraexonic
insertion/deletion’ in only one case.
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Figure 6. Exon–intron structure analysis of RLRs with diverse N-terminal domains in lophotro-
chozoans. The exon–intron structures (left) and the schematic diagrams of the domain composition
(right) of the RLRs with non-canonical N-terminal domains of nine groups of homologous genes.
The blue rectangle represents the exon, and the solid line represents the uncoded sequence in the
alignment. The number marks the length of the exon or unencoded sequence. White bars in exons
depict the indels that have resulted from insertion/deletion events.
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The type ‘gain/loss of exon/intron’ is a process through which an entire partial
exon/intron is inserted/deleted. For the sibling paralogs LanRLR7 and LanRLR8 in
L. anatina, the domain structure of LanRLR7 is DEXDc-HELICc-RD and does not encode
the interaction N-terminal domains. Comparatively, an exon gain event with 253 amino
acids was inferred in LanRLR8, leading to an additional N-terminal DED domain. This
gain of exon did not cause a shift in the reading frame. The other corresponding ex-
onic sequences of this sibling paralog could still be aligned with high confidence, except
for the gained exon, with 98% sequence similarity at the amino acid level. The struc-
ture type of ‘gain/loss of exon/intron’ was found in the domain grafting of death in the
Mizuhopecten yessoensis sibling paralogs MyeRLR2, MyeRLR3, and MyeRLR1. The same
structure type was found in the domain grafting of the IG domain in the lophotrochozoan-
specific sibling ortholog pairs BplRLR7-McoRLR2 and McoRLR14-BplRLR6. The mechanism
of ‘exonization/pseudoexonization’ is a process that leads to interchanges between ex-
onic and non-exonic sequences. For the sibling ortholog pairs CgiRLR6 and CviRLR1
in oyster RLRs, exonization of 13 exons was characterized in CgiRLR6, which led to a
lophotrochozoan-specific RLR with four IG domains in the N-terminal sequence. A similar
phenomenon was found in the sibling paralogs LanRLR4-LanRLR5-LanRL6 and EfoRLR5-
EfoRLR3, and the sibling ortholog PfuRLR3-ApuRLR4, which led to the domain grafting
of CASc, DED, and death in the lophotrochozoan-specific RLRs, respectively (Figure 6).
Finally, intraexonic insertion/deletion was found in the domain shuffling of DED in the
sibling paralog LanRLR7-LanRLR8. Of note, the three types of structural divergence were
not mutually exclusive.

By analyzing six cases of sibling paralogs and three cases of sibling orthologs, we found
that the most predominant type of mechanism for structural variation in the RLR genes with
lophotrochozoan-specific N-terminal domains was ‘exonization and pseudoexonization,’
which was observed in five of the nine cases studied. The second most predominant was
‘gain/loss of exon/intron,’ which was observed in four cases. Notably, the three types of
exon–intron structure-related mechanisms were prevalent in the canonical V1- and C-type
RLRs. In contrast to lophotrochozoan RLRs encoding diverse N-terminal domains, the type
‘loss/gain of exon/intron’ is most predominant in these canonical RLRs instead of the type
‘exonization/intronization’ (Supplementary Figure S1).

2.5. Expression Profiles of the Lophotrochozoan RLRs

As large expansions and highly diverse domain structures were observed in lophotro-
chozoan RLRs, we determined whether these lophotrochozoan RLRs are functional. We
collected all published lophotrochozoan tissue transcriptome data from the NCBI GEO
database (up to June 2021) and calculated the tissue expression levels of RLR genes in ten
evolutionary representative species (Figure 7a and Supplementary Table S4), including
the phoronidan Phoronis austrailis; the nemertean Notospermus geniculatus; the brachio-
pod L. anatina; the mollusks Octopus bimaculoides, Haliotis rufescens, C. gigas, M. coruscus,
M. yessoensis, and Chlamys farreri; and the annelida Eisenia foetida. Among the 71 RLRs
studied in the 10 species, 65 were found to be expressed in at least one tissue. Fourteen of
the twenty RLRs encoding specific N-terminal domains showed expression based on the
tissue expression profiles. This result suggests that most lophotrochozoan RLRs, both the
canonical ones and those with various N-terminal domains, were potentially functional.

Owing to the prevalence of expression in duplicated lophotrochozoan RLRs with
diverse N-terminal domains, whether these genes retained the function of immune reor-
ganization was unknown. To clarify whether such retention existed, we compared the
expression levels of RLRs in immune-related and unrelated tissues (Figure 7a and Supple-
mentary Table S4) and found both tissue-prevalent and specific patterns in lophotrochozoan
RLRs with diverse N-terminal domains. In the bivalve C. gigas, most CgiRLRs with diverse
N-terminal domains were found to be highly expressed in the labial palp, mantle, male
gonad, and digestive gland. In the brachiopod L. anatina, LanRLR8 with an N-terminal DED
domain and LanRLR6 with an N-terminal CASc domain were found to be significantly
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expressed in the digestive tissue. Molluscan McoRLR10 with an N-terminal SAM domain
and McoRLR12 with an N-terminal IG domain were also highly expressed in the gut, and
McoRLR10 was highly expressed in the digestive gland (Figure 7a and Supplementary
Table S4). These results indicate that RLRs might be important in mucosal immunity. How-
ever, molluscan MyeRLR2 and MyeRLR3 with an N-terminal death domain showed the
highest expression levels in hemocytes, suggesting their potential function in hemocyte-
mediated immunity. Many duplicated lophotrochozoan RLRs with special N-terminal
domains were upregulated in both the digestive gland and hemocytes, such as McoRLR5
and McoRLR13 with an N-terminal IG domain, which were highly expressed in hemocytes
(Figure 7a and Supplementary Table S4). Taken together, these results suggest that many
RLRs composed of diverse N-terminal domains are highly expressed in immune-related
tissues and might play a significant role in innate immune recognition.
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Figure 7. Expression patterns of RLR genes among different tissues and under virus infection.
(a) Transcriptome expression heatmaps of RLRs of different tissues in ten Lophotrochozoa species.
Ampulla (AM), trunk (TK), proboscis (PB), anterior end (AE), anterior part1 (AP1), anterior part2
(AP2), mid-body (MB), posterior end (PE), lophophore (L), whole gut tissue (WG), digestive cecum
(DC), dorsal mantle (DM), ventral mantle (VM), pedicle (Ped), regenerated pedicle (RP), statocyst
tissue (ST), eye (E), olfactory organ (OO), skin from mantle (SM), brain tissue from optic lobe (BO),
liver (Liv), mantle (Man), heart (Hea), female gonad (Fgo), adult female ganglion (Gan), gill (Gill),
labial palp (Lpa), digestive gland (Dgl), adductor muscle (Amu), hemocyte (Hem), male gonad
(Mgo), mouth (Mou), male gonad (Mal), foot (Foo), female gonad (Fem), adductor muscle (Add),
kidney (Kid), striated muscle (Smu), gonad (Gon), nerve cord (NC), chlorogog gut (CG), crop (C),
gizzard (G), pharynx (P), coelomic fluid (CF). Heatmap displays the expression level of RLR genes.
(b) Transcriptional change of the RLRs under Ostreid herpesvirus-1 (OsHV-1) infection. The orange
rectangle represents significantly upregulated RLR genes (Log2(FC) > 1.5); the yellow rectangle
represents the upregulated RLR genes but not significantly; the blue rectangle represents the RLR
genes that are not expressed.
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We determined whether the duplicated lophotrochozoan RLRs with diverse N-terminal
domains would be upregulated under viral challenges. We searched for virus or virus-
related PAMP infection transcriptomes in the NCBI GEO database (up to June 2021), found
two published databases from bivalves C. gigas and Scapharca broughtonii, and calculated
their expression profiles (Figure 7b). A total of 11 of the 13 RLRs in C. gigas were sig-
nificantly upregulated (Log2 (FC) > 1.5) during oyster herpes virus infection. Of these
RLRs, CgiRLR6 encodes a lophotrochozoan-specific N-terminal IG domain. Similarly,
S. broughtonii SbrRLR3 encoding only one CARD at the N-terminus was significantly upreg-
ulated (Log2 (FC) > 1.5) under virus challenge. These results suggest that lophotrochozoan
RLRs with special domains may play an important role in antiviral immune recognition.

2.6. Evidence of Positive Selection in Lophotrochozoan RLRs with Diverse N-Terminal Domains

As innate immune receptors are responsible for severe diseases, RLRs must rapidly
evolve and are thus subjected to positive selection pressures [44]. We determined whether
the molecular evolution of the duplicated lophotrochozoan RLRs with diverse N-terminal
domains was driven by natural selection. Accordingly, a positive analysis was performed
on lophotrochozoan RLRs with diverse N-terminal domains and gene expression levels
enriched in the immune-related tissues mentioned above. We used the RIG-I_C-RD domain
of RLRs for selection analysis, as this part is the virus recognition domain.

We performed positive selection analysis on five RLRs of M. yessoensis, all of which
were in Cluster I of the phylogenetic tree (Figure 3). Positive selection signals (ω = 521.37)
could be identified in branches, including MyeRLR2 and MyeRLR3 (Figure 8a). Both genes
encoded the N-terminal death domain. We further reconstructed the 3D structures of the
five MyeRLRs (Figure 8c). Based on the results, the surface of the RNA-binding region of
MyeRLR2 and MyeRLR3 is positively charged, which is consistent with human RIG-I [41].
Although MyeRLR1 is positively charged, its N-terminus has no domain, which may
prevent its function. However, the surface of the RNA-binding region of MyeRLR4 and
MyeRLR5 has a less positive charge.
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Figure 8. Positive selection analysis of representative RLR genes. (a) Evolutionary relationships of
MyeRLRs. The branches with dN/dS (ω) values > 1.0 are marked with red lines. (b) The expression
level of five MyeRLRs in hemocytes. One-way ANOVA showed that the expression levels of MyeRLR2
and MyeRLR3 were significantly (p-value < 0.01, marked with **) more upregulated than those of
other MyeRLRs. (c) Electrostatics of the RNA-binding surfaces of the MyeRLR RIG-I_C-RDs. The
determination of RNA-binding sites refers to previous studies [49]. Positively charged surfaces are
colored blue, and negatively charged surfaces are red. Dotted yellow line indicates RNA-binding loop.
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Of note, the selection analysis was consistent with the gene expression patterns in RLRs
of M. yessoensis. Both MyeRLR2 and MyeRLR3 showed a significantly higher expression
in the immune-related tissue hemolymph (Figure 8b). The lophotrochozoan RLRs with
diverse N-terminal domains might interact with other adaptors without a CARD domain,
triggering the unique lophotrochozoan cascade in antiviral immunity. The selection results
suggest that lophotrochozoan-specific RLRs were under rapid positive selection, indicating
that these unique RLRs might play important and novel roles in innate immunity.

3. Discussion

Interaction between pathogens and hosts leads to a dynamic evolutionary arms race.
Invertebrates, which lack adaptive immunity, evolved a variety of broad, unique, and
complex repertoires of innate immune sensors. In this study, we explored the diversity and
specificity of invertebrate innate immune recognition in the lophotrochozoan RLR gene
family and identified the diversity of RLRs in lophotrochozoans, which is mainly reflected
in the divergence of the N-terminal domains. By exploring the molecular evolutionary
mechanism driving the diversity of domain arrangement in lophotrochozoan RLRs, we
found that it might be due to rapid domain grafting, exon–intron structural divergence,
expression diversification, and positive selection. To the best of our knowledge, this is the
first systematic study of the molecular evolution of RLRs in lophotrochozoans.

One of the most interesting findings of this study is that lophotrochozoan RLRs
represent the successful use of genetic linkages of N-terminal domains to expand and
diversify the immune repertoire. The invertebrate immune system is innate and encoded
in the germline. Extensive expansion of immune receptors has been proposed to reveal
an alternative mechanism for the diversity and specificity of innate immune recognition
in the absence of an adaptive immune system [8–10]. In our study, the RLR gene families
experienced expansion, aligning with previous immune receptor studies in amphioxi [9].
Importantly, the domain arrangement was found to be highly diverse in the duplicated
lophotrochozoan RLRs. Manual correction of all gene models with non-canonical N-
terminal domains was performed, and their domain arrangements were examined, which
indicated that our data can be used for further phylogenetic and molecular evolution
studies. Therefore, gene models were predicted with high confidence, arguing against gene
modeling errors as an explanation for our results.

In vertebrates, the N-terminal CARD domain of RIG-I and MDA5 interacts with the
CARD domain of the mitochondrial protein MAVS for signal transmission [31–33,50]. In
invertebrates, the protein interaction between the N-terminus of canonical RLR receptors
and the adaptor MAVS is conserved in the mollusk C. gigas [35]. Of note, non-canonical
N-terminal domains, including the death, DED, CASc, IG, and SAM domains, were also
observed in lophotrochozoan RLRs. Among them, the death and DED subfamily, together
with CARD, constitutes the death domain (DD) superfamily. By mediating homotypic inter-
actions within each domain subfamily, these proteins play important roles in the assembly
and activation of apoptotic and inflammatory complexes [51,52]. The CASc domain repre-
sents the C-terminal conserved domain found in caspases, mainly from animals. Caspases
are mainly involved in mediating cell apoptosis and are recruited as apoptosis initiators
that trigger the apoptosis process, and as effectors of apoptosis [53,54]. The CASc domain
is also reported to be involved in inflammatory processes [55]. Previous studies suggested
that another important intracellular immune receptor, NLR (nucleotide oligomerization do-
main (NOD)-like receptor), recruited the apoptosis-related domains pyrin and baculovirus
inhibitor repeats during evolution, leading to the control of the activation of inflammatory
caspases in animals [56,57]. We hypothesized that lophotrochozoan RLRs with a CASc
domain might be involved in apoptosis, inflammation, or pyroptosis. Molecules with
IG-like domains are involved in a variety of immunological functions, including adaptive
immune receptors, innate immune molecules, and accessory molecules [58]. Previous
studies suggested that diverse forms of IG-containing molecules and their specificity of
immune function in non-self recognition or interaction with endogenous molecules are
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remarkable [59]. One of the well-known examples is the IG domain’s variation in the snail
fibrinogen-related proteins that exhibits different forms of somatic variation [60]. Although
the C-terminal domain of RLR is responsible for initial pathogen recognition, the N-terminal
domains are required for downstream signaling [24,30]. Novel immune response diversity
and specificities might thus be acquired by integrating non-canonical domains into RLRs in
lophotrochozoans. These new integrated non-canonical protein domains might play an
unidentified role in innate immunity or host defense.

The phylogenetic results suggest that the lophotrochozoan RLRs integrated with non-
canonical N-terminal domains were distributed unevenly across the RLR phylogeny with
the dominant clade in Cluster II, and most were species-specific. Most lophotrochozoan
RLRs clustered with vertebrate RIG-I instead of MDA5/LDP2 and were divided into two
clusters. The domain composition showed that the functions of the RLRs in Cluster II
were more diverse than those in Cluster I. Previous studies have shown that in addition to
RLRs [21], the other two gene families encoding immune receptors, NLR and TLR, under-
went massive species-specific expansions and domain shuffling in various lineages [61]. In
the NACHT protein family, a diversity of N-terminal domains, including death, CARD,
DED, BIR, and PYRIN domains, was found. Among them, three types of domain combi-
nations have emerged multiple times in different lineages, including death-NACHT-LRR,
CARD-NACHT-LRR, and PYRIN-NACHT-LRR [61]. Studies on the TIR protein family
have shown that across the metazoans, the N-terminal domain connected to TIR has the IG,
death, and SAM domains, and IG-TIR has emerged multiple times in different lineages [61].
In contrast, in the specific domains of the N-terminus of RLRs (except CARD), the death,
DED, and IG domains have emerged multiple times in different lineages, while the CASc
and SAM domains have only been found in one species. Two separate domains of TLR,
the TIR domain and the LRR domain, have been found to have a domain combination
phenomenon. The combination of the P-TIR and P-LRR domains occurred in non-bilateria,
while the early combination of the V-TIR and V-LRR domains for V-TLR occurred after
the divergence of bilateria and non-bilateria [62]. Generally, it is speculated that the com-
bination of the above domains is not random but follows certain rules, which might be
selective pressure exerted by pathogens in a specific environment [61,62]. In addition, the
phenomenon of domain shuffling in killer cell Ig-like receptors (KIRs) is expressed on the
surface of NK cells, which leads to the production of new KIRs [63].

Interestingly, the exon–intron structure seems to significantly contribute to the integra-
tion of non-canonical N-terminal domains in the lophotrochozoan RLRs. The structure of
the RLR protein is relatively simple in ancestral metazoan porous animals and cnidarians.
However, in lophotrochozoans, the domain arrangement of the RLR protein showed a com-
plex and diverse pattern with the addition of the second CARD (CARD1) and non-canonical
N-terminal domains. Deletion and incorporation of specific domains have become preva-
lent. Based on our results, the diversity of the N-terminal domains in lophotrochozoan
RLRs should be attributed to domain shuffling after gene duplication. As the domains are
often correlated with exon boundaries, exon shuffling is believed to be one of the major
forces driving domain shuffling [47]. Our study indicates that intronization/exonization
is the main driving force of exon shuffling. A similar phenomenon of exon shuffling was
observed in the KIR gene family. For KIR genes, the exon–intron structure correlates with
the four main parts: the first three parts comprise an Ig domain, D0, D1, and D2, and the last
part comprises the stem (S), transmembrane (TM), and cytoplasmic (CYT) domains [63,64].
A previous study speculated that, in addition to domain shuffling’s KIR being more favored
by natural selection, another important reason for domain shuffling is that certain introns
are hot spots for recombination [63]. For the RLR gene, almost all specific domains were
found to be fully encoded by only one exon (Figure 6), which also creates an environment
in which exon shuffling occurs.

Finally, as positive selection signals and immune-related expression patterns were
detected independently in different clades of lophotrochozoan non-canonical RLRs, these
domain fusions may have a selective advantage for the organisms [62,65]. The possibility
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of domain recombination to achieve functional diversity has been mentioned in many
evaluations [63,66,67], and the diversity of the N-terminal domain may affect the specificity
of ligand binding [66]. The study of the function of abaecin through exon shuffling suggests
the role of exon shuffling in buffering the loss-of-function mutations in a gene [67]. However,
at present, sufficient immune-related transcriptome data are unavailable to verify whether
the new lophotrochozoan RLRs have new functions. Further, whether proteins with the
same domain architecture share similar functions in different species is still unknown.
Some examples including those from the families discussed here suggest that this notion
does not always hold true. For instance, although Drosophila Toll-like receptors mainly
perform roles in embryonic development, their mammalian homologs are key regulators
of immune responses [68,69]. Therefore, extrapolation of protein function based on the
domain architecture must be performed very carefully.

4. Materials and Methods
4.1. Data Collection

To identify the RLR genes, the genome and protein sequence datasets of 58 metazoan
species at different evolutionary nodes were collected from the National Center for Biotech-
nology Information (NCBI) (https://www.ncbi.nlm.nih.gov/, accessed on 1 June 2021) or
from other databases (Supplementary Figure S2; Table S1). Transcriptome data for RLR gene
expression analysis were obtained from the NCBI Sequence Read Archive (SRA) database
(https://www.ncbi.nlm.nih.gov/sra/, accessed on 1 June 2021). Multiple biotic stress
data included PRJNA450478 (S. broughtonii after Ostreid herpesvirus-1 infection), and PR-
JNA146329 (C. gigas larvae infected with OsHV-1). Adult tissue data included PRJNA393252
(P. australis); PRJNA393252 (N. geniculatus); PRJNA286275 (L. anatina); PRJNA658966 (O. bi-
maculoides); PRJNA488641 (H. rufescens); PRJNA146329 (C. gigas); PRJNA578350 (M. corus-
cus); PRJNA185465 (C. farreri); PRJNA259405 (M. yessoensis); PRJNA608692 (E. foetida).

4.2. RLR Gene Identification and Phylogenetic Analysis

We used domain prediction and a sequence homology search of the RLR genes in
58 metazoan species (Figure S2). First, a local version of HMMER version3.1b2 (Howard
Hughes Medical Institute; Cambridge, UK, 2015) [70], available from http://hmmer.org/
download.html (accessed on 1 June 2021), was used to identify the RLR genes by screening
the RIG-I_C-RD (PF11648) domain on the genomes of all species. Second, regions of each
genome potentially harboring RLR genes were identified using TBLASTN (National Center
for Biotechnology Information, Bethesda, MD, USA) [71] with RLR proteins from model
organisms as query sequences. When we used the above two methods to find the loss
of RLRs in some species, we used PSI-BLAST (http://blast.ncbi.nlm.nih.gov/, accessed
on 4 March 2022) to further confirm this conclusion. Third, according to the structural
characteristics of RLRs in a broad sense, we used the visualization software SMART (http:
//smart.embl-heidelberg.de/, accessed on 1 September 2021) [72] to screen the RLR genes
of each species containing an intermediate DEAD/DEAH box helicase domain and a RIG-
I_C-RD domain. Finally, we corrected some RLR genes with suspected domain deletions
or special domains using local GeneWise software (https://www.ebi.ac.uk/Tools/psa/
genewise/, accessed on 1 September 2021) [73] and transcriptome read mapping, which
greatly ensures the accuracy of each N-terminal-specific RLR gene model studied.

The highly conserved sequences of the RIG-I_C-RD domain of RLRs identified by
PFAM HMM were used to conduct the phylogenetic analyses in the present study. The pro-
tein sequences encoding the RIG-I_C-RD domain were aligned using the L-INS-I strategy
in the local MAFFT v7.310 (Kazutaka Katoh, Osaka, Japan, 2013) [74]. Maximum likelihood
trees were generated using IQ-TREE v1.6.12 (Bui Quang Minh, ANU(Australian National
University), Australia, 2011) [75], which could automatically test and select the best alterna-
tive model. In order to test branch reliability, we adopted the fast bootstrap method with
1000 replicates, which can also be integrated into IQ-TREE. Trees were handled using iTOL
v6 (https://itol.embl.de/, accessed on 1 November 2021). In addition, in order to explain
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the overall evolution of RLRs, the N-terminal domain coding sequences and intermediate
helicase domain (DEXDc + HELICc domains) coding sequences were extracted to construct
phylogenetic trees according to the same method.

4.3. Identification of RLR Homologs and Analysis of Gene Structures

First, the local BLAST version2.9.0 (National Center for Biotechnology Information,
Bethesda, MD, USA) was used for homologous gene pair identification by reciprocal BLAST
searching on the retrieved datasets (Figure S2). Then, the above results were confirmed
by phylogenetic analysis of the RLR gene family. However, the homologous gene pairs
found by this method were often too limited, so we only used the method of phylogenetic
analysis to identify RLR gene homologous pairs containing special lophotrochozoan RLRs.

To determine whether paralogous or orthologous genes have diverged in exon–intron
structure, we compared their genomic sequences. Two paralogs or orthologs were regarded
as structurally divergent if they had different numbers of exons, or if they had the same
number of exons but the lengths of at least one pair of homologous exons were different.
To understand the underlying mechanisms of structural divergence, we generated pairwise
alignments for each gene pair, using the corresponding mRNAs as guidance. Intraexonic
insertion/deletion was deduced when an indel was found within the aligned homologous
exons. Exon/intron gain/loss was inferred if an orphan exon/intron was the result of
exon duplication, exon shuffling, exon scrambling, intron insertion, or intron deletion.
Exonization/pseudoexonization was identified when the corresponding exonic and non-
exonic sequences could be aligned with confidence [48].

4.4. Transcriptomic Analysis of Gene Expression

The FastxToolkit pipeline (http://hannonlab.cshl.edu/fastx_toolkit/index.html, ac-
cessed on 1 November 2021) was used to process the raw reads to evaluate sequencing
quality and remove low-quality reads (length threshold < 50 bp and quality threshold < 20),
adaptor sequences, poly-N, and known non-coding RNAs (Figure S2). Genome-based
indexing and sam file generation were achieved using local Hisat2 version 2.1.0 (University
of Texas Southwestern Medical Center, Dallas, TX, USA, 2017) [76] and Bowtie2 version
2.3.5.1 (University of Maryland, College Park, MD, USA, 2019) [77], and sam files were
sorted using Samtools version 1.11 (Wellcome Genome Campus, Hinxton, Cambridgeshire
CB10 1SA, UK) [78]. The obtained clean reads were then individually mapped to the
genome of the respective species. Gene expression levels were measured by fragments per
kilobase million (FPKM). The expression levels were quantified using Cufflinks version
2.2.1 (Harvard University, Cambridge, MA, USA) [79]. The differentially expressed RLR
genes (DEGs) were identified with the edgeR tool of the R programming language with the
threshold value |log2FC| ≥ 1.5 (multiple of fold change, FC: difference) and FDR ≤ 0.05.

4.5. Positive Selection Analysis

Multiple sequence alignments of RLRs were performed using ClustalW (https://www.
genome.jp/tools-bin/clustalw, accessed on 1 December 2021) with default parameters,
and the resulting alignments were refined with trimAl version1.2(Centre for Genomic
Regulation, Barcelona, Spain) [80] (Figure S2). Phylogenetic trees were constructed with
ML analytical approaches based on MEGA7. The robustness of the inferred trees was
assessed using bootstrapping with 1000 replicates in the phylogenetic tree. Phylogenetic
trees were visualized using ITOL and used for subsequent positive selection analysis.

PAML version4.9j (University of California, Berkeley, USA) [81] was used for com-
paring the rate per site of dN (nonsynonymous) to the rate per site of dS (synonymous)
mutations. The recommended subset of four M-series models of M1a (nearly neutral), M2a
(positive selection), M7 (beta), and M8 (beta andω) coupled with Bayesian empirical Bayes
(BEB) methods was implemented. The log-likelihood values (lnL) of M2aM1a and M8-M7
were from explicit tests for the presence of positively selected sites. The p values were
corrected by a multiple testing correction method. Furthermore, the probabilities of sites
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under positive selection were assessed by their posterior probabilities calculated with the
BEB method. The amino acid site was considered as a positively selected site if the value
of dN/dS > 1 appeared in the LRT and the posterior probability exceeded 90%. Finally,
SWISS-MODEL (http://swissmodel.expa-sy.org/, accessed on 10 December 2021) was
used to locate and visualize the 3D structure of RLRs.

5. Conclusions

In this study, we systematically described the evolutionary history of the RLR gene fam-
ily in lophotrochozoans by investigating their domain architecture, phylogeny, exon–intron
structure, expression profiles, and selection patterns. Our study revealed many previously
unknown N-terminal domain fusions in lophotrochozoan RLRs, which might result in
the diversity and specificity of the innate immune response. We traced the exon–intron
structure of these non-canonical lophotrochozoan RLRs and found that the mechanism
of exonization/pseudoexonization might drive the formation of these RLRs. Many non-
canonical lophotrochozoan RLRs exhibit positive selection signals and immune-related
expression patterns, indicating that non-canonical lophotrochozoan RLRs might have a
selective advantage for organisms in the innate immune response. Overall, our findings
suggest that the complex and unique domain arrangement of lophotrochozoan RLRs might
result from rapid domain grafting, exon–intron structural divergence, expression diver-
sification, and positive selection, which may have led to functionally distinct paralogs
or orthologs in the innate immune response. Our research provides new insights into
the molecular evolution of innate receptors in invertebrates in the absence of antibody-
mediated adaptive immunity.
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