Skip to main content
. 2022 Mar 29;23(7):3741. doi: 10.3390/ijms23073741

Table 2.

PGPB-produced mechanisms related to tolerance against salinity stress.

PGPB Plants Effects Mode of Action References
P. mendocina Lactuca sativa L. Stable soil aggregates in high proportions ESP production [259]
A. brasilense and Pantoea dispersa Capsicum annuum L. Increased dry weight and K+/Na+ ratio Maintaining of higher stomatal conductance [276]
B. aquimaris T. aestivum L. Increased weight, biomass, and
leaf nutrients
Accumulation of osmoprotectants (TSS and proline) [264]
Rhizobium sp. and Pseudomonas sp. Zea mays L. Increased plant biomass, development, and nutrient uptake Accumulation of osmoprotectants (proline, Betaine), water and ion homeostasis [58]
Pseudomonas sp. S. lycopersicum L. Higher shoot and root length, total dry weight, and chlorophyll content ACCD production and osmoprotectants accumulation (trehalose) [272]
B. megaterium Z. mays L. Higher root hydraulic conductance Up-regulation of aquoporin genes (PIPtype) [274]
B. subtilis Puccinellia tenuiflora
SCRIBN. & MERR.
Improved shoot and root growth and decreased Na+ ion accumulation Ion transport genes (HKT type): transcriptional changes [277]
P. simiae G. max L. Higher weight, length, and K+/Na+ ratio Changes in transcriptional regulation of phosphatase activity, proline accumulation, and the production of VOCs [278]
Rhizobium sp. and Pseudomonas sp. Z. mays L. Enhanced plant biomass, nutrient uptake and development Accumulation of proline, water and ion homeostasis [58]
Pseudomonas sp. and Bacillus sp. G. max L. Increased water content, plant biomass, and photosynthetic activity Production of IAA ESP, and ACCD and accumulation of proline [279]
B. aquimaris T. aestivum L. Increased weight, biomass, and
leaf nutrients
Accumulation of osmoprotectans (PRP and TSS) [264]
A. lipoferum T. aestivum L. Enhanced plant weight and chlorophyll content N2 fixation and IAA production [280]
Bacillus sp. P. sativum L. Enhanced morphological and biochemical parameters IAA production, P-solubilization, ACCD, and hydrogen cyanide production [41]
Bacillus and Pseudomonas sp. P. sativum L. Enhanced morphological and biochemical parameters and modulated antioxidant genes ACCD production [40]
A. piechaudii S. lycopersicum L. Increased dry and fresh weight, and K and P uptake ACCD production [171]
Burkholdera cepacian, Promicromonospora sp. and A. calcoaceticus C. sativus L. Enhanced biomass, photosynthetic pigments, water, and P and K content Downregulation of ABA genes [205]
Kocuria rhizophila Z. mays L. Reduction of Na+ accumulation and increase in productivity parameters Transcriptional changes in ion transporter genes (NHX and HKT-type) and hormonal changes (ABA and IAA) [281]
B. amyloliquefaciens Menthax piperita L. Improved morphological characteristics and higher chlorophyll content VOCs production and reduction of ABA endogenous levels [282]
Bradyrhizobium japonicum and B. thuringiensis G. max L. Germination of seeds and proteome changes Lipo-chitooligosaccharide and bacteriocin production [218]

ESP—Exopolysaccharide; VOCs—Volatile Organic Compounds; ACCD—1-aminocyclopropane-1-carboxylate deaminase; ABA—Abscisic acid; IAA—Indole acetic acid; PRP—Proline-rich protein; TSS—Total soluble sugar; P—Phosphorus; N2—Nitrogen; NHX—vacuolar Na+/H+ antiporter; HKT—Sodium transporter.