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Abstract

The competitive exclusion principle asserts that coexisting species must occupy distinct ecological 

niches (i.e. the number of surviving species can not exceed the number of resources). An open 

question is to understand if and how different resource dynamics affect this bound. Here, we 

analyze a generalized consumer resource model with externally supplied resources and show that – 

in contrast to self-renewing resources – species can occupy only half of all available environmental 

niches. This motivates us to construct a new schema for classifying ecosystems based on species 

packing properties.

One of the most stunning aspects of the natural world is the incredible diversity of species 

present in many environments [1, 2]. A major goal of community ecology is to understand 

the rules governing community structure and species coexistence patterns in these complex 

ecosystems. One promising approach that has recently emerged for tackling this challenge 

is to use ideas from statistical mechanical inspired by spin glass physics [3, 4]. In such 

an approach, ecosystems are viewed as large interacting disordered systems, allowing for 

the identification of universal, collective properties [5, 6]. Such statistical physics inspired 

models are also able to reproduce many experimental observations, especially in the context 

of microbial ecosystems [7–9].

Much of this work has focused on generalized Lotka-Volterra models where species directly 

interact with each other in a pair-wise fashion [5, 10–16]. While such models have led to 

deep ecological insights [17] and have allowed for the identification of interesting ecological 

phases and phase transitions [10–12], a major drawback of Lotka-Volterra models are that 

they do not explicitly model the resources present in the ecosystem. Instead, resource 

dynamics are implicitly represented through the choice of species-species interactions 

making it difficult to understand the relationship between resource dynamics and community 

structure.
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In contrast, generalized consumer-resource models (GCRMs), first introduced by MacArthur 

and Levins in a series of seminal papers [18–20], explicitly incorporate both species and and 

resource dynamics. In GCRMs, ecosystems are described by species that can consume and 

deplete resources according to a set of consumer preferences. Interactions between species 

arise because species with similar consumer preferences occupy similar environmental 

niches and hence compete for common resources. An important theoretical and conceptual 

result that follows from GCRMs is that the number of species that can coexist in an 

ecosystem is limited by the number of resources that are present. In other words, if we 

denote the number of species that can survive in an ecosystem by S* and the number of 

supplied resources as M, the competitive exclusion principle yields an upper bound for the 

amount of species that can be packed into the ecosystem: S*
M ≤ 1 [21].

The basic intuition behind this bound is that the growth rates gi(R) of all coexisting species i 
= 1,2,... must simultaneously vanish, and since the space of resource concentrations R is M-

dimensional, at most M of these equations can be simultaneously solved (see Supplemental 

Material(SM) for discussion of non-generic phenomena where the bound is violated). While 

this result gives an upper bound, it is not clear when and if it will be saturated. In particular, 

we show below that the choice of resource dynamics fundamentally alters species-packing 

properties. To show this, we analyze GCRMs with two different resource dynamics: self-
renewing resources where resources grow logistically in the absence of consumers [18, 19] 

and externally supplied resources that are supplied and degraded at a constant rate [22– 24] 

(see Fig. 1). We derive species packing bounds for both choices of dynamics by analyzing 

the susceptibilities of a new cavity solution for GCRMs with externally supplied resources 

and combining it with the previously derived cavity solution for GCRMs with self-renewing 

resources [6, 25, 26]. Surprisingly, in the absence of metabolic tradeoffs we find that, for 

externally-supplied resources, species can occupy only half of all available resource niches: 
S*
M < 1

2 . Motivated by these results, we suggest a new schema for classifying ecosystems 

based on their species packing properties.

Model:

GCRMs describe the ecological dynamics of S species of consumers Ni (i = 1,2,...S) that can 

consume M distinct resources Rα (α = 1,2,...,M). The rate at which species Ni consumes and 

depletes resource Rβ is encoded in a matrix of consumer preferences Ciβ. In order to survive, 

species have a minimum maintenance cost mi. Equivalently, mi can also be thought of as the 

death rate of species i in the absence of resources. These dynamics can be described using a 

coupled set of M + S ordinary differential equations of the form

dNi
dt = Ni∑

β
CiβRβ − Nimi

dRα
dt = ℎα Rα − ∑

j
NjCjαRα,

(1)

where hα(Rα) a function that describes the dynamics of the resources in the absence of any 

consumers (see Fig. 1).
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For self-renewing resources (e.g. plants, animals), the dynamics can be described using 

logistic growth of the form

ℎα Rα = Rα κα − Rα , (2)

with κ the carrying capacity. While such resource dynamics is reasonable for biotic 

resources, abiotic resources such as minerals and small molecules cannot self-replicate and 

are usually supplied externally to the ecosystem ( Fig. 1(b)). A common way to model this 

scenario is by using linearized resource dynamics of the form

ℎα Rα = Kα − ωαRα . (3)

Fig. 1(c) shows a plot of these two choices. Notice that the two resource dynamics behave 

very differently at low resource levels. The self-renewing resources can go extinct and 

eventually disappear from the ecosystem while this is not true of externally supplied 

resources.

Recent research has shown some unexpected and interesting non-generic phenomena can 

appear in GCRMs in the presence of additional constraints on parameter values. A common 

choice of such constraints is the imposition of a “metabolic budget” on the consumer 

preference matrix [22, 27] tying the maintenance cost mi to the total consumption capacity 

∑β Ciβ [23, 28]. These metabolic tradeoffs can be readily incorporated into the cavity 

calculations and have significant impacts on species packing as will be discussed below.

Cavity solution:

Recently, we derived a mean-field cavity solution for steady-state dynamics of the the 

GCRM with self-renewing resource dynamics in the highdimensional limit where the 

number of resources and species in the regional species pool is large (S, M ≫ 1)[6, 25, 26]. 

The overall procedure for deriving the cavity equations for GCRM with externally supplied 

resource is similar to that for GCRMs with self-renewing resources and is shown in Fig. S1 

in the SM. We assume the Kα and mi are independent random normal variables with means 

K and m and variances σK
2  and σm2 , respectively. We also assume ωα are independent normal 

variables with mean ω and variance σω2 . The elements of the consumption matrix Ciα are 

drawn independently from a normal distribution with mean μ/M and variance σc2/M. This 

scaling with M is necessary to guarantee that N , R  do not vanish when S, M ≫ 1 with 

M/S = γ fixed. Later, we will consider a slightly modified scenario where the maintenance 

costs are correlated with the consumption matrix in order to implement the metabolic 

tradeoffs discussed above.

The basic idea behind the cavity method is to derive self-consistency equations relating 

an ecosystem with M resources and S species to an ecosystem with M +1 resources and 

S + 1 resources. This is done by adding a new “cavity” species 0 and a new “cavity” 

resource 0 to the original ecosystem. When S, M ≫ 1 the effect of the new cavity species/

resource is small and can be treated using perturbation theory. The cavity solution further 
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exploits the fact that since the Ciα are random variables, when M ≫ 1 the sum ∑αCiαRα

will be well described by a by a normal distribution with mean μ(R) and variance σc2qR

where qR = R2 = 1/M∑αRα
2 (see SM for details). Combining this with the non-negativity 

constraint, the species distribution can be expressed as a truncated normal distribution,

N = max 0,
μ R − m + σc2qR + σm2 zN

σc2χ
(4)

where χ = −
∂Rα
∂ωα

= − M−1∑α
∂Rα
∂ωα

 and zN is a standard normal variable. This equation 

describes GCRMs with both externally supplied and self-renewing resource dynamics [25].

The steady-state cavity equations for externally supplied resources are significantly more 

complicated and technically difficult to work with than the corresponding equations for 

self-renewing resources. To see this, no-tice that the steady-state abundance of resource α 
can be found by plugging in Eq. 3 into Eq 1 and setting the left hand side to zero to get

Rα = Kα/ ωα + ∑
j

NjCjα = Kα
ωαeff , (5)

where we have defined ωαeff = ωα + ∑jNjCjα. When S, M ≫ 1, both the denominator ωαeff

and the numerator Kα can be modeled by independent normal random variables. This 

implies that the the steady-state resource abundance is described by a ratio of normal 

variables (i.e. the Normal Ratio Distribution) instead of a truncated Gaussian as in the 

self-renewing case [29](see Fig. S5). At large σc, this makes solving the cavity equations 

analytically intractable. Luckily, if the variance of the denominator ωαeff is small compared 

with the mean – which is true when σc not too large – we can still obtain an approximate 

replica-symmetric solution by expanding in powers of the standard deviation over the mean 

of ωαeff (see SM). We consider expansions to the cavity solutions where the denominator in 

Eq. 5 is expanded to 1st order. In general, the backreaction correction is quite involved since 

resources and species form loopy interactions resulting in non-trivial correlation between 

Ciα and Ni that must be properly accounted for (see SM).

Comparison with numerics:

The full derivation of 1st order expansions of the mean-field equations are given in the 

SM. The resulting self-consistency equations can be solved numerically in Mathematica. 

Fig. 2 shows a comparison between the cavity solution and 1000 independent numerical 

simulations for various ecosystem properties such as the fraction of surviving species S*/S 
and the first and second moment of the species and resource distributions (simulation details 

are in the SM). As can be seen in the figure, our analytic expressions agree remarkably 

well over a large range of σc. However, at very large σc (not shown), the cavity solutions 

start deviating from the numerical simulations because the Ratio Normal Distribution can no 

longer be described using the 1st order expansion to the full cavity equations.
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As a further check on our analytic solution, we ran simulations where the Ciα were drawn 

from different distributions. One pathology of choosing Ciα from a Gaussian distribution 

is that when σc is large, many of consumption coefficients are negative. To test whether 

our cavity solution still describes ecosystems when Ciα are strictly positive, we compare 

our cavity solution to simulations where the Ciα are drawn from a Bernoulli or uniform 

distribution. As before, there is remarkable agreement between analytics and numerics (see 

Fig. S2)

Species packing without metabolic tradeoffs:

The essential ingredients needed to derive species packing bounds for GCRMS are 

the cavity equations for the average local susceptibilities ν =
∂Ni
∂mi

= S−1∑j
∂Ni
∂mi

 and 

χ =
∂Rα
∂Xα

= M−1 ∂Rα
∂Xα

, with Xα = Kα for externally supplied resources and Xα = −ωα 

for self-renewing resources. These two susceptibilities measure how the mean species 

abundance and mean resource abundance respond to changes in the species death rate and 

the resource supply/depletion rate, respectively. They play an essential role in the cavity 

equation and can be used for distinguishing different phases in complex systems[6, 31].

For the self-renewing case, the susceptibilities χs and νs are given by eq. (59, 60) in [26]

νs = − ϕN
σc2χs

, χs = ϕR
1 − γ−1σc2νs

, (6)

and can be reduced to χs = ϕR − γ−1ϕN, where ϕR = M*/M, with M* equal to the number of 

non-extinct resources in the ecosystem. In order to guarantee the positivity of N , we must 

have χs = ϕR − γ−1ϕN > 0, resulting in an upper bound

1 ≥ M*
M > S*

M (7)

which states that the number of surviving resources must be larger than the number of 

surviving species.

For the externally supplied case, the corresponding equations take the form

ν = − ϕN
σc2χ

, χ = − 1
2γ−1νσc2

(1 − … ), (8)

where the full expression of …  can be found in eq. (63) in the SM. For our purposes, the 

most important property is that in the absence of metabolic tradeoffs, the expression …  is 

always positive. Combining this observation with the equations above gives the upper bound

1
2 > S*

M = ϕNγ−1 . (9)
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Thus, for externally supplied resources, at most half of all potential niches are occupied. Fig. 

3 shows numerical simulations confirming the species packing bound for various choices of 

K and σc (see Fig. S6 in SM for various choices of S/M). The lower diversity found when 

resources are supplied externally can be anticipated by noting that the resource abundance 

in this model is more narrowly distributed than in a model with self-renewing resources. 

As a result, species experience stronger competition (see Fig. S5 and more details in SM). 

However, we still currently lack an intuitive explanation of why the species packing bound is 

exactly 0.5.

Species packing with metabolic tradeoffs:

We also find that metabolic tradeoffs modify the cavity equations in such a way that the 

expression in brackets …  in Equation (8) can become negative (see SM). However, it still 

remains greater than −1, allowing us to derive a species packing bound of the form S* < 
M even in the presence of soft metabolic constraints. In Figure 4, we simulated various 

ecosystems where the maintenance costs of species were chosen to obey metabolic tradeoffs 

of the form mi = ∑αCiα + δmi, where δmi are i.i.d. normal variables with variance σm2 . Note 

that a larger σm corresponds to ecosystems with softer metabolic constraints. We found 

that when σm/σc > 1, these ecosystems obey the 1/2 species packing bound derived above. 

This can also be analytically shown using the modified cavity equations derived in the 

SM. Finally, we show in the SM that when the metabolic tradeoffs take the form of hard 

constraints on the consumer preferences as in [22, 23, 27, 28], the cavity equations allow 

for interesting non-generic behavior with S* ≥ M, consistent with these previous works. 

Importantly, we find that even modest modifications of the tradeoff equation mi ∝ ∑αCiα
results in ecosystems that satisfy the 1/2 species packing bound.

Classifying ecosystems using species packing:

Recently, it has become clear that there is a deep relationship between ecosystem and 

constraint satisfaction problems [23, 24, 26, 28]. In particular, each species can be thought 

of as a constraint on possible resource abundances [24, 26]. Inspired by jamming [32], 

this suggests that we can separate ecosystems into qualitatively distinct classes depending 

on whether the competitive exclusion bound is saturated. We designate ecosystems where 

S* → M (like GCRMs with self-renewing resources) as isostatic species packings, and 

ecosystems where the upper bound Smax on the number of surviving species is strictly 

less than the number of resources S* < Smax < M (like GCRMs with externally supplied 

resources without metabolic tradeoffs) as hypostatic species packings. Ecosystems with S* 

≥ M (like GCRMs with hard metabolic constraints) are designated as non-generic species 
packings because of the presence of a macroscopic number of additional hards constraints 

(i.e. the number of additional constraints that are imposed scales with S and M in the 

limit S,M → ∞). This basic schema suggests a way of refining the competitive exclusion 

principle and may help shed light on controversies surrounding the validity of basic species 

packing bounds.
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Discussion:

In this paper, we examine the effect of resource dynamics on community structure 

and largescale ecosystem level properties. To do so, we analyzed generalized Consumer 

Resource Models (GCRMs) with two different resource dynamics: externally supplied 

resources that are supplied and degraded at a constant rate and self-replicating resources 

whose behavior in the absence of consumers is well described by a logistic growth 

law. Using a new cavity solution for GCRMs with externally supplied resources and a 

previously found cavity solution of the GCRM with self-renewing resources, we show 

that the community structure is fundamentally altered by the choice of resource dynamics. 

In particular, for externally supplied resources, we find that species generically can only 

occupy half of all available niches whereas for self-renewing resources all environmental 

niches can be filled. We confirm this surprising bound using numerical simulations.

In this manuscript, we consider the effect of metabolic trade-offs and show that they can 

increase species packing in an ecosystem. In the future, it will be interesting to ask how 

other specialized network structures, including niche partitioning, higher specialization, or 

combinations of specialists and generalists can affect our results. Based on our experience, 

we expect that, even in these more complicated ecosystems our species packing bound will 

hold quite generically. But much more work needs to be done to confirm if this is really the 

case.

Our results show how resource dynamics, which are neglected in commonly used Lotka-

Volterra models, can fundamentally alter the properties of ecosystems. Much work still 

needs to be done to see if and how our results must be modified to account for other 

ecological processes such as demographic stochasticity, spatial structure, and microbe-

specific interactions such as cross-feeding [7, 8]. It will also be necessary to move beyond 

steady-states and consider the dynamical properties of these ecosystems. More generally, 

it will be interesting to further explore the idea that we can classify ecosystems based on 

species-packing properties and see if such a schema can help us better understand the origins 

of the incredible diversity we observe in real-world ecosystems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Schematic description for two types of resources. (a) Self-renewing resources (e.g. plants), 

which are replenished through organic reproduction; (b) Externally supplied resources (e.g. 

nutrients that sustain gut microbiota), which are replenished by a constant flux from some 

external source, and diluted at a constant rate; (c) The supply rate as a function of resource 

abundance for both choices, with κ = ωα = Kα = 1.
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FIG. 2. 
Comparison between cavity solutions (see main text for definition) and simulations for the 

fraction of surviving species ϕN = S*
S  and the first and second moments of the species and 

resources distributions as a function of σc. The error bar shows the standard deviation from 

1000 numerical simulations with M = S =100 and all other parameters are defined in the 

SM. Simulations were run using the CVXPY package [30].
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FIG. 3. 

Comparison of the species packing ratio S*
M  at various σc and K for self-renewing and 

externally supplied resource dynamics. The simulations represent averages from 1000 

independent realizations with the system size M =100, S =500 (parameters in SM).
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FIG. 4. 
Species packing bounds in the presence of metabolic tradeoffs. (a) The species packing ratio 

S*/M as a function of σm/σm, where σm is the standard deviation of the δmi and σc/ M is the 

standard deviation of Ciα. Simulations are for binary consumer preference matrix Ciα drawn 

from a Bernoulli distribution with probability p. (b) mi versus ∑αCiα for p = 0.1 and σm/σc = 

10−0.5 See SM for all parameters.
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