
����������
�������

Citation: Wu, Y.; Guo, G.; Wei, Z.;

Qian, J. Programming Soft

Shape-Morphing Systems by

Harnessing Strain Mismatch and

Snap-Through Bistability: A Review.

Materials 2022, 15, 2397. https://

doi.org/10.3390/ma15072397

Academic Editors: Jie Liu, Hao Li

and Zhenpei Wang

Received: 23 February 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Review

Programming Soft Shape-Morphing Systems by Harnessing
Strain Mismatch and Snap-Through Bistability: A Review
Yi Wu, Gang Guo, Zhuxuan Wei and Jin Qian *

Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics,
Zhejiang University, Hangzhou 310027, China; 11724012@zju.edu.cn (Y.W.); 11824038@zju.edu.cn (G.G.);
11924009@zju.edu.cn (Z.W.)
* Correspondence: jqian@zju.edu.cn

Abstract: Multi-modal and controllable shape-morphing constitutes the cornerstone of the func-
tionalization of soft actuators/robots. Involving heterogeneity through material layout is a widely
used strategy to generate internal mismatches in active morphing structures. Once triggered by
external stimuli, the entire structure undergoes cooperative deformation by minimizing the potential
energy. However, the intrinsic limitation of soft materials emerges when it comes to applications
such as soft actuators or load-bearing structures that require fast response and large output force.
Many researchers have explored the use of the structural principle of snap-through bistability as the
morphing mechanisms. Bistable or multi-stable mechanical systems possess more than one local
energy minimum and are capable of resting in any of these equilibrium states without external forces.
The snap-through motion could overcome energy barriers to switch among these stable or metastable
states with dramatically distinct geometries. Attributed to the energy storage and release mechanism,
such snap-through transition is quite highly efficient, accompanied by fast response speed, large
displacement magnitude, high manipulation strength, and moderate driving force. For example, the
shape-morphing timescale of conventional hydrogel systems is usually tens of minutes, while the
activation time of hydrogel actuators using the elastic snapping instability strategy can be reduced
to below 1 s. By rationally embedding stimuli-responsive inclusions to offer the required trigger
energy, various controllable snap-through actuations could be achieved. This review summarizes
the current shape-morphing programming strategies based on mismatch strain induced by material
heterogeneity, with emphasis on how to leverage snap-through bistability to broaden the applications
of the shape-morphing structures in soft robotics and mechanical metamaterials.

Keywords: shape-morphing; stimuli-responsive; mismatch; heterogeneity; snap-through bistability;
soft actuator; mechanical metamaterial

1. Introduction

Actively morphing flat materials into desired 3D configurations is a promising area
of research for functional materials, soft actuators, etc. Multiple applications of stimuli-
triggered shape-morphing systems can be found in soft robotics [1–4], biomedical de-
vices [5–7], biomimetic manufacturing [8,9], flexible electronics [10–13], and mechanical
metamaterials [14–19]. The spatial arrangement of heterogeneous materials with differ-
ential responses to different types of stimuli is a widely used strategy to achieve smart
shape transformations [20]. When subjected to external stimuli, the size of the regions
occupied by active materials changes greatly while the non-responsive materials retain their
original size, and the mismatch strain between these active and passive components drives
the entire structure into different 3D configurations, as the consequence of cooperative
deformation.

In recent years, soft smart materials [21,22] have attracted great interest due to their
advantages of large deformation, compliance, light weight, and the ability to adapt to
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complex environments. Conventional engineering materials such as metals and ceramics
are relatively brittle and easily reach their fracture limits or undergo plastic deformation
at small strains. Soft smart materials that respond to various stimuli such as light [23,24],
heat [25–27], humidity [28–30], pH [31,32], and electric field [33] can often reversibly with-
stand large strains without ultimate failure, making them good material candidates for
shape programming. Different stimuli-responsive soft materials such as hydrogels [34–37],
shape memory polymers (SMPs) [38–41], liquid crystalline elastomers (LCEs) [42–44],
and dielectric elastomers (DEs) [45–47] have been extensively studied in various shape-
morphing systems. For high-swelling hydrogels, they often possess good biocompatibility
and biodegradability; however, the lack of sufficient mechanical strength and low-speed
response limit their use in soft actuators/robots. SMP materials often exhibit good me-
chanical properties, but their elastic modulus decreases significantly when the temperature
becomes high. For SMPs, the pre-programmed temporary shape can be fixed by releasing
internal stresses through phase transition, which is a convenient shape-locking mechanism.
However, the commonly used SMPs with critical glass transition points only have a one-
way shape memory effect, and therefore require reprogramming each time they are used.
LCE materials consist of liquid crystalline molecules inside a polymeric network whose
alignment can be tuned by external physical fields, resulting in anisotropic dimensional
changes and stiffness differences of the materials. DE materials have a fast response speed
and large deformation under electric fields, but the main drawback of DEs is their tethered
activation, that is, the DE morphing systems are usually equipped with a high-voltage
power supply.

The approach of heterogeneous material composition provides a principle for pro-
gramming the mismatch-induced shape transformations in soft materials [20]. With the
in-depth exploration of soft actuators and mechanical metamaterials, these application
scenarios require not only the ability to change shape, but also focus on the response time
and precise control of the deformation. Considering the intrinsic mechanical properties of
hydrogels with low mechanical strength, how to design a fast-actuating soft actuator with
large output forces using hydrogel materials remains a challenge. On the one hand, apply-
ing proper treatments during material syntheses, such as the use of tough double-network
hydrogels [48–50], or the addition of magnetic nanocomposites [51–53], can compensate
for these shortcomings. Furthermore, adopting a snap-through strategy at the structural
level can possibly enhance the deformation amplitude and output force [54]. By rationally
designing the geometric configuration near the bifurcation point, the slight perturbations
caused by external stimuli may enable the structural equilibrium to undergo an abrupt
transition, thereby greatly enhancing the response speed. For example, the activation time
of a millimeter-scale structure using the elastic snapping instability strategy can be reduced
to below 0.6 s [54].

Bistable or multi-stable mechanical systems possess more than one local minimum in
the landscape of potential energy, and can rest in multiple stable equilibrium states [55].
A snap-through motion may be induced under suitable stimuli or loading, by which the
systems can transit from one stable equilibrium state to another. Such snap-through tran-
sition is usually accompanied by significant geometric changes, such as the inversion of
shape convexity or post-buckling of slender beams. The vast deformations caused by
snap-through do not require external forces to maintain, providing a new shape-locking
mechanism distinct from the phase transition within materials. During the snap-through
transition in a bistable/multi-stable system, elastic energy is pre-stored in an initial equi-
librium state and then rapidly released by overcoming the associated energy barrier. The
trigger energy threshold at which the snap-through motion occurs can be quantitatively
controlled by harnessing the geometry, which can be employed to achieve amplified shape
morphing and/or actuating performances via moderate driving forces.

In this review, we summarize two main strategies of shape-morphing programming.
One is based on the mechanism driven by the mismatch strain [56], which can arise from
in-plane or across-thickness heterogeneity of material composition. In-plane mismatch
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strain induces internal stresses and causes out-of-plane buckling, while stress gradients
through the thickness direction create out-of-plane bending. Advances in additive man-
ufacturing techniques give access to construct morphing structures through the spatial
arrangement of multiple materials. The other programming strategy is the snap-through
mechanism, which can further broaden the applications of shape-morphing structures in
soft robotics and mechanical metamaterials. Rational combinations of active and passive
materials in a bistable structure provide a trigger switch to overcome the bistable threshold
tuned by geometry, enabling precise and reliable control of the snap-through transition.
The representative shape transformations based on these two strategies, as well as their
characteristics and applications, are summarized in Table 1. The design principles of mis-
match strain and snap-through bistability can be integrated to form a more practical and
sophisticated design for future functional shape-morphing systems.

Table 1. Summary of representative shape transformations based on different design strategies, along
with their characteristics and applications.

Design Strategy Material Morphing Mode Stimulus Characteristics: Size and
Response Time Application Ref.

Mismatch strain
(heterogeneous

material
composition)

Hydrogel Rolling (buckling) Swelling 500 × 300 × 12 µm, 30 min Self-folding micro-device [57]

SMP Worm-like shape
change Heat 20 × 25 × 0.12 mm, 90 s Biomimetic 4D

transformation [58]

Hydrogel Folding Swelling 700 × 700 × 1.5 µm, 10 min
Microscale reconfigurable

origami
structure

[59]

LCE Bending Electric field 35 × 3 × 0.22 mm, 5 s Soft actuator and robotic
programmability [60]

Hydrogel Twisting Swelling 60 × 10 × 1 mm, 50 s Soft gripper [61]

Snap-through
bistability

DE,
polyimide,
polyester

Snapping of 2D
membrane Electric field 60 × 15 × 0.55 mm, 1.7 s Soft bistable actuator [33]

Hydrogel,
PDMS

Buckling of 1D
beam Swelling 7 × 0.7 × 0.25 mm, 0.6 s Logic and autonomous

actuation [54]

Polylactic acid,
Ecoflex Bending Pneumatic control 80 × 60 × 15 mm, 0.2~1 s

Soft robot with fast
locomotion and high

manipulation strength
[62]

Ecoflex
Complex and

multistep
deformation

Mechanical manipu-
lation/pneumatic

control

~10 × ~10 × (0.5~1.4) mm,
<0.1 s

Soft gripper,
programmable

metamaterial, and logic
gate

[63]

Polyurethane
system,

polycarbonate
Bending Pneumatic control 100 × 20 × 10 mm, 0.8 s Autonomous clamping

actuator [64]

2. Heterogeneous Material Composition

To build up internal stresses within materials, the most convenient way is to introduce
stimuli-responsive materials in an initially flat configuration through spatial material
arrangements. These active elements can expand or shrink in size in response to external
stimuli. In contrast, the passive zone beyond these active elements tends to retain its
original shape. These two opposite trends result in distributed strain mismatch within the
material structure, driving the shape-morphing process through cooperative deformation.
By differently programmed layouts of the active and passive materials in the plane, desired
internal stresses can be created upon activation, resulting in out-of-plane buckling when the
strain mismatch exceeds a critical value. Similarly, the inhomogeneity of materials along
the thickness direction may induce strain mismatch layer by layer, resulting in out-of-plane
bending deformation.

2.1. In-Plane Inhomogeneity

Photolithography is one of the most common fabrication methods to tessellate hy-
drogels with different swelling ratios in a single-layer structure [65–68]. Local photo-
polymerization guided by photomasks can generate heterogeneous hydrogel structures
with different degrees of crosslinking. The swelling ratio and Young’s modulus of the gels
depend on the amount of exposure. For example, Kim et al. prepared a bi-hydrogel strip



Materials 2022, 15, 2397 4 of 18

with two parallelly arranged regions by photo-polymerization, leading to high-swelling
and low-swelling regions [57]. During swelling in an aqueous environment, the length of
the high-swelling portion tended to expand, in competition with the smaller dimensional
changes of the low-swelling portion. By minimizing the potential energy, the entire struc-
ture finally adopted a rolled-up shape, consisting of two cylindrical regions connected by
a transition neck (Figure 1a). Ma et al. fabricated hydrogel sheets with periodic swelling
variations using a multi-step photolithography method [69] and achieved a 3D wavy
reconfiguration when the temperature was increased from 20 ◦C to 45 ◦C.

Three-dimensional printing is a powerful manufacturing method used to obtain
spatially patterned smart structures. For example, Jin et al. improved the self-supporting
printability of a NIPAAm-based thermo-responsive hydrogel system by adding laponite
nanoclay [70]. Graphene oxide (GO) was also added as a nanoscale heater in response
to near-infrared (NIR) radiation. A series of printed 2D circular-patterned hydrogels
transformed into 3D saddle and fan shapes when immersed in a hot bath or irradiated by
NIR. Huang et al. proposed ultrafast digital light processing (DLP) printing to precisely
control differential hydrogel properties using digitally defined exposure times [71]. Longer
exposures resulted in tighter crosslinks that correspond to a lower swelling ratio and a
larger modulus. The non-exposed areas were not crosslinked, eventually forming void
regions. A representative 3D-theater configuration was designed through this spatially
selective digital printing.
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Figure 1. Diverse shape-morphing caused by discretely patterned in-plane inhomogeneities in an
initially flat configuration. (a) A bi-gel strip with differential swelling ratios rolls into a nearly
cylindrical shape after swelling. Reproduced from Ref. [57]; (b) Stretching-induced surfaces with
different curvatures. Reproduced from Ref. [72]; (c) The crystallization pattern and deformed
geometry of a worm-like shape. Reproduced from Ref. [58].

SMPs are polymeric networks that have been frequently explored for shape-morphing
structures. A dynamic covalent polymer network with flexible programmability was
established to realize the spatiotemporal manipulation of the structural topology [72].
The network polymer can be programmed into numerous parts with differently defined
thermomechanical properties. Anisotropic dimensional changes were introduced through
pre-stretching, and residual stresses were released in specific regions by photocuring.
Several 2D topological patterns were programmed to obtain 3D surfaces with different
curvatures (Figure 1b). Using a similar approach, Kohlmeyer et al. reported a strategy for
shape-reprogramming in a single polymer material that allowed erasing and re-encoding of
shape information through reversible localized chemical reaction [73]. Peng et al. reported
a digital printing method based on a light-coded process to achieve bioinspired shape
transformation [58]. Pre-stretched 2D sheets with spatial heterogeneity in crystallinity
were demonstrated to morph with time into designable 3D permanent shapes, enabling 4D
transformation [58]. The crystallization pattern and deformed geometry of a worm-like
shape are illustrated in Figure 1c.

Different from the strategy of discrete patterning, the smooth gradient pattern can also
be employed to induce shape-morphing. Figure 2a illustrates the digital printing process
for forming a swelling gradient within a planar sheet [71]. The sharpness of the cap tip
was adjusted by changing the area exposure time to increase the swelling gradient within
the material. Another work used two photomasks for secondary curing cross-linking to
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embed highly cross-linked dots in a lightly cross-linked matrix [74], resulting in a nearly
continuous internal stress gradient (Figure 2b), where Ω was the areal expansion ratio. For
this periodic in-plane swelling pattern, the probability of each periodic structural element
buckling upward or downward was exactly the same, and the final deformed shape was
influenced by prescribed perturbations or geometric defects. The results showed two
stable deformed configurations corresponding to the same swelling pattern that appeared
in the experiment [74]. To locally control the buckling direction, Wang et al. presented
a site-specific pre-swelling method that used masks with holes to generate a transient
through-thickness gradient to guide the buckling during the subsequent unmasked swelling
process [75].
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2.2. Through-Thickness Inhomogeneity

Compared with the uncertainty in the buckling direction introduced by the in-plane
stress distribution, strain mismatch in the thickness direction provides better control for
shape-morphing. When the ratio of in-plane dimension to thickness is large, the two-
dimensional plane degenerates into a slender beam. Through-thickness stress gradient
tends to generate out-of-plane bending moment, and drives the structure to bend towards
a certain direction in response to external stimuli.

As a classical bending problem, Timoshenko established the first theoretical foundation
to calculate the curvature of bi-material strips under the mismatch strain induced by
uniform temperature variation [76]. Considering a bilayer structure with a unit out-of-
plane thickness (i.e., t10 = t20 = 1). The initial heights of the expansion and non-expansion
layers are w10 and w20, respectively. The expansion layer and non-expansion layer have
their initial moduli of E10 and E20. The explicit expression for the bending curvature ρ of
the bi-strip induced by mismatch strain εm can be derived from Timoshenko theory, namely,

ρ =
1

6εm
[3(w10 + w20) +

E10w3
10 + E20w3

20
w10 + w20

(
1

E10w10
+

1
E20w20

)], (1)

However, Timoshenko’s analysis on bi-strip bending was based on the assumption
of small deformation, and cannot be directly applied to predict the large-magnitude mor-
phing behavior of swelling/non-swelling bi-strips made of soft materials, such as those
in hydrogels. Wu et al. proposed a modified model to quantitatively predict the swelling-
induced bending of bi-hydrogel strips, in which the differential swelling capabilities and
mismatch strain in the composite structure drive the strips into a bending configuration
under exposure to solvents [77]. The effect of material softening due to the mixing effects
of polymers and solvents was also considered in the analysis [77].

On the basis of these theoretical models, Zhang et al. designed a controllable light-
responsive self-folding hinge by embedding the bilayer SMP into the structure (Figure 3a) [78].
Only the responsive joint was designed to be deformable, and the other regions performed
rigid body motion. With the light-triggered hinge, origami-inspired self-folding structures
with different Gaussian curvatures were realized, starting with initially planar polymer
sheets [78]. Ding et al. used inkjet printing to obtain active composite materials to obtain
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high-resolution 3D reprogrammable structures [79]. As illustrated in Figure 3b, a hollow
ring with an alternating bilayer layout was shown to transform into a wavy shape after
being heated. Na et al. demonstrated a reversibly self-folding origami based on micro-
patterned tri-layer films [59]. A thermo-responsive hydrogel layer was sandwiched by
thin rigid polymer layers with creases, achieved by photolithography. A microscopic
origami bird was made by programming the tri-layer of a photo-crosslinkable copolymer
(Figure 3c).
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In addition to the approach of combining multiple smart materials into a multilayer
structure, a customized gradient of material properties in a mono-layer structure can also be
used to generate a stress distribution along the thickness direction. Such in-plane patterning
can avoid the risk of debonding and delamination that may occur at the heterogeneous
interface [20]. A commonly adopted treatment for generating in-plane patterning is to use
the penetration attenuation characteristics of light to illuminate from one side to create
a light intensity gradient across the thickness, thereby affecting the crosslinking density
of the polymer, as shown in Figure 4a. Based on this method, Zhao et al. developed a
double-side photo-polymerization process by irradiating through differently patterned
photomasks from the upper and lower sides [80], through which Miura folding deformation
was realized (Figure 4b). Zhou et al. extended the approach by changing the direction
of illumination within hydrogel layers [81], resulting in a controllable planar patterning
that generated buckling behavior (Figure 4c). Different from Wang’s pre-swelling strategy
to control the buckling direction [75], this method introduced the stress gradient into the
material during the manufacturing process, and the direction of morphing was prescribed.
Besides photo-polymerization, electrophoresis and ionoprinting [82] are alternative ways
to generate stress gradients along the thickness direction of the material.

Generating anisotropic material responses is another effective way to produce complex
shape transformations. By inducing stresses in the desired direction, such as the pre-
stretching of elastomers, some deformation characteristics can be decoupled from the
initial 2D geometry [83]. In a study by Armon et al., two planar latex sheets were stretched
uniaxially along two perpendicular directions and then glued together, forming a residually
stressed composite sheet [84]. As a strip was cut off this composite sheet along a particular
direction that formed an angle with one of the stretching directions, an interesting pod-like
chiral shape transformation was achieved [84], as illustrated in Figure 5a. Compared with
ordinary elastomers, SMPs can lock the pre-stretched state as a temporary shape, and
recover to the original shape upon proper activation. If a piece of SMP film is biaxially
pre-stretched, its recovery process can be approximated as isotropic shrinkage. By cyclically
stretching LCEs, the orientation of liquid crystal molecules can be trained to be aligned
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along the stretch direction. As shown in Figure 5b, Xiao et al. designed an electrically
driven actuator by embedding resistance wires between polyimide films and LCEs [60].
The orientation of the liquid crystal network can be changed by pre-stretching, thereby
realizing multi-modal deformation modes of bending and twisting.

Materials 2022, 15, x FOR PEER REVIEW 7 of 19 
 

 

deformation was realized (Figure 4b). Zhou et al. extended the approach by changing the 
direction of illumination within hydrogel layers [81], resulting in a controllable planar 
patterning that generated buckling behavior (Figure 4c). Different from Wang’s pre-swell-
ing strategy to control the buckling direction [75], this method introduced the stress gra-
dient into the material during the manufacturing process, and the direction of morphing 
was prescribed. Besides photo-polymerization, electrophoresis and ionoprinting [82] are 
alternative ways to generate stress gradients along the thickness direction of the material. 

 
Figure 4. (a) Generating material gradients along the thickness direction via light-attenuated photo-
polymerization. Reproduced from Ref. [20]. (b) Miura folding deformation obtained by double-side 
illumination. Reproduced from Ref. [80]. (c) Controlling the buckling direction by unilateral illumi-
nation. Reproduced from Ref. [81]. 

Generating anisotropic material responses is another effective way to produce com-
plex shape transformations. By inducing stresses in the desired direction, such as the pre-
stretching of elastomers, some deformation characteristics can be decoupled from the ini-
tial 2D geometry [83]. In a study by Armon et al., two planar latex sheets were stretched 
uniaxially along two perpendicular directions and then glued together, forming a residu-
ally stressed composite sheet [84]. As a strip was cut off this composite sheet along a par-
ticular direction that formed an angle with one of the stretching directions, an interesting 
pod-like chiral shape transformation was achieved [84], as illustrated in Figure 5a. Com-
pared with ordinary elastomers, SMPs can lock the pre-stretched state as a temporary 
shape, and recover to the original shape upon proper activation. If a piece of SMP film is 
biaxially pre-stretched, its recovery process can be approximated as isotropic shrinkage. 
By cyclically stretching LCEs, the orientation of liquid crystal molecules can be trained to 
be aligned along the stretch direction. As shown in Figure 5b, Xiao et al. designed an elec-
trically driven actuator by embedding resistance wires between polyimide films and LCEs 
[60]. The orientation of the liquid crystal network can be changed by pre-stretching, 
thereby realizing multi-modal deformation modes of bending and twisting. 

Figure 4. (a) Generating material gradients along the thickness direction via light-attenuated photo-
polymerization. Reproduced from Ref. [20]. (b) Miura folding deformation obtained by double-
side illumination. Reproduced from Ref. [80]. (c) Controlling the buckling direction by unilateral
illumination. Reproduced from Ref. [81].

Materials 2022, 15, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. (a) A pre-stretching induced pod-like chiral shape. Reproduced from Ref. [84]; (b) An LCE 
rolled-up actuator. Reproduced from Ref. [60]; (c) Biomimetic structures printed by anisotropic hy-
drogel filaments. Reproduced from Ref. [9]; (d) Helical shape generated by different alignments of 
active gel fibers in a hydrogel composite. Reproduced from Ref. [61]. 

To realize localized programming of anisotropy through extrusion printing, aniso-
tropic fillers were added to the printing ink, allowing precise spatial control of material 
properties such as elastic modulus (E) and coefficient of expansion (α) [9]. The shear-in-
duced alignment of anisotropic fillers at the nozzle will define the localized anisotropy 
via pathway control. Gladman et al. printed several biomimetic shapes with hydrogel 
composite ink composed of stiff cellulose fibrils embedded in a soft acrylamide matrix [9]. 
The printing path dictated the local orientation of the cellulose fibrils, i.e., the localized 
swelling anisotropy. They designed shape morphing with controllable Gaussian curva-
tures using a bilayer lattice structure, as shown in Figure 5c, and obtained a swelling-
induced lily-like architecture. Following the approach, Boley et al. adopted a printable ink 
system, including polydimethylsiloxane (PDMS) elastomeric matrices with tunable glass 
fibers [85], and a 3D human face was realized by anisotropic expansion/shrinkage of mul-
tiplexed bilayer ribs. In addition, by changing the oblique angle of printing path, aniso-
tropic swelling can also be achieved with isotropic hydrogel inks by forming structure-
level features [61]. As shown in Figure 5d, a helical shape change was obtained by multi-
layered hydrogel composites in which each layer was printed with different responsive-
ness and printing paths, resulting in programmable 4D morphing. 

3. Structural Instability 
Structural instability refers to the phenomenon that a given structure loses its stable 

state when the applied load or external stimuli increase beyond a threshold value. Con-
ventionally, such instability is regarded as a type of failure, which should be avoided in 
the reliability design of engineering structures. In the past two decades, researchers have 
realized the merits of involving instabilities in soft shape-morphing systems, and began 
to apply structural instabilities in the design of soft actuators and mechanical metamate-
rials. Instability-induced morphogenesis, including buckling, twisting, wrinkling, and 
creasing, enriches the possibilities of bionic shape transformations. In particular, the snap-

Figure 5. (a) A pre-stretching induced pod-like chiral shape. Reproduced from Ref. [84]; (b) An
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active gel fibers in a hydrogel composite. Reproduced from Ref. [61].

To realize localized programming of anisotropy through extrusion printing, anisotropic
fillers were added to the printing ink, allowing precise spatial control of material properties
such as elastic modulus (E) and coefficient of expansion (α) [9]. The shear-induced align-



Materials 2022, 15, 2397 8 of 18

ment of anisotropic fillers at the nozzle will define the localized anisotropy via pathway
control. Gladman et al. printed several biomimetic shapes with hydrogel composite ink
composed of stiff cellulose fibrils embedded in a soft acrylamide matrix [9]. The print-
ing path dictated the local orientation of the cellulose fibrils, i.e., the localized swelling
anisotropy. They designed shape morphing with controllable Gaussian curvatures using a
bilayer lattice structure, as shown in Figure 5c, and obtained a swelling-induced lily-like
architecture. Following the approach, Boley et al. adopted a printable ink system, including
polydimethylsiloxane (PDMS) elastomeric matrices with tunable glass fibers [85], and a 3D
human face was realized by anisotropic expansion/shrinkage of multiplexed bilayer ribs.
In addition, by changing the oblique angle of printing path, anisotropic swelling can also be
achieved with isotropic hydrogel inks by forming structure-level features [61]. As shown
in Figure 5d, a helical shape change was obtained by multi-layered hydrogel composites in
which each layer was printed with different responsiveness and printing paths, resulting in
programmable 4D morphing.

3. Structural Instability

Structural instability refers to the phenomenon that a given structure loses its stable
state when the applied load or external stimuli increase beyond a threshold value. Con-
ventionally, such instability is regarded as a type of failure, which should be avoided in
the reliability design of engineering structures. In the past two decades, researchers have
realized the merits of involving instabilities in soft shape-morphing systems, and began
to apply structural instabilities in the design of soft actuators and mechanical metama-
terials. Instability-induced morphogenesis, including buckling, twisting, wrinkling, and
creasing, enriches the possibilities of bionic shape transformations. In particular, the snap-
through motion between bistable states in a nonlinear system is favored due to the rapid
transition between energy storage and release. The structure-based instability strategy is
scale-free and material-independent, and is complementary to the design of functional
morphing systems.

3.1. Energy and Stability of Shape-Morphing Structures

When subjected to an external stimulus, the spatially heterogeneous membrane struc-
ture transforms into the desired 3D shape by varying its energy in coupling with the
external environment. Considering that the total potential energy consists of the internal
strain energy and the energy from the external stimulus, namely,

Ut = Us + Ub + Ue, (2)

where Us is the stretching strain energy, Ub is the bending strain energy, and Ue is the
energy absorbed from external loads. According to the principle of minimum potential
energy, the equilibrium state is defined by the condition:

δU = 0, (3)

In general, several solutions can be obtained by solving the condition that the variation
of the total potential energy is equal to zero, and some of them may not be stable. In analogy
to the system that when a ball rests on top of a sharp hill (Figure 6b), it is in equilibrium,
but any small perturbation will break the balance and result in an irreversible change of the
ball’s state. In contrast, if the ball is placed at the bottom of a valley, the equilibrium state is
stable (Figure 6a) because the ball tends to return to the original position in the presence
of external perturbations. The third circumstance is called neutral equilibrium (Figure 6c),
described by the scenario that the ball is placed on a flat surface and the total potential
energy is invariable. To further understand the stability of the structure, the convexity or
concavity of the total potential energy profile should be investigated. The system is stable
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if the second derivative of the total potential energy is δ2U > 0, unstable if δ2U < 0, and
neutral if δ2U = 0.

δ2U


> 0, stable
= 0, neutral
< 0, unstable

(4)
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For the deformation of a 2D shell structure made of the material with Young’s modulus
E and Poisson’s ratio v, the strain energy is composed of two parts: bending and stretching.
The stretching part can be scaled as Us ∼ K

∫
ε2dω, where K = Eh/(1 − v2) is the

stretching rigidity, ε is the stretching strain, and dω refers to the areal element. It can be
seen that Us is linear to the sheet thickness h and corresponds to the in-plane deformations.
The bending energy can be scaled as Ub ∼ D

∫
κ2dω, where D = Eh3/[12(1 − v2)] is the

bending rigidity and κ is the bending strain of the middle surface of the sheet. Ub depends
on h3 and accounts for the change in out-of-plane curvature. The strain energy of the thin
shell can be represented as

U ∼ K
∫

ε2dω︸ ︷︷ ︸
Us

+ D
∫

κ2dω︸ ︷︷ ︸
Ub

, (5)

notice that
Ub/Us ∼ h2(κ/ε)2 (6)

for the shell structure, the thickness h is much smaller than the other dimensions. Therefore,
it is easier for the shell to bend rather than stretch in terms of energy cost, and these thin
2D shell structures are prone to instability.

The competition between bending and stretching leads to instability of the structure,
which has been extensively investigated for the shape-morphing of soft matter. Instability-
induced morphogenesis widely exists in nature, such as in the rapid closure snap mecha-
nism of Venus flytrap leaves [86], the different short-wavelength edge wrinkling of Lotus
leaves [87], and the wrinkling of pumpkin surfaces [88]. This plant morphogenesis is
induced by instability, including buckling, wrinkling, creasing, and snapping, providing
inspiration for biomimetic morphing structures. However, instability always comes with
strong nonlinearity at the structural level, even if the material remains in the near-linear re-
gion, and how to precisely control the shape-morphing caused by instabilities in nonlinear
structures remains a challenge

3.2. Bifurcation and Snap-Through Instability

There are typically two critical points for the instability occurring in elastic structures:
the bifurcation point (or buckling point), and the limit point (or snap-through point), as
depicted in Figure 7. The bifurcated branch intersects the fundamental path (branching) at
a bifurcation point, meaning that two or more equilibrium states exist [89]. On the other
hand, a snap-through point occurs when the equilibrium position becomes unstable, and
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the structure state jumps to the closest stable point on the same equilibrium path. The
difference between these two types of instability scenarios is the following: a snap-through
point follows only one equilibrium path without changing the deformation form, while a
bifurcation point involves a second equilibrium path, requiring the exchange of stability
between two equilibrium paths. Holmes [90] created a vivid analogy stating that the snap-
through motion is similar to a puddle one must jump over to continue when walking on a
path in the woods, while the bifurcation is a fork in the road where a new path emerges.
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Bifurcation and snap-through instability occur when the applied load or external
stimuli increase beyond a threshold value. During the bifurcation/snap-through process,
large deformations or dramatic changes in geometry arise within a short period of time (tens
of milliseconds) due to the sudden release of stored strain energy, resulting in relatively
large output forces at relatively low input energies. The initial geometry of a bistable
structure affects the energy barrier between the two states, providing a quantitative method
for controlling snap-through motions, which is promising in shape-morphing of actuators.
Also, smart materials can be embedded into bistable structures as a switch of the actuation,
offering trigger energy under remote control.

3.3. Snap-Through Bistability in Soft Actuators

The soft actuator is one of the main application scenarios for functional soft morphing
systems to perform specific tasks. Due to the intrinsic characteristics of soft materials,
mismatch-induced shape-morphing typically exhibits slow locomotion speed and low
strength, limiting their use in practical applications. Actuators taking advantage of snap-
through instability may achieve higher performances, with larger output forces and faster
responses, than conventional actuators through rapid energy storage and release. For a
typical bistable system, the two stable equilibrium states usually correspond to different
configurations in geometry, suggesting that the snap-through transition can cause remark-
able shape change. Such bistable systems require relatively low energy inputs to trigger
the actuation. There is also no need to provide continuous inputs to maintain the final
shape once the actuation is complete. These inherent features of bistable structures render
them a promising strategy for their use in soft actuators. With a rational design, a variety
of actuators and robotics with snap-through instability have been explored to achieve large
deformations, and stimuli-responsive materials have been integrated with the bistable
structures to provide moderate actuation forces [33,54,62–64]. Controllable snap-through
actuation occurs when a suitable stimulus offers the trigger force to sufficiently overcome
the energy barrier between different stable states, as shown in Figure 8a. In a representative
potential energy-displacement curve like the one shown in Figure 8b, either state 1 or 2 is
at a local energy minimum (stable). Once a trigger stimulus is imposed, the entire system
accumulates energy until the critical energy threshold E1 (for state 1 to 2) is reached, and
then rapidly releases energy E1 + E2, jumping to the stable state 2.
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Elastic structures, such as 1D rods, beams, and 2D shells, membranes, all exhibit snap-
through bistability, which can be used for the structural basis in designing soft actuators.
For example, Shao et al. reported a bioinspired tri-layer dielectric elastomer actuator (DEA)
using a bistable structure with snap-through instability, mimicking the process of insect
capture by a frog [33]. In their work, the energy was stored in the structure by biaxial
stretching the top and bottom DE layers, which were bounded to the intermediate support
layer. The initial equilibrium state of this sandwich structure tended to bend along the short
side. Under the action of an external electric field, the DE actuator suddenly transformed
to a rolled-up shape. The activating area coated with a compliant electrode only occupied a
small fraction of the overall structure, but was sufficient to drive remarkable shape change.
Furthermore, there was no need for the voltage to be continuously applied to maintain the
deformation of the sandwich structure. The force generated by the tape-spring actuator was
measured, as shown in Figure 9a, where the blocking force refers to an external equivalent
force applied to counteract the electric field-induced deflection. The change of blocking
force over time reveals that the snap-through motion took about 0.2 s, and the full actuation
was completed in 1.7 s. Jiang et al. fabricated laterally-constrained beam composites with
their initial geometries near the bifurcation points for a transition between bistability and
monostability [54]. As demonstrated in Figure 9b, the slenderness ratio w/L of the tilted
beam is one of the key parameters to determine whether or not the structure possesses
the bistability feature. Direct ink writing (DIW) of glass fiber composites was adopted to
precisely control the value of w/L. Once undergoing anisotropic swelling, a bifurcation
point was crossed and the triggered snap-through motion was accompanied by rapid
and large amplitude self-actuation. By properly tuning the size of the energy barrier, the
actuation time of millimeter-scale structures can be minimized to below 0.6 s, which is
much faster than most hydrogel-based actuators.

The pneumatic system is a typical actuation mode suitable for producing reversible
snap-through deformation. Unlike the aforementioned strategies that rely on the stimuli-
induced size change of embedded active materials to overcome the energy barrier, the
pneumatic-powered control system can switch between different configurations by injecting
air into associated channels. Tang et al. created a spine-inspired pneumatic soft robot
by harnessing tunable snap-through bistability, which greatly improved the mechanical
performance [62]. As shown in Figure 9c, this bistable hybrid soft actuator was composed
of spring-based bistable linkages as the “skeletal spine” and pneumatic bending actuators
as the “skeletal muscle.” The amplified performances of the actuator were attributed to the
pre-stretching of the embedded spring, providing rapid energy storage and release as a
force amplifier. Based on the reversible bending of the bistable actuator, they designed a
high-speed crawling robot with a 20 times faster response speed (response time: tens of
milliseconds) and over 3 times higher output force, compared to conventional soft crawlers.
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Faber et al. printed a muscle-free pneumatic-driven gripper for soft robotic actuation [63]:
the outer surface of the gripper was equipped with an array of geometric concave domes,
which could be individually pneumatically inverted. Upon 1.2 bar pressurization of the
chamber, the gripper quickly jumped to the tightened state, with the gripping distance
reduced by 79%. This gripper can sustain the actuating state even after the pressure is
removed. Such a working principle for grabbing processes (Figure 9d) highlights the
structure-based actuator design, which is applicable for different materials at multiple
scales. Inspired by the prey-trapping strategy of the Venus flytrap, Lin et al. designed a
high-speed soft gripper using snap-through instability to achieve a fast response to external
stimuli. The pneumatic control method was adopted to make the trigger process repeatable,
which can also actively control the trigger sensitivity [64].
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Figure 9. Soft actuators inspired by snap-through bistability. (a) A DEA mimicking insect capture.
Reproduced from Ref. [33]; (b) The rapid snap-through actuation of a hydrogel composite with the
initial geometry near the bifurcation point. Reproduced from Ref. [54]; (c) A spine-inspired bistable
soft pneumatic actuator. Reproduced from Ref. [62]; (d) A pneumatic gripper with a dome-patterned
outer skin. The reversible inversion of domes causes a grabbing force on an object, even without the
external pressurization. Reproduced from Ref. [63].

3.4. Structural Bistability in Mechanical Metamaterials

Mechanical metamaterials are a class of artificial materials with unconventional me-
chanical properties, such as negative Poisson’s ratio [91], negative swelling ratio [92], energy
absorption [93], reconfigurable deployment [94], and a tunable phononic response [95].
These extraordinary functionalities are not directly related to the intrinsic properties of their
constituent materials, but are dependent upon the elaborately designed microstructures
as the basic building blocks. Elastic instability and bistable/multi-stable structures have
been widely used in the design of these metamaterials. For example, Faber et al. proposed
a novel shape-morphing metamaterial using snap-through bistability [63]. As illustrated in
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Figure 10a, a planar sheet with a dome-patterned array and the combination of the bistable
states at individual domes can be programmed, giving rise to multi-stable configurations.
This method established a mapping relationship between the local state of the bistable units
and the global geometry of the entire structure. By controlling the specific domes to change
into their inverted state, a distinct structure-associated shape morphing can be generated
and switched. Interestingly, even with the same dome pattern, the loading history can
influence the final configuration of the structure, and such path-dependency enriches the
diversity of the shape-reconfigurable metamaterial.
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Figure 10. Using bistable building blocks to design mechanical metamaterials. (a) Dome-patterned
shape-morphing metamaterials with digital programming. Reproduced from Ref. [63]; (b) A de-
ployable structure consisting of serially connected bistable hinges. Reproduced from Ref. [96];
(c) Energy-absorbing metamaterials with architected bistable units. Reproduced from Ref. [97].

The feature of bistable or multi-stable structures that can rest in any of the local equi-
librium states without external inputs provides a structure-based self-locking mechanism,
which differs from the energy storage caused by ordered or disordered arrangements of
materials through phase transitions. Haghpanah et al. realized deployable metamaterials
with multiple bistable units [96], each unit consisting of a relatively thick base and two
inclined hinged beams, as shown in Figure 10b. When a downward vertical force was
applied, the two inclined beams were pressed against each other, and beyond a critical
force, the triangular frame snapped through and collapsed into the second stable position.
By assembling multiple bistable units in series, a highly expandable lattice structure can be
obtained under a relatively small applied load, with a significant expansion of more than
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three times of the original size. Shan et al. employed a mechanism to store elastic energy
through the deformation of a titled beam that can transit between two stable configurations,
triggered by the imposed displacement at one of its ends [97]. The mechanical response of
these bistable beams was reversible and repeatable, usually independent of scale, rate, and
loading history. As shown in Figure 10c, examples of structures at different length scales
were fabricated by the DIW printing method for the impact experiments. This structural
energy-trapping mechanism can be combined with the dissipative mechanisms of materials,
such as viscoelasticity, to further enhance the impact resistance and protection of the system
by harnessing multiple dissipation mechanisms.

4. Conclusions

Most of the existing studies focused on the spatial arrangement design of smart
materials to obtain abundant shape-morphing modes. Our review not only summarized this
area (Section 2), but also highlighted the advantages of using the snap-through bistability
principle in shape-morphing (Section 3). We described each of the two approaches in detail
and provided representative examples on how to integrate them to better program the
shape-morphing. The following conclusions can be drawn:

• Mismatch strains caused by in-plane or through-thickness heterogeneity of material
composition can generate two fundamental deformation modes, buckling and bending,
which can be combined to achieve complex deformations.

• Due to the intrinsic characteristics of soft materials, the mismatch-induced shape-
morphing in soft materials typically exhibits slow locomotion speed and low mechani-
cal strength, limiting their applications in many scenarios.

• As an alternative programming strategy of soft morphing structures/devices, struc-
tural bistability has been widely used in the design of soft actuators due to the fast
snap-through transition between bistable states.

• During the snap-through transition, large-magnitude deformations or dramatic shape
changes arise within a short period of time (tens of milliseconds) due to the sudden
release of stored strain energy, resulting in relatively large output forces at relatively
low energy inputs.

• Structural bistability also provides a self-locking mechanism to maintain the deformed
shape without external input, which can be employed in programmable metamaterials.

• It would be promising to integrate strain mismatch and snap-through bistability
strategies to increase the richness and utility of shape transformations for practical
applications.

5. Future Prospects

Despite the tremendous progress involving strain mismatch and snap-through bista-
bility to program soft shape-morphing systems, there are still some challenges and issues
to be addressed in the future, as outlined below:

• Reasonable layout design of responsive materials in bistable structures is still difficult
and lacks effective theoretical and numerical guidance. Spatial arrangements such
as proportions and positions of active and passive components can greatly affect the
trigger sensitivity of snap-through movements.

• The selected smart materials should generate sufficient energy output under external
stimuli to overcome the energy barrier. The development of new soft materials with
high energy and power densities is of particular importance.

• Existing studies mostly focused on simple bistable structures, such as beams and shells,
with little effort made to explore multi-stable structures with multiple equilibrium
configurations that offer more shape transformation possibilities, which may endow
actuators with richer working modes.

• When integrating a certain number of binary bistable units to construct a multi-stable
system, it is challenging to use a single (or fewer) actuation input without sacrificing
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the rich reconfigurability. As the number of units increases, the individual control and
sequential actuation of each bistable unit become intricate.

• Making the snap-through actuation repeatable and reversible is the key to transforming
shape changes into a continuous motion. The current solution is to adopt pneumatic
control systems, but this is not suitable for smart material systems.
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