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Pathological Potential of Neuroglia

The pathological potential of neuroglia was widely recognised and acknowledged by 

neurologists and neuroanatomists at end of the nineteenth and the beginning of the 

twentieth century. Contribution of neuroglia to the diseases was described, and numerous 

pathological morphological types of glial cells have been characterised in detail (Achucarro 

1910; Alzheimer 1910; Frommann 1878; Nissl 1899). By 1920 the universal involvement 

of neuroglia in neuropathology was universally accepted; neurologists agreed that “the 

appearance of neuroglia serves as a delicate indicator of the action of noxious influences 

upon the central nervous system” (del Rio-Hortega and Penfield 1927); the concept of 

reactive gliosis has been formulated and generally recognised (del Río-Hortega and Penfield 

1927; Penfield 1928b). The widespread role and importance of neuroglia in neurological 

and neuropsychiatric diseases were somewhat forgotten in the course of the twentieth 

century. However, the recently passed decade witnessed much revival in the interest in 

glia in neuropathology as the neuroglial cells are firmly considered as key players in 

pathophysiology of all disorders of the nervous system (both central and peripheral), and 

neuropharmacology regards neuroglia as a legitimate target for new therapeutic strategies 

(Burda and Sofroniew 2014; Ferrer 2018; Giaume et al. 2007; Parpura et al. 2012; Pekny et 

al. 2016; Sofroniew 2014b; Verkhratsky et al. 2012b, 2016a, 2017; Verkhratsky and Parpura 

2016; Zeidan-Chulia et al. 2014).
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Astrogliopathology: General Principles

Astrocytes are primary homeostatic cells of the central nervous system (CNS; see previous 

chapter); in addition, astrocytes contribute to brain defence. Astrocytic contribution to 

neuropathology can be primary (when cell-autonomous changes drive the pathologic 

progression) or secondary, when astrocytes respond to lesions or to various pathological 

changes in the nervous tissue. Current classification (Fig. 1) distinguishes the following 

forms of astrogliopathology: (i) reactive astrogliosis, (ii) astrocytic atrophy with loss of 

function, (iii) pathological remodelling of astrocytes and (iv) astrodegeneration (Fig. 1, 

(Verkhratsky et al. 2017). These pathological groups cover multiple pathological phenotypes 

which are yet to be fully characterised; furthermore pathological changes in astrocytes can 

occur together or in isolation; they are sometimes specific to disease stages and they are 

affected by age and systemic pathologies.

Reactive Astrogliosis

Reactive astrogliosis is a specific and evolutionary conserved (from arthropods to humans) 

response of astrocytes to polyaetiological brain lesions, from trauma and infection to 

neurodegeneration. Reactive astrogliosis is a process whereby, in response to pathology, 

astrocytes launch genetic programmes that result in biochemical, morphological, metabolic 

and physiological remodelling (Escartin et al. 2021). This remodelling leads to either gain 

or loss or modification of astrocytic functions, all aimed at neuroprotection and preservation 

of the nervous tissue integrity. Astrogliotic remodelling of astrocytes leads to an emergence 

of multiple context-specific reactive phenotypes, characteristic for particular, age, type of 

pathology and brain region. These multiple phenotypes differ in specific molecular profile, 

functions and distinct impact on diseases (Pekny et al. 2016; Sofroniew 2014a; Sofroniew 

2020; Verkhratsky et al. 2017). Reactive astrogliosis is flexible to adapt functional and 

biochemical reprogramming of astrocytes to the nature and strength of the insult with an 

ultimate goal to mount maximal protection. Within the framework of the same pathology 

and even within the same affected areas, astrocytes remain heterogeneous in their expression 

of transcription factors, inflammatory agents and signalling molecules, arguably associated 

with distinct reactive phenotypes (Garcia et al. 2010; Herrmann et al. 2008).

Reactive astrogliosis contributes to many neurological diseases. In particular, prominent 

astrogliosis occurs in disorders associated with direct lesion to the nervous tissue by 

physical, biological or chemical agents. These conditions include neurotrauma (Burda et 

al. 2016; Faulkner et al. 2004), systemic inflammation and sepsis (Shulyatnikova and 

Verkhratsky 2019; Tremblay et al. 2020), microbial or viral neuroinfection (Soung and 

Klein 2018; Zorec et al. 2019), toxic encephalopathies (Li et al. 2021; O’Callaghan et 

al. 2014), autoimmune inflammation of the nervous tissue including multiple sclerosis 

(Voskuhl et al. 2009; Wheeler and Quintana 2019), cancerous growth (Henrik Heiland 

et al. 2019) and neurodegenerative diseases (Verkhratsky et al. 2010). Histopathologically 

reactive astrogliosis is characterised by morphological hypertrophy, changes in the thickness 

of processes, sometimes associated with retraction of distal leaflets (Plata et al. 2018); 

furthermore, reactivity is manifested by an up-regulation of two major cytoskeletal 
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intermediate filaments, glial fibrillary acidic protein (GFAP) and vimentin (Hol and Pekny 

2015; Pekny and Pekna 2014; Sofroniew 2014a).

There are several classifications of reactive astrogliosis (Fig. 2). According to morphological 

changes, astrogliosis is classified into isomorphic and anisomorphic astrogliosis. In 

isomorphic astrogliosis, astrocytes become hypertrophic; however, they do not move and 

do not proliferate and the reach of their individual territorial domains remains unchanged 

(Escartin et al. 2021; Wilhelmsson et al. 2006). Isomorphic astrogliosis is fully reversible, 

and after the resolution of pathology, astrocytes return to physiological morphology; 

the isomorphic astrogliosis is indispensable for post-lesion regeneration (Anderson et al. 

2016). In anisomorphic astrogliosis astrocytes start to proliferate, and they migrate towards 

the site of lesion, assemble into astroglial palisades and form the glial scar (Pekny et 

al. 2016; Sofroniew 2020). Another classification divides astrogliosis according to the 

severity of changes. According to this classification astrogliosis is classified into (i) mild 

to moderate astrogliosis, (ii) severe diffuse astrogliosis and (iii) severe astrogliosis with 

compact scar formation (Sofroniew 2009, 2014a). Although morphological presentation of 

reactive astrocytes can be similar in different pathological contexts generally following 

the above classification, their molecular signatures are quite distinct and disease-specific. 

Different astrocytic transcriptomes associate with different conditions and diseases including 

neurotrauma (Anderson et al. 2016), stroke (Zamanian et al. 2012), animal models of 

multiple sclerosis (Itoh et al. 2018) or neurodegenerations; in the latter group astrocytes in 

Huntington’s disease (Al-Dalahmah et al. 2020) are distinct from astrocytes in Alzheimer’s 

disease (Kamphuis et al. 2015). Similarly, astrocytic reactive phenotypes can be different in 

different stages of the same disease (Wheeler et al. 2020; Zamanian et al. 2012).

Fundamentally, astrogliosis is a defensive response of astrocytes aimed at (i) neuroprotection 

and trophic support of neural cells tissue, (ii) isolation of the lesioned area, (iii) 

reconstruction of the compromised blood-brain barrier and (iv) facilitating the post-lesion 

regeneration of the nervous tissue (Sofroniew 2020). The ultimate result of severe 

astrogliosis, the scar formation, is essentially defensive reponse to isolate the damaged 

part of the nervous tissue and save the whole at the expense of its part (Pekny et al. 2016; 

Verkhratsky et al. 2017; Verkhratsky and Butt 2013). Inhibition of astroglial reactivity often 

exacerbates the damage to the nervous tissue and worsens neurological outcomes (Pekny 

et al. 2016). For example, suppression of astrogliotic response increases the size of the 

traumatic lesions and augments neurological deficit (Okada et al. 2006). Genetic deletion of 

GFAP and vimentin, both of which are critical for mounting reactive astrocyte remodelling, 

facilitates the evolution of brain ischaemia (Li et al. 2008) and potentiates posttraumatic 

synaptic loss (Pekny et al. 1999). Furthermore, inhibition of astroglial reactivity results in 

higher accumulation of β-amyloid and reduced microglial association with senile plaques 

in the animal model of Alzheimer’s disease (AD); all these changes seem to exacerbate 

AD-type pathology (Kraft et al. 2013).

Reactive astrogliosis is instigated by multiple factors. Conceptually, astrocytes may sense 

and integrate numerous molecular cues that signal the damage and provide some information 

about the nature of this damage. Such molecular cues can have multiple origin and nature. 

They can be released by damaged cells, they can be associated with accumulation of 
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pathological material (β-amyloid being a well-known example), they can be blood-borne 

(blood cells or proteins, such as albumin or thrombin) and they can be associated with 

invading pathogens (bacteria, viruses or prions) or systemic immune factors. Astrogliosis 

can also be stimulated by certain neurotransmitters and hormones (Fig. 3; (Pekny et al. 2016, 

Sofroniew 2020)). Conceptually, all factors associated with the instigation of astrogliosis 

can be classified into (Tang et al. 2012) damage-associated molecular patterns (DAMPs) 

or pathogen-associated molecular patterns (PAMPs). The DAMPs are molecules released 

from immune-responsive microglia or other stressed, damaged or dying cells or factors 

coming from the circulation through the compromised blood-brain barrier. These factors 

may include cytokines, chemokines, endothelins, blood-borne proteins, etc. Astrocytes 

express a wide pattern of receptors that can be activated by DAMPs (Verkhratsky and 

Nedergaard 2018). The archetypal DAMP is represented by ATP, which is massively 

released from damaged cells; in pathological contexts, ATP mainly acts on astrocytes 

through activation of P2X7 purinoceptors, although other classes of purinoceptors may also 

contribute (Franke et al. 2012). The PAMPs are exogenous agents associated with pathogens 

such as bacteria, viruses or prions; these factors stimulate Toll-like receptors (TLRs) widely 

expressed in astrocytes (Jack et al. 2005; Kielian 2006). In addition, astrocytes express 

nucleotide-binding oligomerisation domain (NOD)-like receptors (NLRs), double-stranded 

RNA-dependent protein kinase, scavenger receptors, mannose receptor and receptors for 

complement components and mediators, such as CXCL10, CCL2, interleukin-6 and B-cell-

activating factor of the TNF family, all of which are contributing to the regulation of reactive 

astrogliosis (Farina et al. 2007).

Intracellularly, initiation of reactive astrogliosis is associated with Ca2+ signalling. This 

signalling is an important part of astrocytic intracellular excitability, mediated by cytosolic 

ions and second messengers (Verkhratsky et al. 2020b, c). Exposure of astrocytes to 

various DAMPs and PAMPs is frequently associated with initiation of Ca2+ signals mainly 

originating from Ca2+ release from the intracellular endoplasmic reticulum (ER) Ca2+ store. 

This release is mediated by inositol-1,4,5,-trisphosphate (InsP3) receptor type 2, which is 

predominant in astrocytes (Verkhratsky et al. 2012a). Similarly, pharmacological inhibition 

of Ca2+ release from the ER suppressed astrocytic reactivity in response to β-amyloid 

(Alberdi et al. 2013)

Despite being an intrinsically defensive response, reactive astrocytes may, in certain 

conditions, acquire maladaptive features which may exacerbate or even cause damage 

to the nervous tissue (Pekny et al. 2016; Sofroniew 2020). First, astrocytic reactivity 

may interfere and downregulate essential homeostatic functions such as K+ buffering 

or glutamate homeostasis. In particular, failure of glutamate homeostasis seems to be a 

converging point in the pathophysiology of various neurological diseases, such as toxic 

encephalopathies (Li et al. 2021), hepatic encephalopathy (Montana et al. 2014; Obara-

Michlewska et al. 2015), epilepsy (Bedner et al. 2015) or amyotrophic lateral sclerosis 

(Rossi et al. 2008; Valori et al. 2014). In addition, reactive astrocytes may be associated 

with the release of potentially damaging molecules through pathological gain of function, 

when existing homeostatic cascades start to overproduce particular agents. For example, 

in Alzheimer’s disease astrocytes overexpress monoamine oxidase-B (MAO-B) to produce 

GABA from puterscin; this overproduction of GABA counteracts neuronal hyperexcitability 
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closely associated with AD progression (Garaschuk and Verkhratsky 2019; Ghatak et 

al. 2019). Increase in MAO-B activity, however, results in overproduction of hydrogen 

peroxide that initiates neuronal damage and death (Chun et al. 2020). Similarly, astrocytic 

overproduction of complement C3 (which otherwise is a legitimate physiological ligand) 

leads to morphological and functional neuronal defects (Lian et al. 2015).

To summarise, reactive astrogliosis is an intrinsic physiological astrocyte programme aimed 

at neuroprotection, at maintenance of tissue homeostasis and at preservation of integrity of 

nervous tissue. In certain conditions, however, and in particular in conditions of chronic 

and severe stress, reactive astrocytes may acquire maladaptive properties contributing to the 

damage of the CNS. In both conditions, reactive astrocytes remain an important part of 

disease progression often defining the neurological outcome of neuropathological process.

Pathological Remodelling of Astrocytes

The second group of astrogliopathologies is represented by pathological remodelling of 

astrocytes. This class of pathological changes covers astrocytic abnormalities associated 

with an acquisition of aberrant molecular cascades or functional properties, which drive 

pathology (Ferrer 2018; Pekny et al. 2016). The best examples of pathological astrocytic 

remodelling are represented by primary genetic astrogliopathies linked to expression of 

mutated genes. Alexander disease, a genetic leukomalacia, stems from astrocytic expression 

of sporadically mutated GFAP gene, which affects, in a yet unknown way, astrocyte function 

which ultimately results in severe damage to the white matter (Messing et al. 2012). Another 

example of pathological remodelling of astrocytes occurs in Duchenne muscular dystrophy 

(DMD) associated with expression of mutated dystrophin gene. Although major clinical 

presentation of DMD is associated with muscular weakness and cardiomyopathy, most of 

the patients show psychosocial abnormalities and impaired cognitive abilities. In the CNS 

dystrophin is expressed mainly in astrocytes (Hendriksen et al. 2016), and its mutations are 

linked to aberrant CNS cytoarchitecture, abnormalities in dendrites and loss of neurones. 

All these cytopathologies cause a general detrimental neurobehavioural profile, including 

attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders and obsessive-

compulsive disorder (Anderson et al. 2012; Hendriksen et al. 2018; Ricotti et al. 2015). At 

the cellular level, expression of mutant dystrophin gene resulted in an aberrant cytoskeleton 

arrangement and deficient homeostatic capabilities of astrocytes derived from stem cells 

isolated from DMD patients. In particular, glutamate clearance was severely affected in 

these astrocytes (Patel et al. 2019). Astroglial pathological remodelling is also central for 

several other leukodystrophies including vanishing white matter disease, megalencephalic 

leukoencephalopathy with subcortical cysts and Aicardi-Goutières syndrome (Brignone et 

al. 2014; Dooves et al. 2016; Jorge and Bugiani 2019). Finally, pathological remodelling 

of astrocytes has been suggested to occur in mesial temporal lobe epilepsy, characterised 

by aberrant astrocytic morphology, reduced gap junctional coupling and downregulation of 

Kir4.1 channel expression; all these changes converge into deficient K+ homeostasis that 

facilitates generation of seizures (Bedner et al. 2015).
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Astroglial Atrophy, Asthenia and Loss of Function

This class of pathological changes includes cell-autonomous astrocytic changes, which 

do not involve reactivity (i.e. they are not instigated by lesion to the CNS) while 

being associated with diminished astrocytic function. First, this astrocytic insufficiency is 

linked to cellular atrophy manifested by decrease in astrocytic morphological profile, with 

corresponding decrease in astrocytic territorial domain and diminished astrocytic synaptic 

coverage. This morphological atrophy associated with decrease astrocytic homeostatic 

support is observed in numerous neuropathological contexts. In particular, morphological 

atrophy of astrocytes has been detected in diseases of cognition such as neurodegenerative 

diseases (Heneka et al. 2010; Rodriguez et al. 2009; Verkhratsky et al. 2010) and psychiatric 

diseases (Dietz et al. 2020; Verkhratsky et al. 2014; Verkhratsky and Parpura 2016; Windrem 

et al. 2017). Major neuropsychiatric disorders, such as schizophrenia, major depressive 

disorder and addictive disorders are all associated with reduction of astrocytic density and 

decrease in astrocytic morphological profiles as revealed by multiple markers (Cotter et al. 

2001; Czeh and Di Benedetto 2013; Czeh and Nagy 2018; Miguel-Hidalgo 2009; Rajkowska 

et al. 2002; Rajkowska and Stockmeier 2013; Scofield et al. 2016). Another pathological 

feature, the astrocytic asthenia, which is manifested by failures of astroglial homeostatic 

cascades, is also frequently present in diseases of the brain. In particular, severe decrease 

in glutamate clearance due to ~80% decrease in expression of astrocytic plasmalemmal 

glutamate transporters is a leading cause of Wernicke-Korsakoff encephalopathy, associated 

with massive excitotoxic neuronal death (Hazell 2009; Hazell et al. 2009). Deficits 

in astroglial glutamate clearance and failure in glutamate-glutamine/GABA shuttle are 

likely responsible for abnormal neurotransmission as well as for excitotoxic neuronal 

death, both resulting in psychotic symptoms (Sanacora and Banasr 2013). Decreased 

expression of plasmalemmal glutamate transporters and decreased glutamate clearance from 

the extracellular space/synaptic cleft are common features of many addictive disorders, 

with astrocytic plasmalemmal glutamate transporters representing a promising drug target 

(Roberts-Wolfe and Kalivas 2015). Neuronal death in amyotrophic lateral sclerosis similarly 

reflects astrocytic loss of function being a consequence of insufficient astroglial function in 

extracellular glutamate clearance (Rossi et al. 2008; Valori et al. 2014).

Atrophy of astrocytes linked to decreased synaptic connectivity and synaptic efficacy 

contributes to cognitive deficiency in both normal ageing and senile dementia. Ageing is 

the main risk factor for neurodegenerative diseases underlying senile dementia, including 

Alzheimer’s disease. At the same time normal physiological brain ageing with mostly 

preserved cognitive capacity differs fundamentally from neurodegenerative pathology: in 

the former the number of neurones is largely preserved, whereas in the latter neurones 

undergo massive death, which underlies severe cognitive impairment (Pakkenberg and 

Gundersen 1997; Verkhratsky et al. 2004; von Bartheld et al. 2016; West 1993). Astrocytic 

numbers seem to be preserved in physiological ageing, whereas the data on astrocytic 

morphology are controversial and detailed analysis of astrocytic profiles is scarce (Olabarria 

et al. 2010; Pakkenberg and Gundersen 1997; Verkhratsky et al. 2020a). Most of our 

knowledge of the state of astrocytes in the ageing brain rests on the analysis of the 

expression of GFAP, the presumed universal marker of astrocytes (Hol and Pekny 2015). 

Expression of GFAP is generally increased in the aged brain, which was considered as 
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a sign of astrogliosis and age-dependent inflammation (David et al. 1997; Goss et al. 

1991; Hardy et al. 2018; Nichols et al. 1993). Morphometry of aged astrocytes, however, 

revealed rather contradictory results with both increase and decrease in size and complexity 

of GFAP-positive astrocytic profiles being observed (see Verkhratsky et al. (2020a) for 

details and references). All these results, however, need a critical revisit, because GFAP 

is not an ideal marker of astrocytes (see Verkhratsky and Nedergaard (2018) for detailed 

discussion). First, in a healthy brain, the majority of astrocytes do not express GFAP at 

the level of immunocytochemical detection. Second, the proportion of GFAP-positive cells 

depends on age and brain region. Third, increases in GFAP immunorecativity does not 

necessarily report reactive changes; in the suprachiasmatic nucleus and the intergeniculate 

leaflet, for example, GFAP expression undergoes substantial circadian changes (Moriya 

et al. 2000). Fourth, GFAP labels only cytoskeleton associated with primary astrocytic 

processes; the peripheral leaflets are always GFAP-negative, and therefore GFAP cannot 

accurately reveal astrocytic morphology. Finally, GFAP expression changes under various 

types of environmental stimulation: physical exercise or environmental enrichment increases 

GFAP-positive profiles, and this increase is beneficial for nervous tissue (Diniz et al. 2016; 

Rodriguez et al. 2013; Sampedro-Piquero et al. 2014). Thus, age-dependent changes in 

GFAP expression and GFAP-positive profiles do not reveal much about astrocytic ageing.

Labelling of astrocytes with other markers showed more complex age-dependent 

changes. Staining of astrocytes with Golgi black reaction did not identify age-dependent 

morphological changes (Castiglioni Jr. et al. 1991). Immunohistochemical analysis of 

astroglial profiles labelled with antibodies against GFAP, glutamine synthetase and protein 

s100β demonstrated complex region- and marker-dependent and age-dependent changes 

ranging from atrophy to hypertrophy (Rodriguez et al. 2014). The GFAP-labelled astrocytes 

showed hypertrophy in the CA1 region and in the dentate gyrus of old hippocampus but 

marked atrophy in the entorhinal cortex (EC). Astrocytes positive for glutamine synthetase 

were smaller in old hippocampus but larger in the old entorhinal cortex, while s100β-

positive profiles from old animals demonstrated an increase in the entorhinal cortex and 

almost no change in the dentate gyrus and no changes in the CA1 region (Fig. 4).

Morphology of astrocytes probed with intracellular injection of the fluorescent dye Alexa 

Fluor® 594 revealed age-dependent changes in astrocytic morphology. Two-photon imaging 

with subsequent 3D reconstruction of astrocytes perfused with the dye showed a significant 

increase in the size and complexity of astrocytes in development from youth to adulthood, 

whereas astrocytes in the old brains were smaller and less complex and significant decrease 

in size and complexity of astrocytes in old animals, with substantial reduction on the volume 

of peripheral processes (Fig. 5, (Popov et al. 2020)). These changes in peripheral processes 

affected synaptic coverage and synaptic homeostasis; in particular, astrocytic extracellular 

glutamate and K+ clearance are both compromised in old animals, leading to depression of 

long-term potentiation reflecting on deficient memory (Popov et al. 2020).

Astrocytic atrophy is also present in neurodegenerative diseases. In AD, atrophic astrocytes 

appear in the brain together with reactive astrocytes. Subpopulations of atrophic astrocytes 

have been found in transgenic AD mouse models (Beauquis et al. 2013; Olabarria et al. 

2010) and confirmed in stem cell-derived astrocytes from AD patients in vitro (Jones et al. 
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2017; Mohamet et al. 2018) and in vivo in derived astrocytes grafted in the mouse brain 

(Preman et al. 2020). In AD mouse models the total number of astrocytes does not change 

with age (Olabarria et al. 2010, 2011). At the same time at the early, pre-plaque, stages, 

astrocytes in entorhinal and prefrontal cortices and hippocampus demonstrate morphological 

atrophy (Beauquis et al. 2013; Kulijewicz-Nawrot et al. 2012; Olabarria et al. 2010; Yeh 

et al. 2012). There is a specific temporal pattern in the emergence of atrophic astrocytes 

in mouse AD models (Rodriguez et al. 2016; Verkhratsky et al. 2019). First, atrophic 

astrocytic profiles (as visualised by antibodies against GFAP, s100β or glutamine synthetase) 

appear in the entorhinal cortex (they are present already in 1-month-old mice); subsequently, 

atrophic astrocytes appear in the prefrontal cortex (3–4 months of age) and finally in 

the hippocampus (in 6- to 9-month-old animals). Appearance of atrophic astrocytes thus 

precedes formation of β-amyloid deposits.

At the later stages (12- to 18-month-old animals) of AD, the emergence of β-amyloid 

plaques in the hippocampus instigates astrogliotic remodelling; reactive astrocytes migrate 

towards and surround senile plaques and β-amyloid infested blood vessels; at the same time 

atrophic astrocytes are positioned distantly to β-amyloid depositions (Olabarria et al. 2010; 

Verkhratsky et al. 2016b). Conversely, in entorhinal and prefrontal cortices, extracellular 

β-amyloid depositions are not accompanied with astroglial reactivity (Verkhratsky et al. 

2016b). Failed astrogliosis represents a loss of function, which defines vulnerability of 

different brain regions to AD pathology. Indeed, in humans AD starts in entorhinal and 

prefrontal cortices before this disease spreads to the hippocampus.

Astrocytic atrophy and loss of function can contribute to AD pathophysiology being 

responsible for early synaptic dysfunction and cognitive deficits. Atrophic astrocytes 

provide diminished synaptic coverage, which translates in decreased support of synapses by 

astroglial cradle. First and foremost, this affects K+ buffering and glutamate homeostasis 

which both are critical for normal synaptic connectivity. In addition, astrocytes are 

fundamental for synaptogenesis not only in the developing but also in the adult brain, 

and astrocytic atrophy may impair the formation of new synapses associated with learning 

and neuronal plasticity. Early stages of AD are associated with synaptopathy (Coleman 

et al. 2004; Terry 2000), which might be directly linked to diminished astrocytic support. 

Astroglial asthenia and loss of function may also account for deficient support associated 

with the lactate shuttle. Finally, a failure of astrogliotic defence together with a loss of 

homeostatic capacity of astrocytes (the glial paralysis) can be directly linked to neuronal 

death and brain atrophy clinically manifested as senile dementia (Verkhratsky et al. 2015).

Astrodegeneration or Clasmatodendrosis

Insults to the brain as well as chronic brain pathologies stress astrocytes, which can undergo 

degenerative changes and necrotic or apoptotic death. Morphologically, astrodegeneration 

is manifested by clasmatodendrosis (from Greek “kλάσμα”, fragment, “δένδρoν”, tree, 

“ωσις”, process). This process has been initially characterised by Alois Alzheimer and 

also described and named by Santiago Ramón y Cajal (Penfield 1928a). Clasmatodendrosis 

appears as fragmentation of astroglial processes, vanishing of distal processes, and swelling 

and vacuolisation of the cell body. Clasmatodendrosis has been visualised in vitro and 
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in tissue, and it was observed in several forms of neuropathology including ischaemia, 

infectious encephalopathies, stroke, dementia and psychiatric diseases (Hulse et al. 2001; 

Sahlas et al. 2002; Tachibana et al. 2019). Clasmatodendrotic astrocytes have been also 

identified in the brains of old mice (Mercatelli et al. 2016).

Envoi

We have outlined the presently ascribed roles of astroglia in nervous system pathology. 

As per human need to organize and stratify, we pigeonholed the roles into the present-day 

classification of astrogliopathology. While we have no doubt that this classification will 

develop further, likely by the time one reads these lines as the volume gets published, we 

deem it necessary and sufficient for further discussion of more detailed chapters that follow 

in this volume and delve into the role of astroglia in a variety of psychiatric conditions and 

diseases.
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Fig. 1. 
Classification of astrocytic pathological changes. AD Alzheimer’s disease, ALS 

amyotrophic lateral sclerosis, FTD fronto-temporal dementia, HD Huntington’s disease
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Fig. 2. 
Classification of reactive astrogliosis; see text for explanation. (Modified from Verkhratsky 

and Butt (2013) and Sofroniew (2009))
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Fig. 3. 
Instigators of reactive astrogliosis. Numerous agents, including damage-associated 

molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPS, 

pathogens), the former originating from various cells in the nervous tissue or from blood. All 

these agents can activate various astrocytic receptors which launch astrogliotic programmes. 

Abbreviations: TNF-α tumour necrosis factor α, INF-γ interferon γ, TGF-β transforming 

growth factor β, FGF fibroblast growth factor, IFG insulin growth factor, NO nitric oxide, 

ROS reactive oxygen species, LPS lipopolysaccharide
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Fig. 4. 
Age-dependent remodelling of astroglial profiles in different brain areas. Confocal images 

showing glial fibrillary acidic protein (GFAP) (A to F), s100β (G to L) and glutamine 

synthetase (GS) (M to R) immunolabelled astrocytes in the dentate gyrus and CA1 

hippocampal areas as well as in the entorhinal cortex of mice at 3 and 24 months. 

(Reproduced, with permission from Verkhratsky et al. (2020a))
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Fig. 5. 
Reconstructions of hippocampal protoplasmic astrocytes from young, adult and old mice. 

(Reproduced, with permission from Verkhratsky et al. (2020a))
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