Skip to main content
. 2022 Apr 11;82(4):4787–4820. doi: 10.1007/s11042-022-12315-2

Table 11.

Results of proposed approach on DAIC Dataset

S.no. ML Classifiers Fused All features Pearson correlation PCA
modalities features reduced feature vector
# Acc # Acc # Acc
1 Logistic Regression Audio 82 70 50 81 20-25 68
2 Video 230 81 72 83 20-25 80
3 Video + Audio 312 83 122 86 30-35 83
4 Decision Tree Audio 82 62 50 71 20-25 62
5 Video 230 80 72 80 20-25 82
6 Video + Audio 312 80 122 82 30-35 82
7 Naive Bayes Audio 82 55 50 70 20-25 70
8 Video 230 80 72 75 20-25 80
9 Video + Audio 312 80 122 82 30-35 80
10 Random Forest Audio 82 74 50 66 20-25 64
11 Video 230 85 72 80 20-25 81
12 Video + Audio 312 85 122 85 30-35 81
13 Support Vector Machines Audio 82 74 50 68 20-25 67
14 Video 230 85 72 83 20-25 82
15 Video + Audio 312 85 122 86 30-35 83

# - number of features in the feature vector. Acc-Accuracy, and BOLD: Best accuracies obtained Note- DAIC dataset does not contain all the low-level openface feature sets. Hence we extracted statistical feature vector on the available low-level feature vector of DAIC dataset