Table 11.
Results of proposed approach on DAIC Dataset
S.no. | ML Classifiers | Fused | All features | Pearson correlation | PCA | |||
---|---|---|---|---|---|---|---|---|
modalities | features | reduced feature vector | ||||||
# | Acc | # | Acc | # | Acc | |||
1 | Logistic Regression | Audio | 82 | 70 | 50 | 81 | 20-25 | 68 |
2 | Video | 230 | 81 | 72 | 83 | 20-25 | 80 | |
3 | Video + Audio | 312 | 83 | 122 | 86 | 30-35 | 83 | |
4 | Decision Tree | Audio | 82 | 62 | 50 | 71 | 20-25 | 62 |
5 | Video | 230 | 80 | 72 | 80 | 20-25 | 82 | |
6 | Video + Audio | 312 | 80 | 122 | 82 | 30-35 | 82 | |
7 | Naive Bayes | Audio | 82 | 55 | 50 | 70 | 20-25 | 70 |
8 | Video | 230 | 80 | 72 | 75 | 20-25 | 80 | |
9 | Video + Audio | 312 | 80 | 122 | 82 | 30-35 | 80 | |
10 | Random Forest | Audio | 82 | 74 | 50 | 66 | 20-25 | 64 |
11 | Video | 230 | 85 | 72 | 80 | 20-25 | 81 | |
12 | Video + Audio | 312 | 85 | 122 | 85 | 30-35 | 81 | |
13 | Support Vector Machines | Audio | 82 | 74 | 50 | 68 | 20-25 | 67 |
14 | Video | 230 | 85 | 72 | 83 | 20-25 | 82 | |
15 | Video + Audio | 312 | 85 | 122 | 86 | 30-35 | 83 |
# - number of features in the feature vector. Acc-Accuracy, and BOLD: Best accuracies obtained Note- DAIC dataset does not contain all the low-level openface feature sets. Hence we extracted statistical feature vector on the available low-level feature vector of DAIC dataset