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Abstract

Photon counting x-ray detectors (PCDs) with spectral capabilities have the potential to 

revolutionize computed tomography (CT) for medical imaging. The ideal PCD provides accurate 

energy information for each incident x-ray, and at high spatial resolution. This information enables 

material-specific imaging, enhanced radiation dose efficiency, and improved spatial resolution in 

CT images. In practice, PCDs are affected by non-idealities, including limited energy resolution, 

pulse pileup, and cross talk due to charge sharing, K-fluorescence, and Compton scattering. In 

order to maximize their performance, PCDs must be carefully designed to reduce these effects 

and then later account for them during correction and post-acquisition steps. This review article 

examines algorithms for using PCDs in spectral CT applications, including how non-idealities 

impact image quality. Performance assessment metrics that account for spatial resolution and noise 

such as the detective quantum efficiency (DQE) can be used to compare different PCD designs, as 

well as compare PCDs with conventional energy integrating detectors (EIDs). These methods play 

an important role in enhancing spectral CT images and assessing the overall performance of PCDs.
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I. INTRODUCTION

COMPUTED tomography (CT) is a workhorse for medical imaging, with an estimated 

81 million exams performed annually in the United States alone [1]. Since the first CT 

scanner was introduced almost 50 years ago, image quality has vastly improved through 

technological advancements, further increasing its clinical utility. However, there is still 

room for improvement. Radiation dose is a growing concern, despite efforts to reduce the 

dose through better protocols, more efficient hardware, and advanced algorithms. Image 

contrast, particularly between soft tissues and from contrast agents, can be increased, 

while image noise can be further decreased. Many clinical applications could benefit from 
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increased spatial resolution. Spectral x-ray information could be better lever-aged to obtain 

quantitative material-specific imaging. While many approaches and technologies are being 

developed to address one or more of these, a leading candidate is spectroscopic photon 

counting detectors (PCDs).

Conventional CT scanners utilize an indirect conversion process to detect x-rays: a 

scintillator converts x-ray photons into light photons, which are then converted to electric 

charge by a photodiode and integrated. Since the amount of light is proportional to the x-ray 

energy and signal is collected for many x-ray photons, such detectors are referred to as 

energy integrating detectors (EIDs). PCDs directly convert x-ray photons to charge carriers 

and are fast enough to count individual x-ray photons and bin them according to their energy 

(Fig. 1). As will be discussed, PCDs offer the potential to improve dose efficiency through 

a combination of higher geometric efficiency, lower sensitivity to electronic noise, and 

optimal weighting of the signal; improved spatial resolution; and better spectral imaging, 

enabling the quantification of two or more materials. Unique to PCDs is the ability to 

provide spectroscopic information, typically in the form of counts in energy bins or windows 

(Fig. 2). Spectral imaging is “always on”, without having to resort to special protocols (kV 

switching) or dedicated hardware (dual source, split filter).

Compared with the 40+ years of EID development, PCDs for CT applications are relatively 

new. In particular, the past decade has seen tremendous development of PCD technology. 

Early results showed increased contrast-to-noise ratio (CNR) of iodine and calcium for 

spectral photon counting CT (SPCCT) over conventional CT in phantom experiments [2]–

[6]. Inspired by these early results, Taguchi and Iwanczyk published a visionary paper 

for what PCDs might bring [7]. Since then, prototype SPCCT scanners have been built 

and demonstrated with human imaging, including: head and neck scans [8]; clinical-scale 

SPCCT [9], [10]; increased iodine CNR in abdominal imaging compared to an EID system 

[11]; better reader-rated diagnostic quality, reduced noise, and higher CNR for lung nodule 

detection in chest CT [12]; vascular imaging of head and neck with lower noise and less 

image artifacts such as those due to beam hardening [13]; better gray matter-white matter 

differentiation in non-contrast head CT and increased CNR; and a dedicated breast SPCCT 

system [14], [15].

A number of topical reviews have been written recently on PCDs that give an overview of 

the technology and its potential applications, including by Taguchi [16], Fredenberg [17], 

Willemink et al [18], and Leng et al [19]. Yet other papers include a review with a focus 

on PCD electronics [20] or contrast agent development [21], [22]. This special issue also 

includes a review of PCD hardware [23] and clinical applications [24]. The focus of this 

review paper specifically examines algorithms and performance analysis for imaging, with 

a focus on clinical CT applications. The extra information provided by PCDs needs to be 

used efficiently, and its potential benefit in imaging applications needs to be assessed using 

rigorous, quantitative comparisons. There is no doubt in the advantages of an ideal PCD, and 

with an ideal energy response, no electronic noise, no pulse pileup, and perfect geometric 

efficiency, the algorithms for extracting relevant imaging information are straightforward. 

However, in the absence of an ideal PCD, we must understand how to use PCDs in the 

presence of imperfections and how they affect imaging tasks.
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II. ALGORITHMS

A. Energy Weighting

A simple way for PCDs to benefit image quality is through their ability to give photons 

of different energies different weights in their contribution to a conventional “grayscale” 

image. X-ray tubes produce photons with a broad spectrum of energies. Photon weighting 

(with weights w(E )) of the detected spectrum N (E ) happens at the detector, either 

inherently (as in energy integration or in photon counting) or during data processing (as can 

be done with spectroscopic PCDs). The detected signal is then S = ∫ w (E ) N (E ) dE. 

Tapiovaara and Wagner showed that to maximize the contrast-to-noise ratio (CNR) of an 

image, optimal weighting should give more weight to lower energy photons since they have 

higher CNR (per photon) than higher energy photons [25]. Energy integration inherently 

does the opposite, by weighting proportional to photon energy. Photon counting, where all 

photons have equal weight, is an improvement over energy integration (e.g., of about 10% 

in mammography [26]). Better yet, the optimal weighting was found to be approximately 

proportional to E −3 for photoelectric contrast (Fig. 3), giving more weight to lower energy 

photons [27]. These optimal weights were found to give an improvement of about 30% 

over energy integration in mammography [26]. Such weighting can be applied if the PCD 

provides counts in energy bins or windows. Then, during processing of the data, a single 

image from the weighted sum of the binned counts can be formed, where weights are 

determined based on the energies represented by each bin.

One disadvantage of increased weighting of lower energies in the projection domain is that 

it leads to increased beam hardening after CT reconstruction [28]. Another option is to 

reconstruct projections of the individual energy bins, then apply image-based weighting. 

Optimal image-based weighting was shown to improve CNR by 15% to 57% over energy 

integration, depending on the task [29]. Additionally, in the image domain, each bin has 

relatively little beam hardening, so the weighted sum of the reconstructed bin images 

has less beam hardening than a reconstruction of the weighted sum of all binned counts. 

However, in practice, object scatter and limited energy resolution of PCDs reduce such 

gains and should be accounted for. For example, a scatter-to-primary ratio of 0.5 can 

reduce iodine CNR by 24% without scatter correction, but this reduction is only 10% with 

scatter correction [30]. The concept of energy weighting can also be extended to preserving 

information content for material decomposition by weighting the bins by the attenuation of 

the basis functions as a function of energy [31].

B. Spectral Imaging

Beyond energy weighting, spectral information contained in the binned counts can be used 

for material-specific imaging. This simply extends the principles of dual-energy imaging 

to multi-energy imaging, with PCDs providing spectral information through two or more 

energy bins [32]. Using the same principles as dual-energy imaging, x-ray attenuation can 

be decomposed into basis functions that represent physical effects (photoelectric absorption 

and Compton scattering) or materials (e.g., bone and water) [33], [34]. When using materials 

as basis functions, the resulting line integrals or images are of the mass density of the basis 

materials. High-Z materials, as would be used in contrast agents, have K-edges in their 
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attenuation curves that can be uniquely identified (Fig. 4). This opens up possibilities for 

novel contrast agents beyond iodine, especially higher atomic number materials such as 

gadolinium, tantalum, gold, and bismuth.

A small-animal CT system was shown to be able to differentiate fat, muscle, and bone, 

despite the small difference in effective atomic number (Z) between fat (∼6.5) and 

muscle (∼7.5) [35]. Still, there are limitations in differential sensitivity to materials, for 

example in detecting small quantities of iron, which can be difficult to distinguish from 

calcium [36]. Materials with similar Z (and hence attenuation as a function of energy) 

form an ill-conditioned problem, resulting in high sensitivity to measurement noise or 

incorrect modeling assumptions. Even at high dose levels and large slice thickness, accurate 

decomposition and quantification of fat and muscle was found to be difficult [37].

Materials with K-edges have a unique difference in attenuation that an estimator can 

leverage. Although iodine is the most commonly used contrast agent in CT, its relatively 

low K-edge energy makes it difficult to uniquely quantify in many clinical applications 

(separating iodine and calcium because few if any photons with energy below the iodine 

K-edge can reach the detector), although it can still be suitable for imaging thinner objects, 

such as small animals, breasts, or extremities. For example, SPCCT was used to quantify 

iodine uptake in knee cartilage, potentially enabling assessment of cartilage health [38].

Other higher-Z contrast materials with higher K-edge energies are being investigated, such 

as gold that can be incorporated into nanoparticles [39]. Gadolinium was also used to 

quantify uptake in knee cartilage [40]. Additionally, more than one contrast agent can 

be quantified if their K-edges are sufficiently different. Early results demonstrated the 

feasibility of simultaneously quantifying iodine and gadolinium [2], which have K-edges at 

33.2 keV and 50.2 keV, respectively, as well as iodine and gold (80.7 keV) simultaneously 

[41].

Multiple contrast agents can be used to study different processes simultaneously, with 

the contrast agents administered through different pathways or at different timepoints. 

Cormode et al used SPCCT to simultaneously image and quantify iodinated contrast and 

gold nanoparticles in a rabbit model [42], finding that the rapid scanning with SPCCT 

enabled measurement of contrast agent kinetics in different organs. More recently, the group 

demonstrated in-vivo single-acquisition multi-phase liver imaging with a dual contrast agent 

protocol of iodine and gadolinium [43]. Other dual contrast agent, dual-phase imaging 

was also performed of the heart [44] and kidneys [45] using iodine and gadolinium in a 

canine model. Iodine and gadolinium were also used to separate the colon lumen from 

polyps for CT colonography [46]. Simultaneous imaging of three contrast materials (iodine/

gadolinium/bismuth) has also been investigated [45], [47].

1) Material Decomposition: To perform material decomposition, there should be at 

least as many energy bins as desired basis materials, although additional constraints such 

as volume conservation [48], mass conservation [49], or both [50] may enable more basis 

materials than energy bins. Nonetheless, information from all the energy bins should be 

used in a dose-efficient way, such as with a statistical material decomposition algorithm like 
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maximum likelihood [2], [51]. Thus, having more energy bins provides more information 

that reduces noise in the basis material images, although with diminishing returns as the 

number of bins increases [31]. For K-edge materials, a good strategy would be to have one 

energy bin just below and another just above the K-edge energy (i.e., one energy threshold is 

at the K-edge energy).

In practice, empirical measurements can help inform material decomposition algorithms, 

such as measuring step wedges of different basis materials and mapping the measured 

counts to the known thicknesses of these basis materials [52]. Some interpolation and bias 

corrections may be needed as well since the step wedges typically represent a small subset 

of possible basis material thicknesses, although they should span the expected range of 

thickness combinations for the imaged object [53].

2) Noise Reduction: Ideal PCDs provide better spectral information than dual energy 

methods with EIDs. Compared to a dual-source EID system, ideal PCDs are able to reduce 

noise in virtual non-contrast images by 29% and in iodine images by 43% [54]. Still, as in 

dual energy imaging with EIDs, noise in basis material images is higher than in grayscale 

images, and there is a large increase in noise when decomposing more materials using 

conventional material decomposition methods [55].

The increased noise in basis material images can be compensated by suppressing the anti-

correlated noise in the basis material images [56] or through more advanced reconstruction 

methods. Some methods operate in the projection domain and suppress noise through 

additional regularization [57], [58], while others do this in the image domain [59]–[62]. 

Others use the sum of all energy bins as a prior to improve the basis material or energy bin 

images [63], [64], or seek to exploit the structural redundancy between basis material images 

and energy bin images [65], [66]. Additional priors such as volume conservation can also 

help reduce noise [67]. Material decomposition and reconstruction can be viewed jointly, by 

using the spectral projections to reconstruct material decomposition images [68]–[70]. These 

typically have a forward model that maps material images to spectral projections and are 

solved by iterative reconstruction methods. Incorporation of regularization can help promote 

inter- and intra-image sparsity during reconstruction [71]. Model-based reconstruction can 

also incorporate the detector’s spectral response, polychromatic information, and a statistical 

model. The authors of [72] reported that together with image regularization, image noise 

was reduced up to 90% compared to conventional material decomposition followed by 

filtered backprojection.

C. Reduced Beam Hardening

After material decomposition, a weighted sum of the basis material images can be used 

to create virtual monoenergetic (VM) images. These general principles are used in DECT 

and carry over to SPCCT [73]. The weights are simply the attenuation coefficients of the 

basis materials at the specified energy, and the resulting VM image appears as if it were 

produced by a monoenergetic beam. Being monoenergetic, there should not be any beam 

hardening. While this requires using spectral information to create the basis material images, 

combining them in this way makes the VM image suitable largely for grayscale tasks, with 
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the additional benefit of beam hardening correction. In addition, basis material images have 

anti-correlated noise. When combining them with a weighted sum (as in VM images), the 

noise tends to cancel out and be much lower to that in basis material images. Further, there is 

an energy for which noise is the lowest or for which CNR is maximized [74].

SPCCT can also be robust against metal artifact. For metals without K-edges in the 

diagnostic energy range such as aluminum, titanium, or steel, the benefit is a result of 

reduced beam hardening. Other metals with K-edges such as platinum or gold can be 

included as an additional basis material. The combination of spectral information and 

statistical reconstruction was shown to substantially improve image quality around metal, 

reducing streaks typical of metal artifact [75]. Another straightforward approach to reducing 

beam hardening or metal artifact is to simply use the high energy bins since higher energies 

are less susceptible to beam hardening and penetrate metal better [76], [77]. This said, if 

the metal is so attenuating that few photons penetrate the object and reach the detector, 

the SPCCT image will suffer from “photon starvation,” just like conventional images. 

Even so, PCDs have the advantage of not adding electronic noise to the photon-starved 

measurements, unlike EIDs.

D. Spatial Resolution

The direct conversion of x-ray photons to charge carriers in PCDs enables spatial separation 

of detector pixels using the electric field inside the detector, without the need for septa 

between pixels. This in turn enables higher intrinsic spatial resolution than EIDs. The 

smaller pixels of PCDs are also in part out of necessity, to reduce count rates per pixel.

High spatial resolution images have been shown with prototype SPCCT systems, including a 

high-resolution mode that leverages sub-pixels to achieve an effective pixel size of 0.25 mm 

at isocenter. The 10% MTF, as measured by a wire phantom, corresponded to 17.7 lp/cm 

(or 280 um) resolution [78]. Another benefit of acquiring data at higher resolution is its 

improved dose efficiency. This was shown by comparing the high-resolution detector mode 

combined with a softer kernel with use of binned pixels. At the same in-plane resolution, 

slice thickness, and dose, the high-resolution detector mode showed 19% less noise than 

a standard mode with binned pixels [79]. This phenomenon was explained by Baek et al 

[80], who showed that acquiring data with smaller pixels reduces image noise for image 

reconstructions at a given resolution.

The improved spatial resolution can potentially benefit many clinical applications, including 

temporal bone imaging, lung nodule volume quantification and shape differentiation [81] 

and bronchial walls [82], coronary artery and stent imaging [83], and characterization of 

renal stone morphology [84].

It should be noted that EIDs are also improving in spatial resolution [85]. A key challenge 

to overcome in EIDs is the septa between individual detector pixels that prevent the spread 

of light. The finite thickness of the septa reduces the geometric efficiency of the detector, 

particularly as the pixel size decreases. Thinner septa can avoid this problem. Other methods 

for increasing EID spatial resolution, such as a comb filter to decrease the effective detector 

size, are not dose efficient compared to PCDs [86]. Regardless of the detector type, as 

Wang and Pelc Page 6

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detector resolution increases, other aspects of the CT system need to match the increased 

resolution, otherwise they will limit the resolution. These include a smaller focal spot and 

increased angular sampling [87].

To summarize, the potential benefits of an ideal PCD are shown in Table 1, assuming that 

dose efficiency is proportional to the square of CNR and inversely proportional to the square 

of noise.

III. ACCOUNTING FOR NON-IDEALITIES

A. Spatial-Spectral Degradation

An ideal PCD would measure the exact energy of each photon incident on each pixel. 

However, a number of physical effects degrade the spatial-spectral performance of 

PCDs, including charge trapping, charge sharing, K-fluorescence, Compton scattering, and 

electronic noise. Photons incident at pixel boundaries create charge clouds that can be 

collected by two or more pixels, with the signal in each pixel corresponding to less than the 

energy of the original photon. Secondary photons from Compton scattering and fluorescence 

in the detector can be detected in neighboring pixels (Fig. 5), again causing multiple events 

that share the total energy of the incident photon. K-fluorescence is more likely to occur 

in higher-Z detectors such as cadmium telluride (CdTe), while Compton scattering is more 

likely to occur in lower-Z detectors such as silicon (Si). Electronic noise can be thresholded 

out (see Fig. 1), but still adds uncertainty to the photon energy and can lead to uncounted 

event if the threshold exceeds the signal generated by the photon. These effects collectively 

lead to: incorrect energy assignment; incorrect counts, including undercount (signal is no 

longer above the lowest energy bin threshold) or overcount (multiple pixels have signal 

above the lowest energy bin threshold); reduced spatial resolution (counts in neighboring 

pixels); and spatial-spectral correlations between energy bins in different pixels.

Spatial-spectral degradation depends on many detector design considerations, but perhaps 

none more than detector material and pixel size. As pixels become smaller, the likelihood 

of charge sharing and cross talk from secondary photons increases. In particular, Xu et al 

recommended that charge sharing effects should be taken into account for CdTe detectors 

when the pixel is smaller than 1 mm2 [88]. K-fluorescence in CdTe detectors can lead to a 

large fraction of incident x-rays experiencing escaped photons (upwards of 20%, depending 

on pixel size) [89]. On the other hand, Si detectors have a high fraction of Compton scatter, 

which increases with increasing photon energy [90].

The impact on image quality can be substantial. K-edge contrast imaging is particularly 

sensitive since the most unique signature is in a narrow band of energies around the K-edge. 

Compared with an ideal detector, a realistic CdTe detector whose energy response contains 

significant tailing, may have an SNR reduction by a factor of 2–3 for such spectral tasks 

[91]. The penalty for grayscale imaging is less than in such spectral tasks since grayscale 

imaging relies less on energy information.

These effects should be accounted for by characterizing the spectral response of a detector. 

The energy response functions can be measured, for example with the monochromatic 
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beam of a synchrotron [92] or with radionuclide sources [93]. Once characterized, they 

can be included in the forward model to more accurately solve the inverse problem of 

material decomposition. Conversely, spectral degradation can be compensated by empirical 

calibration, for example with measurements of a multi-material step wedge phantom [51]. In 

addition, anti-coincidence or charge summing logic in the detector electronics can be used 

to recover spectral information and spatial resolution [94], [95], but at the expense of count 

rate capability due to the increased processing time and increased pulse pileup due to the 

possible inadvertent summing of the signals from different photons. Other concepts, such as 

coincidence counters for charge sharing [96] and multi-energy inter-pixel variants [97], [98], 

may be helpful in correcting and compensating for charge sharing.

B. Pulse Pileup

The charge generated by an x-ray photon is collected and shaped to form a pulse. The pulse 

has a finite duration, and effectively triggers a dead time approximately the same duration as 

the pulse. If another photon arrives during this dead time, pileup is said to occur. Due to the 

overlap in signal, the second count may be lost. In addition, the recorded count may reflect a 

partial sum of the photon energies, which alters the detected spectrum (Fig. 6).

Depending on the detector design, the behavior may be paralyzable or non-paralyzable. 

Paralyzable detectors require a full dead time without pileup to reset the detector into 

the active state. Non-paralyzable detectors reset into the active state at the end of a 

dead time, regardless of whether another pulse occurred during the dead time. While real 

detectors behave somewhere in between, these models are well-described and useful for 

understanding the impact on the total counts. For example, a non-paralyzable detector 

asymptotically approaches the maximum periodic count rate (equal to the inverse of the dead 

time, 1/τ) as the input count rate increases. By contrast, for paralyzable detectors, as the 

input count rate increases the output rate reaches a maximum (when the input rate is equal 

to 1/τ) and then decreases asymptotically to zero [99]. With both, when the input rate is high 

the measured counts are no longer Poisson distributed with equal mean and variance [100]. 

For non-paralyzable detectors, because the relationship between output and input count rates 

is monotonic a correction for lost counts is possible. For paralyzable detectors this is only 

possible for input rates below 1/τ. The lost counts lead to worse imaging performance, even 

after correction. As mentioned above, real detectors may not behave according to either 

model. A recent paper describes a semi-nonparalyzable model that better captures realistic 

pileup behavior [101]. In addition, high photon fluxes can cause saturation from polarization 

effects that further degrades the detector energy response and limit its count rate, particularly 

for CdTe/CZT detectors [20], [92], [102].

In addition to the errors in measured count rate, the detected spectrum under pileup can be 

substantially distorted, shifted to higher energies and can include counts at photon energies 

higher than those actually in the input spectrum. Although Monte Carlo simulation can 

predict how pileup will affect the detected spectrum under different input spectra and count 

rates, analytic methods are preferred for faster prediction of pileup spectra under different 

imaging conditions [103], [104]. The detected spectra and count statistics can then be 
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applied to imaging tasks to predict performance, such as how pileup increases the noise in 

material decomposition estimates [105], [106].

Models of pileup distortions can also be used to correct for such distortions [107]. Ideally, 

the model only requires a small number of measurements or parameters to estimate, and is 

accurate enough to capture the spectral distortions of a real PCD [102]. With an accurate 

pileup spectrum model, material decompositions can be accurately performed; otherwise, 

errors in the model lead to biases in the material decomposition [108]. Non-spectral tasks, 

such as VM imaging, are less sensitive to spectral distortion [109]. As mentioned above, 

compared to an ideal detector, even with corrections one should expect higher noise levels 

due to pileup.

Care must be taken to avoid pileup or other high-flux effects when imaging at clinical dose 

levels [110]. The incident count rate per pixel can be reduced by decreasing the detector 

pixel size. As a result, many detectors have small pixel size, which comes with the benefit 

of increased spatial resolution, but at the expense of increased cross talk, as previously 

discussed. These effects, taken together, suggest that at very high x-ray flux, pileup limits 

image quality and smaller pixels are preferred. The detector can also be segmented in the 

depth direction, further decreasing the input rate per counter [111][5]. At low flux or for 

thick objects, cross talk becomes the limiting factor and larger pixels are preferred [109]. 

Detector count rates also depend on semiconductor properties (e.g., carrier mobility), design 

(e.g., detector thickness, depth segments), and pulse shaping time (e.g., shorter shaping 

time decreases dead time but increases electronic noise). Increasingly, detectors have been 

shown to support count rates in the range required by clinical CT systems (up to 100 Mcps/

mm2, million counts per second per mm2) [112]. The unattenuated beam can exceed 1000 

Mcps/mm2 [113], [114], although it is reduced by the patient and a bowtie filter. Other 

proposed solutions include methods to reduce the peak incident count rate, e.g., dynamic 

bowties that reduce flux where the scanned object is least attenuating [115], which improves 

both dose efficiency and image quality. Other concepts for pulse-detection logic, such as 

measuring the peak duration (width), may also provide useful information to overcome 

pileup [116].

C. Use of Artificial Intelligence

Artificial intelligence (AI) is increasingly being investigated for countless applications, 

including for PCD corrections. While such approaches generally require training data to fit 

models such as neural networks, they can often avoid explicit models. The training data 

could be in the form of empirical measurements of known objects and thicknesses (e.g., step 

wedges of basis materials) that include non-idealities such as spectral or pileup distortions. 

Then, neural networks can be trained to directly map binned counts corrupted by such 

distortions to basis material images. Such approaches have been demonstrated for handling 

spectral distortions [117] and pileup [118], [119]. In addition to neural networks, different 

machine learning methods are being investigated [120], [121]. The extensive amount of 

training data needed may pose a challenge to AI approaches, and methods such as transfer 

learning can incorporate simulation data to reduce the amount of empirical data needed 

[122].
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D. Patient Scatter

While scattered x-rays from the patient are a problem in all x-ray systems, they do add 

some unique challenges to PCDs. Conventional CT scanners have substantially increased 

longitudinal coverage, enabling increased coverage in axial mode and faster helical 

scanning, but also leading to increased patient scatter [123]. Current SPCCT prototypes have 

limited longitudinal coverage, enabling narrower collimation with reduced scatter. However, 

as longitudinal coverage increases, so will scatter. The scatter signal distorts the measured 

spectrum toward lower energies and adds undesired bias and noise into the binned counts, 

which in turn affect imaging tasks such as material decomposition, as shown by Monte 

Carlo studies [124], [125]. Even a relatively low scatter-to-primary ratio of 3.5% can have a 

substantial impact on iodine quantification [126].

An anti-scatter grid can be effective at removing scatter, but it detracts from one of the main 

advantages of PCDs. EIDs already have septa that separate pixel scintillators to avoid cross 

talk, so a grid aligned with the septa has minimal, if any, effect on geometric efficiency and 

quantum detection efficiency (QDE). However, in PCDs, septa are not typically included, so 

overlaying a grid would reduce the geometric efficiency to the grid fill factor (Fig. 7). The 

tradeoff between geometric efficiency and scatter was investigated in [127]. Without a grid, 

scatter can reduce DQE by more than 50%, whereas a grid limits the DQE reduction to 19%, 

with approximately half the reduction from geometric efficiency and the other half from 

residual scatter. Aside from grid-based solutions, Sossin et al. developed an approach to 

estimate binned scatter counts using a partial attenuator in the beam [128], [129]. However, 

even if the average scatter signal can be removed, noise from the scatter will remain. Likely, 

some combination of hardware and software-based solutions is needed to physically reject 

scatter and correct for residual scatter, respectively.

IV. PERFORMANCE ASSESSMENT

A. Dose Efficiency

The question of dose efficiency is deeply intertwined with the discussion on grayscale 

and spectral imaging performance. In general, measurement noise (standard deviation) is 

inversely proportional to the square root of dose, so any reduction in noise can instead 

be used for dose reduction. Conversely, increased noise may have to be overcome with 

increased dose to maintain precision. Typically, dose efficiency is assessed by examining 

measurement noise for fixed dose, enabling the fairest comparison. Here, we assume the 

behavior is approximately linear and exclude noise reduction from non-linear denoising 

algorithms, which can affect spatial resolution, noise texture, and/or introduce bias. For 

grayscale imaging, dose efficiency is commensurate with increased CNR [29], [30], [110], 

as discussed in Section II. A and C.

Multi-material acquisition and decomposition from a single scan has the advantage of 

simultaneous acquisition, which limits motion and registration issues. However, the potential 

for dose reduction by using a single CT acquisition instead of multi-phase CT scans should 

be carefully considered. A recent study showed conventional dual-phase imaging at different 

time points following a single contrast injection (e.g., arterial, venous phases) is more dose 
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efficient than a single scan with dual contrast agents. For the same total dose, simultaneous 

imaging of dual contrast agents may result in increased noise; conversely, for equal noise, 

the dose would need to be increased greatly [130]. In addition, dual contrast scans may 

require larger amounts of contrast agents in total, raising toxicity concerns.

Another important consideration for dose efficiency is to ensure the source spectrum (tube 

voltage, filtration) is optimized for the detector and imaging task, which can vary from 

non-contrast imaging to quantification of iodine or gadolinium [131]. For example, lower 

tube voltage for smaller objects (as low as 60 kVp for pediatric-sized phantoms) was 

shown to increase the detectability index per unit dose by up to 30% for adipose imaging 

and 70% for iodinated imaging, as compared to an EID [132]. Additionally, Shikhaliev 

showed that adding a K-edge filter to the source improves dose efficiency since it creates a 

pseudo bi-modal spectrum with greater energy separation between photons [133]. Perhaps 

counterintuitively, even discarding photons from certain energies can help spectral tasks 

[31].

For dual energy tasks, such as two-material decomposition or single contrast agent imaging, 

DECT can have competitive performance as compared to SPCCT. Such comparisons should 

allow for source spectrum optimization for both [134]. DECT performance largely depends 

on the separation between the two measured spectra, so, for example, an optimized dual 

source DECT with filtration can perform at the level of realistic PCDs [54]. Further 

improvements can be achieved by combining dual spectra with PCDs, for example in a 

hypothetical dual source SPCCT system, which would outperform both dual source DECT 

and single source SPCCT [135].

At very low doses, where EIDs suffer from electronic noise, the relative performance of 

PCDs is much higher. This is particularly evident in regions of photon starvation, such as the 

shoulders. Yu et al showed that at the same low dose, PCD images had noticeably less streak 

artifacts and less image degradation than EID images [136]. Conversely, at very high doses 

(and flux rates), the relative performance of PCDs falls when pileup becomes significant 

(Fig. 8).

B. CRLB

Noise is a critical part of assessing measurement quality, particularly when examining CNR, 

dose efficiency, and material-specific imaging. Often, noise is understood in one domain 

(e.g., binned counts), and needs to be used to predict the noise in another domain (e.g., 

basis material line integrals). The Cramér-Rao lower bound (CRLB) is a useful tool in that 

regard since it propagates uncertainty from one domain to another. It gives the minimum 

variance (or covariance matrix) for an unbiased estimator. The CRLB therefore provides 

the performance of the best-case scenario for a maximally efficient unbiased estimator that 

makes use of all energy information in the binned counts. Calculating the CRLB can be 

useful for detector or system design, by understanding how design choices affect imaging 

performance. This approach was used in the original dual energy paper by Alvarez and 

Macovski [33] to analyze dual energy performance and has since been applied to assess 

PCD performance [137].
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In the case of estimating basis material noise from binned counts, the CRLB requires 

the probability distribution of the binned counts. Because the true distribution is often 

intractable, a multivariate Gaussian approximation is assumed instead, using the first and 

second-order statistics of the true distribution (mean and covariance matrix, respectively).

In addition, the sensitivity of the binned counts (mean m, covariance Σ) to the material 

thicknesses (t) needs to be known or determined empirically. Then, for material indices i, j, 
the Fisher information matrix is:

Fij t = ∂m
∂ti

T
Σ−1 ∂m

∂tj
+ 1

2tr Σ−1 ∂ Σ
∂ti

Σ−1 ∂ Σ
∂tj

. (1)

The covariance sensitivity can be difficult to compute and has been shown to be negligible 

(constant covariance) when the number of photons is reasonably high [55]. The CRLB is 

then the matrix inverse of the Fisher information: C (t) = F−1 (t).

C. DQE

The detective quantum efficiency (DQE) is a more comprehensive metric of a detector’s 

performance or overall imaging performance and can be used to compare PCDs and EIDs 

[138]. DQE is a function of spatial frequency and can be defined as the ratio of output to 

input SNR:

DQE f = SNRout
2 f

SNRin
2 f

. (2)

Despite the relatively simple definition, evaluating it must consider the effects that degrade 

SNR as a function of spatial frequency f. The zero-frequency DQE is often easier to 

evaluate, since this reflects large-area tasks (“large” compared with the length of spatial 

correlations caused by the mechanisms that lead to cross-talk across pixels). For example, 

it was shown that processes that lead to multiple counts in neighboring pixels inherently 

reduce DQE(0) [139]. For the frequency-dependent DQE( f ), cascaded systems analysis 

helps create theoretical models of DQE by identifying and analyzing individual physical 

processes that lead to signal creation [140]. The approach can include cross talk from 

characteristic/scatter photons, stochastic conversion of x-ray photons to secondary quanta, 

depth-dependent charge collection, and electronic noise [141]. Such models have been 

compared to measurements and showed good agreement in MTF and DQE [142].

Realistic models should further include spatial-spectral effects between neighboring detector 

pixels and energy bins (Fig. 9). This cross talk leads to correlations that can be captured 

by their signal statistics. Monte Carlo simulations of these effects can reveal the impact 

on DQE as a function of pixel size, photon energy, and detection threshold [143]. While 

Monte Carlo is the gold standard, computationally efficient methods have been developed 

as well [144]. A photon counting toolkit (PcTK) that models spatial-spectral cross-talk 

and correlation between PCD pixels has been developed and made available to academic 
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researchers. It includes models for detection efficiency, charge sharing, K-fluorescence, and 

electronic noise [145]. The toolkit was used, for example, to examine the effect of sub-pixel 

binning and masking, e.g., due to an anti-scatter grid [146].

To understand the impact on spectral tasks such as material decomposition, the PCD 

statistics, including spatial-spectral correlations, need to be propagated through to the task. 

Using the CRLB, Rajbhandary et al found that such effects can increase basis material noise 

by 35% and virtual monoenergetic noise by 10% when using smaller CdTe pixels (4×4 

binning of 0.25×0.25 mm2 sub-pixels instead of a single 1 mm2 pixel) [147]. As previously 

discussed, this disadvantage of smaller pixels can be mitigated through charge sharing 

compensation, and smaller pixels do have advantages in avoiding pileup. Rahbhandary et 

al then extended the model to calculate DQE( f ), by including a small-signal sinusoidal 

imaging task and determining the CRLB with realistic detector correlations. It was shown 

that these correlations degrade DQE( f ) beyond what is lost by the imperfect response in 

each detector pixel [148].

Recently, a comprehensive framework for DQE( f ) analysis for spectral (basis material) 

and grayscale (virtual monoenergetic) imaging was developed, taking into account the full 

spatial-frequency dependence of the available energy information [149]. The framework was 

used to compare two realistic PCDs made of different materials: CdTe and Si. CdTe has 

higher stopping power and little Compton scattering, while Si offers higher carrier mobility 

(count rate), low electronic noise, negligible K-fluorescence escape, wide availability, 

and potentially low cost [90]. Monte Carlo simulation was used to determine the extent 

of spatial-spectral correlations, and the detector DQE was propagated to detection and 

quantification imaging tasks. The two detectors were found to have different advantages, 

with CdTe having better water/iodine detection, and Si having better material quantification 

performance [150].

So far, all such models of spatial-spectral correlations have been in the low-count regime, to 

avoid needing to include the effects of pileup. A comprehensive DQE model is still needed 

to combine spatial-spectral effects with pileup. Such comprehensive models will provide a 

complete picture of PCD performance and could facilitate optimization of SPCCT systems.

D. Task-Based Performance

While DQE describes detector or system-level performance, it can be helpful to incorporate 

the imaging task into a performance metric such as detectability index. Depending on 

the spatial frequency dependence of detector performance and imaging task, it is possible 

to derive optimal frequency-dependent bin weights, which can improve the detectability 

index by 10% as compared to conventional bin weights that are constant across all 

spatial frequencies [151], [152]. Performance also depends on the observer, and has 

been investigated with ideal [153], Hotelling [154], channelized Hotelling [155], and 

human observers [156]. A complete assessment of the impact of PCDs may ultimately 

be determined by incorporating the detector performance, task, and observer model into a 

comprehensive performance metric.
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V. SUMMARY

In summary, PCDs offer vast potential, including unique spectral information, higher dose 

efficiency, and higher spatial resolution. Competing EID technologies have over 40 years of 

engineering refinement, while PCDs are still a rapidly evolving technology. Key technical 

problems still need to be solved, including count rate, spectral distortion, reproducibility, and 

cost. Selection of the detector material may be key, with CdTe and Si having different pros 

and cons. Scatter mitigation needs to be optimized, otherwise some of the intrinsic gains of 

PCDs will be lost. The potential for spectral tasks is greater than grayscale tasks, but spectral 

tasks tend to be more sensitive to non-idealities than grayscale tasks. The impact of such 

non-idealities on image quality needs to be considered carefully and thoroughly. With the 

right properties, PCDs can revolutionize medical x-ray imaging in general and CT imaging 

in particular.
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Fig. 1. 
Energy integrating detectors use an indirect conversion process to detect x-rays. Multiple 

photons contribute to each measurement. Photon counting detectors use direct converters 

and fast electronics to count individual photons in energy bins.
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Fig. 2. 
An ideal PCD counts photons in each energy bin. Here, the detected spectrum is divided into 

4 bins.
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Fig. 3. 
Different energy weighting schemes.
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Fig. 4. 
Mass attenuation curves for different materials.
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Fig. 5. 
Illustration of charge sharing and K-fluorescence/Compton scattering, which lead to spatial-

spectral degradation.
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Fig. 6. 
Pulse pileup leads to lost counts and spectral distortion.
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Fig. 7. 
Effect of anti-scatter grids on quantum efficiency.
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Fig. 8. 
PCDs do not suffer from electronic noise but do have count rate limitations.
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Fig. 9. 
Spectral cross-talk of realistic PCDs, showing incident photons that contribute to each 

energy bin.
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TABLE I

IMPROVED DOSE EFFICIENCY: IDEAL PCD VS EID

“Grayscale” imaging “Spectral” imaging

Higher geometric efficiency 1.5 1.5

Better spectral information Optimal weighting 1.3 ‒ 2.5 [29] Basis material imaging 2.0 ‒ 3.1 (or more) [54]

No electronic noise At very low flux At very low flux

Noise aliasing At high spatial freq. At high spatial freq.

TOTAL 2.0 ‒ 3.7 or more 3.0 ‒ 4.6 or more
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