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Abstract: Hip arthroplasty is a common procedure in elective orthopaedic surgery that has excellent
outcomes. Hip replacement surgery aims to create a “forgotten” joint, i.e., a pain-free joint akin to a
native articulation. To achieve such goals, hip arthroplasty must be personalised. This is achieved
by restoring: the centre of rotation of the native hip; leg length equality; femoral offset; femoral
orientation; soft tissue tension; joint stability with an unrestricted hip range of motion; and having
appropriate stress transfer to the bone. In addition, the whole pathway should provide an uneventful
and swift postoperative recovery and lifetime implant survivorship with unrestricted activities. At our
institution, the preferred option is a personalized total hip arthroplasty (THA) with a large diameter
head (LDH) using either monobloc or dual-mobility configuration for the acetabular component.
LDH THA offers an impingement-free range of motion and a reduced risk of dislocation. The larger
head-neck offset allows for a supraphysiologic range of motion (ROM). This can compensate for
a patient’s abnormal spinopelvic mobility and surgical imprecision. Additionally, LDH bearing
with a small clearance exerts a high suction force, which provides greater hip micro-stability. With
appropriate biomechanical reconstruction, LDH THA can restore normal gait parameters. This results
in unrestricted activities and higher patient satisfaction scores. We use LDH ceramic on ceramic for
our patients with a life expectancy of more than 20 years and use LDH dual mobility bearings for
all others.

Keywords: hip; total hip arthroplasty; personalized; personalised; anatomical; large diameter
head; hip resurfacing; ceramic; dual mobility; enhanced recovery after surgery; offset; leg length;
forgotten joint

1. Introduction

Hip replacement surgery has significantly evolved since its conception. Sir John
Charnley, in his initial patient selection for the procedure, was looking ‘ . . . for factors
which offer a “built-in restraint”, such as defective knees or ankles, and impose some
general physical limitations on the patient . . . to hold back physical activity . . . .’ Despite
the pioneers’ initial failures, it has gained momentum, with ever improving implant
survivorship and patient satisfaction. Modern hip arthroplasty has shown outstanding
results, and it was even named “the operation of the century” [1]. Nevertheless, the era
of a standardized procedure for all patients is being superseded by the recent movement
to create a more bespoke approach to the native anatomy. The ultimate aim of a hip
replacement is to create a pain-free joint with the same functional movements as the native
joint; this was described by Behrand et al. as the “forgotten” joint [2].
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Hence, today the primary goal of THA is to recreate a pain-free native hip perception
and function. Patients want to resume the same leisure activities as before the hip disease
process (for example, sports) and return to work promptly after surgery. Some patients
physically perform demanding jobs, such as roofing, plumbing, firefighter, police officer,
etc., and not being able to resume their work and reorient their career can be problem-
atic. Finally, patients naturally hope to undergo complication-free surgery with minimal
postoperative pain and a swift recovery.

Ferguson et al. reported the most common causes of THA revision are aseptic loos-
ening (48%), dislocation (15%), periprosthetic fracture (10%), infection (9%), and implant
malpositioning (5%) [3]. The growing number of young and active patients undergoing
THA, as well as the globally ageing population, are the leading causes for the increase in
the complication rate, especially with regard to periprosthetic fractures and infections [4,5].
Some complications that require revision, such as a traumatic periprosthetic fracture or late
infection, are difficult to prevent by improving the implant design or using new technology.
The other significant causes for revision, however, such as dislocation or implant malposi-
tioning, can be significantly minimized by improving hip biomechanics with personalized
implant reconstruction [3].

2. What Is a Personalized/Optimal Hip Arthroplasty?

There is anatomic variation in the hip across individuals. The precise restoration of
this anatomy during THA may improve clinical function and patient satisfaction. The
improvement in the wear resistance of implants, fixation methods, and the unprecedented
advancement in navigation and robotic technology affords a more precise anatomical hip
restoration [6]. Additionally, patients may have specific medical or psychological conditions
which need to be considered in order to optimize their outcomes. Patients’ activities of
daily living, leisure, and related expectations also play an essential role in evaluating a
successful THA. A personalized hip arthroplasty should aim to restore/provide:

1- Functional biomechanics;

(a) The native hip’s centre of rotation;
(b) Leg length equality;
(c) Femoral offset and abductor lever arm;
(d) Femoral orientation: Neck-shaft angle and version;
(e) Balanced soft tissue tension;

2- Appropriate stress transfer from implant to bone (minimizing problematic bone re-
modeling, osteopenia, and thigh pain);

3- Hip range of motion and stability;

(a) Stable joint;
(b) Micro stability;
(c) Impingement free ROM;

4- A forgotten joint;
5- Bearing wear resistance provides a lifetime implant survivorship with unrestricted activities;
6- Rapid and complication-free recovery.

This paper will discuss the advantages of a large diameter head (LDH) THA. An LDH
bearing is defined as a femoral head >36 mm and/or a cup-head diameters difference of
12 mm, i.e., 46 mm cup with a 36 mm head (Figure 1). LDH THA and hip resurfacing
became widely accepted in the 1990s. The popular bearing at the time was Metal on Metal
(MoM). This bearing delivered a solution to the problem of early wear and failure of metal-
polyethylene (MoP) bearings in younger, more active individuals. The LDH also provided
superior functional ability and stability compared to their conventional standard diameter
head THAs. As complications associated with MoM began to rise, other bearing options,
such as Ceramic on Ceramic (CoC), for LDH became more popular.
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LDH THA is mainly available in two designs: Ceramic on Ceramic LDH THA with a
monobloc acetabular cup or dual mobility (DM) LDH THA.
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Figure 1. (a) Anteroposterior pelvis radiograph of 19-year-old men with right femoral head avascular 
necrosis following a slipped capital femoral epiphysis treated with canulated screws. During preoper-
ative templating, acetabular, and femoral components sizes were estimated to be small. (b) Preopera-
tive lateral view of the right hip. (c) Postoperative anteroposterior pelvis radiograph showing a CoC 
LDH THA with a 13 mm conical stem and a 46 mm monobloc ceramic acetabular component with a 
bearing diameter of 36 mm. (d) Postoperative lateral view of the right hip replacement. 

  

Figure 1. (a) Anteroposterior pelvis radiograph of 19-year-old men with right femoral head avas-
cular necrosis following a slipped capital femoral epiphysis treated with canulated screws. During
preoperative templating, acetabular, and femoral components sizes were estimated to be small.
(b) Preoperative lateral view of the right hip. (c) Postoperative anteroposterior pelvis radiograph
showing a CoC LDH THA with a 13 mm conical stem and a 46 mm monobloc ceramic acetabular com-
ponent with a bearing diameter of 36 mm. (d) Postoperative lateral view of the right hip replacement.

3. Two Types of Large Diameter Head THA Are Reviewed in This Article
3.1. CoC LDH THA

The use of CoC bearings, based on data from a number of national arthroplasty
registers in 2018, is the third most widely selected bearing surface globally [7]. It has
demonstrated a higher wear resistance and biocompatibility when compared to other
materials [8]. However, LDH CoC THAs require a thin metallic acetabular shell to optimize
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the ratio of the bearing diameter to cup diameter. To reduce the risk of liner fracture due to
incorrect liner assembly in a deformed metallic shell, CoC LDH cups are manufactured
pre-assembled and then implanted as a monoblock component. Our practice has been
using LDH CoC since 2011 and has implanted more than 3500 Maxera bearings (Zimmer,
Warsaw, IN, USA, Figure 2). This shell is made of Titanium (Ti-6Al-4V) alloy with a thin
layer of titanium vacuum plasma coating (Ti-VPS) on the shell’s exterior. The BIOLOX
delta taper liner is pre-assembled and secured into the shell using an 18◦ taper angle. This
implant has outer diameters ranging from 42 to 66 mm and articulation diameters ranging
from 32 to 48 mm.
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Figure 2. LDH ceramic monobloc acetabular component and ceramic head.

3.2. Dual Mobility LDH THA

In the 1970s, Professor Giles Bousquet, introduced the DM design. It incorporated
both Charnley’s ‘low friction’ and McKnee–Farrar’s stability through the use large head
principles [9,10]. DM design consists of a small articulation between the small femoral
head (22 or 28 mm) captive and mobile within a polyethylene (PE) Liner (Figure 3) and
a larger articulation between the PE liner ball with a highly polished metallic acetabular
shell. The PE large head diameter is usually 6–8 mm smaller than the size of the outer
metallic shell. Most of the movement occurs at the small articulation. Movement of the
large articulation only happens when the stem’s neck comes into contact with the PE head.
This design has two articulations (femoral head-PE liner, PE liner–outer shell) and three
interfaces (small and larger bearing and neck-polyethylene contact point). Wear can occur
at the two bearing surfaces and the taper junction. Particles produced (PE or metal) are
dependent on the surfaces interacting.

3.2.1. Goal #1 of a Personalized THA: Restore Hip Functional Biomechanics

(1a) The native hip’s centre of rotation

There are several benefits to restoring the native hip’s centre of rotation, all of which
can result in a better patient outcome score. These benefits can include: a reduction in the
risk of impingement (allowing for a greater range of movement and a decreased risk of
dislocation); improved abductor function and hip kinematics; decreased implant wear; and
a reduced long-term risk of implant loosening [11]. In most patients, the native acetabulum
is sub-hemispherical, but the acetabular components used for THA are hemispherical.
The mean subtending angle of the native acetabulum varies from 145◦ to 173◦ [12,13].
As an example, the height difference between a 58 mm/180◦ cup over a 58 mm/165◦

acetabulum is 2.4 mm [14]. This results in a lateral displacement of the centre of rotation
when the implant is fully contained. Therefore, to restore the hip centre of rotation with
a non-anatomical 180◦ cup, the surgeon must deepen (ream more medially) the native
acetabulum. However, the centre of rotation of the prosthetic hip joint depends not only on
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the depth of reaming but also depends on the cup design (the polar/apex thickness of the
cup and the liner). For example, 180◦ cup with uniform wall thickness requires less medial
reaming than a cup with a lateralized centre of rotation (i.e., greater polar thickness) to
achieve the same optimal centre of rotation. With a more anatomical acetabular component
(165◦), the hip’s anatomical center of rotation could be restored more precisely with less
aggressive reaming [12].

(1b) Leg length equality,
(1c) femoral offset and abductors lever arm,
(1d) femoral orientation,
(1e) soft tissue tension
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Figure 3. Composite image showing a monobloc DM acetabular component and its two main
articulations: large polyethylene ball articulating with the metallic cup and the smaller articulation
between the 28 mm ceramic head and the polyethene head (mobile liner).

Precise biomechanical reconstruction of the hip by THA is essential for the success of
this procedure. Optimal femoral offset and leg length restoration result in better abductor
strength and clinical function. Failure to restore the normal anatomy for THA has been asso-
ciated with a higher rate of dislocation, muscle weakness, limping, leg-length discrepancy,
impingement, and early loosening of the implant (Figure 4) [12]. To improve the preci-
sion of the anatomic reconstruction, the range of sizes of the implant has been increased.
Modular options have been introduced to give different neck-shaft angles and offsets of
the stem. To enable the surgeon to achieve optimal restoration of the hip joint anatomy,
different implant modularities, geometries, sizes, and computer navigation systems are
now available.

We prefer to use a fixed neck stem with three different neck angle options to better
meet the different patients’ anatomies rather than a stem design with a unique angle
and two different offsets (standard/lateralized). Less influenced by the risk of instability,
surgeons using LDH THA can better optimize a patient’s leg length and femoral offset
(Figure 5). In our experience and the literature, up to 10 mm of leg length difference can be
tolerated; a shorter leg is much better tolerated than a longer one by patients [15]. In the
cases where we hesitate between a shorter or a longer head (example: 0 mm vs. a +4 mm),
we, therefore, select the shorter one.
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increased, and leg length was shortened.

3.2.2. Goal #2 of a Personalized THA: Minimize Abnormal Stress Transfer to Bone

Femoral stem designs have specific load patterns. These load patterns do not replicate
the physiological load pattern exerted on the proximal femur, instead they result in an
adaptive periprosthetic bone remodeling. The location and magnitude of stress transfer
from the femoral stem to the bone vary depending on mechanical and biological factors; the
former is related to the implant, and the latter is associated with the stiffness of the patient’s
bone. In younger and more active patients selecting a femoral implant with lower implant-
related thigh pain is of primary importance to allow these patients to return to impact sports
or demanding work. Our preferred stem is an uncemented titanium collarless tapered
stem that obtains a press-fit in the metaphysis and the metaphyso-diaphyseal junction. The
tapered shape prevents a complete fill in the distal diaphyseal portion, encouraging a more
physiological load transfer in the proximal part of the femur. In a randomized control trial
(RCT) comparing hip resurfacing (HR) to THA (with the CLS implant, Zimmer-Biomet,
Warsaw, USA), patients reported occasional thigh pain related to activity in 6% of THA and
2% of HR after a 6–9 years follow-up [16].

For the older, less active patients, and often with osteopenia, we favour tapered,
polished, cemented stems. This strategy promotes excellent clinical results for this patient
group and reduces the risk of periprosthetic fracture (intra and postoperative). In addition,
the Australia Orthopaedic Association National Joint Replacement Registry states, that for
the over-75 age category, there is a lower revision rate for cemented and hybrid implants
when compared with uncemented [17].

In the long term, bone remodeling around a stem is an unavoidable physiological
process related to implant design. However, for some predisposed patients, it can lead to
periprosthetic bone loss secondary to severe stress-shielding, which is thought to contribute
to late loosening, late periprosthetic fracture, and, thus, renders revision surgery more
complicated. Interestingly, despite all the differences between the various stem designs,
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a review of the best-performing cementless stems found no evidence that one design is
superior to another in terms of clinical outcome or extended long-term survival [18].
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3.2.3. Goal #3 of a Personalized THA: Offer Unrestricted Hip Range of Motion and Stability

(3a) Avoid Hip Instability

Dislocation is one of the leading causes of THA revision with a variable incidence in the
literature. Determining the precise incidence of dislocations is complex as closed reductions
might remain undetected. Hermansen et al. sought to find a true cumulative incidence
of dislocation in 30,000 THAs in the Danish registry and reported a rate of 3.5% [19]. The
primary arguments for LDH implantation are a wider impingement-free range of motion
and a reduced risk of dislocation due to increased jump distance and the larger head size
to displace (Figure 6). Zijlstra et al. analyzed 160,000 THAs from the Dutch arthroplasty
register and found that the cumulative risk of dislocation was significantly higher in
22–28 mm heads (1.1%), compared to >36 mm heads (0.5%) [20–22]. In our practice, with
more than 3500 CoC LDH THAs implanted since 2011, we encountered 5 (0.14%) early
postoperative dislocations, of which four were successfully treated with closed reduction,
and one had recurrent dislocations that required revision surgery. Once instability is of
lesser concern, leg length adjustment and femoral offset restoration can be performed with
more ease (which promote achievement of goal #1). Using intraoperative measurements
or computer/robotic assistance, the surgeon can focus on anatomic restoration without
the fear of instability. Knowing that patients would better tolerate a shortened leg to an
elongated one, we favour the shorter one when in doubt between two head lengths [15].
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Figure 6. Composite image showing the differences in the jump distance, femoral head-neck offset,
and impingement free range of motion between a standard femoral head and LDH.

Using a LDH THA allows unrestricted movement after THA for all types of surgical
approaches. Vendittoli’s group in Canada practices no postoperative ROM restriction for the
posterior surgical approach, as it simplifies patients’ education, enhances their confidence
during rehabilitation, and facilitates bilateral procedures [23,24]. LDH monobloc DM is
especially interesting for many older women with large femurs and a small acetabular
cavity (<50 mm, Figure 7). In these cases, using a standard bearing diameter is prone to
instability. With its LDH, DM design provides optimal implant stability for these not so
infrequent patients. Moreover, with LDH, we do not impose activity restrictions in the long
term. LDH CoC THA offers a significant benefit for many active individuals who can return
to their regular jobs and for those who want to practice demanding sporting activities.
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Figure 7. (a) Antero-posterior pelvis radiograph of a 75-year-old woman with severe bilateral hip
osteoarthritis. During the right THA surgery, the acetabular cavity was reamed to 47 mm. A monobloc
acetabular component of 48 mm was implanted with a DM polyethylene head of 41 mm (28 mm metal
head). A polished tapered stem was cemented. (b) Post-operative anteroposterior pelvis radiograph.

(3b) Optimize Hip Micro Stability

The LDH is closer to the native femoral head size. It can be speculated that repro-
ducing a more anatomical joint with more natural capsular tension and proprioception
can produce better results. It has also been shown that LDH generates suction forces
up to 30 N (3 kg) between the femoral head and acetabular liner and reduces implant
micro-separation [23,25]. The larger the bearing diameter and smaller the component clear-
ance, the higher is the suction force. This phenomenon is particularly important with CoC
designs, as they allow higher surface wettability and, consequently, higher cohesiveness of
the lubricating film than implants with PE surface [23].

(3c) Allow Unrestricted Hip Range of Motion

Given the constant neck diameter for most femoral stem designs, the head–neck ra-
tio increases proportionally by increasing the head diameter. This leads to a theoretical
and clinical greater hip range of motion amplitude [26,27]. In addition, owing to a supra
physiologic arc of motion, extra-articular impingement occurs first, and inter-component
impingement is rare. Consequently, less than optimal implant positioning can be better
tolerated [28]. This is an essential notion considering the extent of surgical indications for
patients with primary or secondary anatomy deformations (e.g., dysplasia, acetabular retro-
version, previous pelvic osteotomy, post-traumatic, etc.) as optimal implant positioning is
often challenging (Figure 7).
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LDH Bearing Is a Forgiving Implant
The interrelation between the spine, pelvis, and hip was recently recognized as a critical

factor explaining component impingement, limited ROM, and instability after THA with
standard bearing diameters [29–34]. Undoubtedly there is a benefit in considering static and
dynamic spinopelvic parameters [35], which will become an integral part of preoperative
planning. However, despite the scientific interest, it has somewhat limited use in daily
practice. Applying the recommendations for a functional implant alignment requires
sophisticated preoperative 3D imaging techniques and intraoperative precision tools to
apply the preoperative plan (precise acetabular component orientation ±2–5 degrees).
Being a forgiving implant (mal-alignment of LDH is less likely to lead to a dislocation due
to the jump distance), LDH THA is a much simpler solution. The supraphysiologic ROM
offered by the large head-neck offset can compensate for patients’ abnormal spinopelvic
mobility and surgeons’ imprecision.

Furthermore, over a lifetime, spinopelvic mobility and parameters might change; LDH
THA should sustain these unpredictable modifications. When implanting LDH acetabular
components, our goal is to obtain a functional alignment of the bearing (congruency
between the femoral and the acetabular components) with the hip in 10–20◦ of flexion, 10◦

of adduction and 20–30◦ of internal rotation. This is the modified Ranawat’s sign published
by Thomas J. Blumenfeld [36].

3.2.4. Goal #4 of a Personalized THA: Provide a Forgotten Joint

A double-blind RCT was performed comparing HR to metal-on-metal (MoM) LDH
THA with a control group of patients without a hip replacement. Patient gait speed,
postural balance, and performance on several functional tests were evaluated in a gait
laboratory [37]. The performances at most functional tests and clinical scores were similar
between HR, LDH, and the control group at three months postoperatively. By these
measures, HR did not provide better clinical function over LDH THA, and both restored
a normal hip performance by three months post-surgery. Using a CoC LDH THA in
276 patients, we reported an excellent mean WOMAC score of 92.3, UCLA activity score of
6.6, and Forgotten Joint Score of 88.5 after a mean follow-up of 67 months [24].

As a patient’s perception of a normal joint is the ultimate THA goal, we previously
described and validated a simple question with five possible answers (Patient’s Joint
Perception question: PJP) [38]. Using this simple question, we published that 52% of LDH
THA patients had a “natural joint” perception, and 24% of patients reported no limitations
after their LDH THA [39]. These clinical results show that modern hip replacements have
fulfilled the aim of achieving a forgotten hip for the majority of patients.

3.2.5. Goal #5 of a Personalized THA: Lifetime Implant Survivorship

THA implant survivorship should exceed the patient’s life expectancy. Polyethylene
wear-related biological reactions in young and active patients continue to be a major concern.
Orthopaedic surgeons have attempted to address this issue by using alternative hard-on-
hard bearings. In comparison to metal-on-polyethylene (MoP) bearing, CoC offers greater
scratch resistance and lower wear debris production [40]; it was also linked to a reduction in
wear-induced osteolysis, reduced cumulative long-term risk of dislocation, reduced corro-
sion of the head-neck modular junction, and lower revision rates. The evidence in the UK
National Joint Registry 2021 states that the lowest revision rates are for uncemented CoC
bearings compared with the highest revision rates for MoP for head sizes above 36 mm [41].
In a recent published RCT, we compared the long-term implant aseptic revision rate.
Mean follow-up of 21 years, of MoP (conventional poly, 17/69; 24.6%) vs. CoC (2/71; 2.8%;
p < 0.001) [42]. Kaplan–Meier survivorship analysis for aseptic revisions was 73.6% (95% CI:
63.3–84.9%) for MoP while it was 96.9% (95% CI: 92.8–100%) for CoC (p < 0.001). Moreover,
61% (14/23) MoP vs. 6% (2/33) CoC showed osteolytic signs (p < 0.001). The evidence in
the literature suggest that thinner PE inserts have a faster wear rate. Historically, mini-
mum PE thickness has been 8 mm to prevent faster wear and also prevent catastrophic
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failure [43]. Our findings align with a systematic review of RCTs and meta-analysis com-
paring THA with six different bearings with more than ten years of follow-up [42]. The
authors reported a higher risk of revision of MoP (conventional) compared to CoC (RR: 2.83;
95% CI: 1.20–6.63). A meta-analysis including 5 RCTs (n = 974 hips; 601 CoC and 373 MoPc)
found lower osteolysis and fewer radiolucent lines with CoC (4.4% vs. 18.1%, respectively;
RR = 0.22; 95% CI: 0.14–0.36; p < 0.01) [42,44]. This wear-resistant material makes it the
ideal option for a LDH bearing. We reported the results of our first consecutive 264 CoC
LDH THAs after a mean follow up of 67 months (48 to 79) postoperatively [24]. There were
four re-operations (1.5%), including one early revision for failure of acetabular component
primary fixation (0.4%). No hip dislocation was reported. For the younger, active patient
with a life expectancy of more than 20 years, LDH CoC is a sound option.

For the older, more sedentary patient or the patient with a shorter life expectancy,
DM LDH THA is the ideal alternative (Figures 7 and 8). DM implant design has the LDH
stability benefits and wear rates significantly lower than fixed bearing implants [45,46].
Loving et al., in a simulator study, under multiple test conditions (impingement, abrasion,
loss of mobility of the insert), showed that the performance in terms of wear was dictated
mainly by the smaller articulation and by the polyethylene material used. For the most
severe tests, a 75% lower wear rate was observed compared to a fixed insert of conventional
polyethylene sterilized under gamma rays in an inert atmosphere [47]. Additionally, with
osteopenic bone there is a higher risk of intra-operative periprosthetic fractures with LDH
press fit monoblocks [48,49]. Bearing a lower cost and avoiding the potential drawbacks of
hard-on-hard bearings (noise, fracture, and trunnionosis), DM should be considered for
patients over 65 years.
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Figure 8. (a) Antero-posterior pelvis radiograph of an 82-year-old man with severe post-traumatic
right hip osteoarthritis. The fracture and secondary degeneration modified native acetabular cavity
orientation. Using a DM, LDH THA helped obtain a stable joint and may forgive potential surgical im-
pressions. (b) Post-operative anteroposterior pelvis radiograph. (c) Lateral view of the reconstructed
right hip.

4. LDH THA Potential Downsides
4.1. Volumetric Wear

LDH are not without potential complications. Traditionally, the volumetric wear
associated with larger diameter heads was a common subject of discussion. The volumetric
wear is an inherent trait of PE liners, and its minimal thickness has been proposed to be
8 mm. With increased quality and wear resistance of the PE, these values were reduced
to 6 mm or even to 3.9 mm for ultra-high molecular weight PE [50]. Despite the high
resistance of new generation PE, the head diameters are still limited, and the long-term
bearing wear for a thinner PE is still unknown. At present, we prefer to use CoC or DM
bearings as both bearings have been shown to produce minimal wear with LDH [46].

4.2. Trunnionosis

Taper wear and corrosion, also known as trunnionosis, have been reported in the
literature [51]. The galvanic corrosion was observed less often when the head–neck junction
combination was from the same material. For example, CoCr/CoCr is less susceptible
to corrosion than CoCr/Ti or CoCr/Stainless steel couples. Many factors, such as high
offset, low neck/shaft angle, taper geometry (length, angle), surface finish, and even the
angle and the force of impaction of the head were investigated and attributed to the risk
of corrosion [51]. Panagiotidou et al., in their retrieval study, demonstrated that using
ceramic heads significantly reduces the fretting and corrosion when used either on Ti or
CoCr stems [52].

We reported the Ti blood concentration in 57 CoC LDH THAs with Ti stem. We
showed that the Ti ion levels were normal and stable at two years (2.2 µg/L) and five years
postoperatively (2.0 µg/L, statistically significant reduction, p = 0.007) [53]. Moreover, we
did not find a correlation between Ti levels and femoral head size (40, 44, and 48 mm).
In addition, the use of Ti sleeve did not show a significant difference in blood Ti ion
concentration. With regard to DM, using a small 28 mm head on the stem trunnion retains
the benefits of LDH while minimizing the risks of trunnionosis. Such a head–trunnion
combination has been used with success for decades.
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4.3. Ceramic Liner Fracture

Ceramic liner fractures mostly occur at liner insertion or after inappropriate surgeon
impaction (malseated liner). Pre-assembled ceramic liner in LDH CoC acetabular compo-
nent virtually eliminated these risks. With more than 3500 LDH delta ceramic cases, we
had no liner or head fracture case.

4.4. Ceramic Articular Noises

Our group reported a rate of at least one episode of audible noise in 22.7% of LDH
CoC THAs, which was strongly associated with young and active patients and with a larger
femoral head diameter [24]. Though the audible noises might be distressing for the patient,
they are mostly occasional and benign, and not associated with a reduced functional score
or patient dissatisfaction. Chatelet et al. similarly reported 28% of patients with CoC THAs
had some articular noise, but its effect on daily quality of life was negligible and the overall
survival of was 94.2% at 11 years follow-up. [54].

5. Conclusions

In our experience, LDH THA with either CoC or DM configuration has proven to be
very efficient in achieving most goals of personalized hip arthroplasty. The large head-neck
ratio of LDH THA almost removes the risk of dislocation, creates a supraphysiologic arc
of motion, and allows a certain degree of surgical imprecision in acetabular orientation.
Hence, it is a forgiving procedure, even in patients with impaired spinopelvic kinematics.
Less impacted by the risk of instability, LDH also allows a better restoration of individual
hip anatomy regarding capsular tension, femoral offset, and leg length—thus favouring
pre-disease hip kinematics.

In addition, LDH eliminates postoperative restrictions, helping rehabilitation and speed-
ing up the return to daily, occupational and sports activities. To provide an implant for life,
ceramic is the ideal bearing for young and active patients with a life expectancy >20 years.
For the other patient cohorts, DM is an attractive alternative due to its lower cost. Overall,
LDH THA, either CoC or DM improves patient satisfaction, clinical outcomes and is an
excellent option on our path to offer a personalized and forgotten hip joint.
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