
leapR: An R Package for Multiomic Pathway Analysis

Vincent Danna,
Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 
99352, United States

Hugh Mitchell,
Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 
99352, United States

Lindsey Anderson,
Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 
99352, United States

Iobani Godinez,
Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 
99352, United States

Sara J. C. Gosline,
Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 
99352, United States

Justin Teeguarden,
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, 
Washington 99352, United States

Jason E. McDermott
Computational Biology Group, Pacific Northwest National Laboratory, Richland, Washington 
99352, United States; Department of Molecular Microbiology and Immunology, Oregon Health 
& Sciences University, Portland, Oregon 97201, United States

Abstract

A generalized goal of many high-throughput data studies is to identify functional mechanisms 

that underlie observed biological phenomena, whether they be disease outcomes or metabolic 

output. Increasingly, studies that rely on multiple sources of high-throughput data (genomic, 

transcriptomic, proteomic, metabolomic) are faced with a challenge of summarizing the data 

to generate testable hypotheses. However, this requires a time-consuming process to evaluate 

numerous statistical methods across numerous data sources. Here, we introduce the leapR 

package, a framework to rapidly assess biological pathway activity using diverse statistical tests 

and data sources, allowing facile integration of multisource data. The leapR package with a 
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user manual and example workflow is available for download from GitHub (https://github.com/

biodataganache/leapR).
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INTRODUCTION

A generalized goal of high-throughput data studies is to identify functional mechanisms that 

underlie observed biological phenomena, whether they be disease outcomes or metabolic 

output. Increasingly, studies that rely on multiple sources of high-throughput data (genomic, 

transcriptomic, proteomic, metabolomic) are faced with a challenge of utilizing the data in 

a way that maximizes interpretability. This generally requires a diverse suite of methods 

and external data packages that to date do not exist in a coherent computational framework. 

Here, we introduce such a framework that is able to assess biological pathway activity 

related to phenotypic outcome using multisource data.

Most analysis tools employ statistical tests that compare the genes emerging from a high-

throughput screen to known lists of pathways. This functional enrichment approach is a 

common method to connect the molecular response observed to higher-level biological 

functions and mechanisms. It is robust to noise and able to detect more subtle signals, 

because it relies on patterns of many pathway components rather than individual 

measurements alone. However, there are diverse approaches to pathway enrichment 

analysis1,2 each used for different purposes and requiring different assumptions about the 

data. For example, MGSEA adapts the popular GSEA algorithm1 to handle multiomic data 

inputs using gene rankings3 and is similar to our approach in leapR. PathwayPCA uses 

a principal component analysis approach to data integration to map multiomics data to 

pathways.4 ActivePathways uses a multistage approach to identify pathway enrichment from 
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p-values derived from multiple omics types.5 Finally, there are several more sophisticated 

methods for analysis of pathways for inference of causal relationships from multiomics data, 

for example, CausalPath, which integrates proteomics and phosphoproteomics data in causal 

pathway models (http://causalpath.org). WebGestalt, which provides an R package to run 

locally, provides several different methods for enrichment, but integration of multiple omics 

types, including phosphoproteomics, in pathway analysis is not supported.6 These methods 

are all useful for various purposes, but in practice, one generally needs to evaluate numerous 

approaches requiring a unified framework. Furthermore, none support data integration using 

phosphoproteomics data.

To simplify pathway analysis of multiple different types of data, including post-translational 

modification, we have developed a framework, the layered enrichment analysis of pathways 

in R (leapR), to represent multiple omics types, perform pathway analysis on the individual 

sets or combined sets, and analyze and represent the results in a biologically meaningful 

manner.

IMPLEMENTATION

The leapR package has functions for reading omics data in the form of data matrices, 

with rows indicating the molecular species and columns indicating the sample (treatment, 

condition, subject, etc.). For data types such as phosphoproteomics, the matrix contains 

additional information about the site of the modification. The package has a function 

(combine_omics) for merging different kinds of omics data to perform multiomics 

enrichment. A common interface combines multiple methods for functional enrichment 

(Table 1 and Figure 1), and the package includes a comprehensive vignette demonstrating 

their use on a previously published multiomics data set.7 This unified framework enables the 

ability to apply a t test, Fisher’s exact test, or a Kolgomorov-Smirnov test depending on the 

type of data and problem considered.

Because pathway analysis often requires testing of many hypotheses (one for each pathway), 

we also include standard multiple hypothesis correction methods for postprocessing as well 

as randomization methods for calculating the significance of results empirically. Support 

for phosphoproteomics incorporation into pathway enrichment is a key distinction of the 

package, and example uses are provided in the vignette.

Finally, we introduce a number of customized algorithms to examine pathway enrichment 

based on the correlation of pathway members across conditions, enrichment in interactions 

in pathways (e.g., from protein–protein interactions), and pathway-specific principle 

component analysis.

The collection of functions and algorithms provides a basis to analyze and interpret 

complex, multiomic data sets and link them with phenotypic outputs in the form of 

functional pathways.

The leapR package is available on GitHub at http://github.com/biodataganache/leapR or 

installation from R using devtools: “devtools::install_github(“biodataganache/leapR”)”.
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RESULTS

The purpose of the leapR package is to enable the use of six distinct functional enrichment 

approaches together in a single R package. To this end, we have included a tutorial vignette 

that walks users through each of the enrichment approaches included in leapR, using the 

example multiomics data set included in the package and pathway data from commonly 

used sources. This analysis is laid out in the vignette included in the package, which can 

also serve as a template for user-directed analyses. Figure 1 and Table 1 summarize the 

six different functions, which are described in detail below. Figures 2 and 3 show example 

results from the package.

Condition Comparison

Many applications of enrichment compare one group of samples (case) against 

another group (control) with the goal of identifying pathways that have significantly 

different abundance in this comparison. The leapR package accomplishes this in the 

enrichment_comparison (see Figure 1 and Table 1) using a t test in which the overall 

abundance of the pathway members is summarized in distributions for the case and control 

groups and then compared. Output from this analysis will yield p-values for each input 

pathway that indicate the significance of enrichment. Examining the mean abundance from 

each condition will provide an idea of the effect size and the direction of enrichment—that 

is, is the pathway more abundant in the case or control condition? A small effect size can 

still yield very significant p-values, but these kinds of results must be treated with caution.

Protein Set Comparison

Another common application of enrichment analysis is to examine a list of genes or proteins 

to see if there is significant pathway enrichment, for example in the topmost differentially 

abundant proteins from the comparison discussed above. The Fisher’s exact test (analogous 

to the hypergeometric test as applied) can be used in this case to assess pathway enrichment 

in the set, relative to representation in the background list of all proteins identified. As with 

the condition comparison above, it is important to examine the results, because pathways 

with small numbers of members in the list can sometimes have very significant p-values, 

which may or may not be interesting depending on the question being posed.

Order-Based Enrichment

Instead of imposing a largely arbitrary threshold to perform a Fisher’s exact enrichment, 

the order of the entire list can be used to test for enrichment in pathways where the 

location of pathway members clusters together in terms of order (enrichment_in_order). 

This approach is flexible and requires only a way to rank the genes or proteins in the 

list. It uses the Kologmorov-Smirnov test, a version of which is also employed in the 

popular gene set enrichment analysis (GSEA) package.1 The method can be applied using 

any relative ranking metric: absolute abundance measure for a single sample, differential 

abundance measure (as in the previous two examples), or another metric such as correlation 

(see correlation example, below).
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Enrichment in Correlation

A less-established approach for assessing the enrichment of pathways in a set of multiple 

samples is by testing if the genes or proteins within a pathway are more correlated than 

proteins outside the same pathway. This approach can compare case vs control sets to 

identifying pathways that exhibit more concordance in one set of conditions (case) versus 

another (control). Pathways that are more likely regulated are more likely to have proteins 

and genes that are correlated in expression values. Previous studies8,9 have demonstrated 

that differential correlation analysis works well at the level of individual genes and 

pathways but does not provide tools for large-scale analysis of pathway-based correlation 

and differential correlation, which is provided here. Combining this analysis with, e.g., 

pathways with significantly higher abundance in the case condition, provides a further filter 

on potential pathway activity. To our knowledge, leapR is the first framework that provides 

this capability for omics analysis.

Phosphoproteomics Pathway Enrichment

Proteomics performed on fractions enriched for phosphorylated peptides, or 

phosphoproteomics, has grown in popularity recently as a way to characterize signaling 

pathways and other functional changes effected by this common post-translational 

modification.10–12 The leapR package has two methods to perform enrichment on 

phosphoproteomics data. The first is an implementation of the previously described kinase 

substrate enrichment algorithm (KSEA).13 We include a current version of phosphorylation 

sites that is known to be substrates of specific kinases derived from the Phosphosite Plus and 

Networkin databases.14,15 Application of the ordered enrichment approach that considers 

specific sites on phosphoproteomic data will test for the enrichment of substrates for specific 

kinases (see the package Vignette for implementation details). Significant results indicate 

that the substrates for a kinase are more (or less) phosphorylated, indicating that the kinase 

is more (or less) active. We have previously studied this relationship in large-scale cancer 

data.12 The second method is to analyze the phosphoproteomics at the whole protein level 

to look for pathways that have significantly different levels of phosphorylation overall using 

any of the methods already described. This method provides an indication of pathway 

activity at the signaling level, and we have previously found this to be more effective at 

discriminating between patient groups in ovarian cancer than transcript or protein levels.7

Multiomic Pathway Enrichment

Analysis of pathway enrichment using data from multiple omics sources has been reported 

previously,3 and leapR provides capabilities for calculating enrichment using combinations 

of data types with each of the approaches described above. Though methods that take 

into account specific roles of different data types (transcript abundance might drive protein 

abundance, for example) have been developed, it is clear that the relationships between 

molecules measured are complicated. Therefore, our approach focuses on a role-agnostic 

approach to data integration, which treats the different types of data the same in the 

enrichment process. Though this is an oversimplification of the biology, we argue that it 

can be very useful to get an improved idea of how the system is responding generally. We 

show an example of this in the next section.
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EXAMPLE PATHWAY ENRICHMENT

We include multiomics data from our ovarian cancer study7 in the leapR package to serve 

as an example of the various methods described above. The data set includes transcriptomics 

and global proteomics from resected tumors from 174 patients with high-grade serous 

ovarian cancer (HGSOC) and phosphoproteomics from a subset of 69 of these patients. 

Follow-up clinical data is available for each of the patients, and in our previous study, we 

separated the tumors into those with patients who survived for shorter times and those who 

survived for longer times to compare the molecular states of the two groups.7

We compared proteomics measurements between case (short survivors, n = 33) and control 

(long survivors, n = 37) in four different ways. The results, summarized in Figure 2, show 

important pathways and their statistical significance (adjusted p-value <0.05 is colored 

according to the key) under each of the different methods. We excluded the set comparison, 

as it yielded no significant results. The vignette contains details of these comparisons, but 

briefly: in condition comparison, we compared the abundance of all proteins in the pathway 

between the case and control groups; in the protein set comparison, we first calculated 

the difference between the case and control for each protein and then used the set of 

proteins with a significant adjusted p-value (p < 0.05) to test enrichment; in the protein 

order comparison, we used the difference between the case and control to order the proteins 

and tested for enrichment in order; in the correlation comparison, we used the correlation 

in the short surviving patients and compared it with the correlation in the long surviving 

patients. We repeated this analysis with the transcriptomics data and the phosphoproteomics 

data. Finally, we include a column that shows the same enrichment methods using the 

combined data set, which includes the transcriptomics, proteomics, and phosphoproteomics 

data. The results show that the different enrichment methods provide different results in 

terms of which pathways are found to be significant and, in a few cases, which direction 

the enrichment occurs in. We note that this application is on only one example data set, 

and other types of comparisons may yield different results—both in terms of how different 

enrichment methods work and what the different types of omics data reveal about the 

system. The distinct analysis approaches in leapR provide opportunities for distinct insights. 

The correlation-based approach indicates the how tightly regulated protein/gene expressions 

are, whereas the expression-based approaches indicate the magnitude in regulation of one 

group vs another, with the different approaches likely providing different sensitivity levels, 

and we have previously employed these methods in a number of publications to derive 

meaningful biological insight.11,16–18

We also identified kinase activity from the enrichment of known substrates in 

phosphoproteomics data in our test data set.16,17,19 We used two approaches, enrichment 

in correlation and enrichment comparison, to analyze the site-specific phosphoproteomics 

data to identify kinases that were significantly enriched comparing the short survivor cohort 

with the long survivor cohort. The results of this analysis are shown in Figure 3, which 

shows the enrichment score for each of nine kinases found to be significant by differential 

correlation analysis (note, for the purposes of this illustration, we considered the unadjusted 

p-values for significance, which is not recommended for actual applications). The results 

show that though the abundance of substrates for all of these kinases was found to be 
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significantly increased in the short surviving cohort, and the correlation between substrates 

was significantly higher in the long surviving cohort. This indicates that though the 

phosphorylation abundance is higher in short survivor tumors (as we previously reported7), 

those same kinases might be more tightly regulated in long surviving tumors.

CONCLUSIONS

It is important to note that though data can be combined, it may not be appropriate to do so. 

The issues of interbatch or interdata set variability in meta-analyses are well documented,20 

and caution must be taken when attempting to combine different data sets to ensure that 

appropriate batch correction has been performed prior to any enrichment. Failing to do so 

will likely result in spurious results that either increase variability and mask true signal 

or produce results that reflect technical differences rather than biological ones. Likewise, 

different data types from the same conditions must be carefully considered prior to use in 

multiomics enrichment such as that described here.

The rise in the ability to quickly and inexpensively assay the same samples using multiple 

different molecular profiling technologies has driven the need for improved methods for 

analyzing and integrating such multiomic data. Additionally, the biological insight provided 

by such data sets demonstrates the benefits of developing more sophisticated methods. We 

believe that the leapR package provides a useful and unique platform for representation and 

analysis of multiomic data sets.
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Figure 1. 
Graphical comparison of different enrichment methods described in the text. As described in 

the text, we illustrate the comparison between the case and control for pathway enrichment 

using four different approaches contained in the leapR package.

Danna et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2022 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of different enrichment methods applied to an example data set. Enrichment 

methods (enrichment comparison, enrichment in order, and correlation enrichment) were 

applied to the indicated data types from our ovarian cancer data set; TXN, transcriptomics; 

PROT, proteomics; PHOS, phosphoproteomics; COMBI, merged omics from all three. 

Comparisons were performed based on a case (data from tumors from short surviving 

patients) versus control (data from tumors from long surviving patients). Colored cells 

represent significantly enriched pathways (adjusted p-value <0.05) with blue being enriched 

in long survivors and red being enriched in short survivors. A darker color indicates a 

larger effect size. Pathways (rows) were selected from cancer relevant pathways in KEGG. 

Enrichment in sets was applied using significantly differential molecules between the case 

and control but yielded no significant results for this example.
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Figure 3. 
Enrichment methods applied to site-specific phosphorylation data. The differential 

enrichment score from two separate enrichment approaches is shown. On the left, significant 

pathways by differential correlation analysis are shown, and on the right, the same 

pathways showing an enrichment comparison between substrate phosphosite abundance 

are shown. Enrichment in the short surviving patient set is depicted in black bars, in the 

positive direction, and enrichment in long surviving patient set is depicted in gray bars, 

in the negative direction. Sets of known substrates for the kinases were derived from 

the Phosphosite Plus database. For demonstration purposes, significance of the correlation 

results was not corrected for multiple hypotheses. Comparing the two plots shows that 

although the kinase substrates are all significantly more abundant in the short surviving 

cohort, the long surviving cohort had a greater degree of correlation between those 

substrates—suggesting more controlled regulation.
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Table 1.

Enrichment Methods in leapR

enrichment method application

enrichment_comparison Is pathway abundance different between the case and control?

enrichment_in_sets Are pathway members over-represented in a subset?

enrichment_in_order Are pathway members grouped in an ordered list?

correlation_enrichment Are pathway members significantly correlated with each other?

enrichment_in_pathway Is the pathway more abundant than the background?

enrichment_in_relationships Are pathway members enriched in relationships (e.g., PPIs?)
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