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Abstract

Background: Human papillomavirus (HPV)–associated oropharyngeal squamous cell carcinoma (OPSCC) has excellent control
rates compared to nonvirally associated OPSCC. Multiple trials are actively testing whether de-escalation of treatment inten-
sity for these patients can maintain oncologic equipoise while reducing treatment-related toxicity. We have developed OP-
TIL, a biomarker that characterizes the spatial interplay between tumor-infiltrating lymphocytes (TILs) and surrounding cells
in histology images. Herein, we sought to test whether OP-TIL can segregate stage I HPV-associated OPSCC patients into low-
risk and high-risk groups and aid in patient selection for de-escalation clinical trials. Methods: Association between OP-TIL
and patient outcome was explored on whole slide hematoxylin and eosin images from 439 stage I HPV-associated OPSCC
patients across 6 institutional cohorts. One institutional cohort (n¼94) was used to identify the most prognostic features and
train a Cox regression model to predict risk of recurrence and death. Survival analysis was used to validate the algorithm as a
biomarker of recurrence or death in the remaining 5 cohorts (n¼345). All statistical tests were 2-sided. Results: OP-TIL
separated stage I HPV-associated OPSCC patients with 30 or less pack-year smoking history into low-risk (2-year disease-free
survival [DFS] ¼ 94.2%; 5-year DFS ¼ 88.4%) and high-risk (2-year DFS ¼ 82.5%; 5-year DFS ¼ 74.2%) groups (hazard ratio ¼ 2.56,
95% confidence interval ¼ 1.52 to 4.32; P< .001), even after adjusting for age, smoking status, T and N classification, and treat-
ment modality on multivariate analysis for DFS (hazard ratio ¼ 2.27, 95% confidence interval ¼ 1.32 to 3.94; P¼ .003).
Conclusions: OP-TIL can identify stage I HPV-associated OPSCC patients likely to be poor candidates for treatment de-
escalation. Following validation on previously completed multi-institutional clinical trials, OP-TIL has the potential to be a
biomarker, beyond clinical stage and HPV status, that can be used clinically to optimize patient selection for de-escalation.

Oropharyngeal squamous cell carcinoma (OPSCC) has shown an
important increase in incidence over the past several decades

(1). Transcriptionally active human papillomavirus (HPV) has
become the most common cause of OPSCC in the United States
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(1), with an estimated prevalence of 16 000 patients annually (2).
Patients with HPV-associated OPSCC demonstrate improved
treatment response to chemoradiotherapy as well as better
long-term survival, compared with patients with non-HPV asso-
ciated OPSCC (3). This has led to the consideration of treatment
de-intensification to reduce therapy-related morbidity in low-
risk HPV-associated OPSCC patients who are never or light
smokers and have low-stage disease (4-6).

A recent phase II randomized controlled trial (NRG-HN002)
(6) aimed to identify a suitable de-escalation strategy for low-
risk HPV-associated OPSCC patients, defined as those with T1-
T2/N1-N2b/M0 or T3/N0-N2b/M0 (American Joint Committee on
Cancer [AJCC] 7th ed.) and a 10 or less pack-year smoking his-
tory. The patients were randomly assigned to either of 2 arms:
1) dose-reduced radiotherapy (RT) (60 Gy) with weekly cisplatin
and 2) accelerated RT (60 Gy) alone. Overall, the dose-reduced
chemoradiation arm met the prespecified threshold of a 2-year
disease-free survival (DFS) of 85% and is being tested against
the standard of care in the NRG-HN005 randomized phase III
trial (7). However, a considerable percentage of patients in both
arms experienced local-regional failure, and the RT arm alone
did not meet the prespecified DFS threshold (6). These data are
promising with respect to de-escalation as a general strategy for
HPV-associated OPSCC but suggest that additional stratification
may be necessary to avoid undertreatment of aggressive tumor
biology even in early stage disease.

Tumor-infiltrating lymphocytes (TILs) have been reported in
multiple studies as associated with disease outcome in diverse
cancer types [eg, breast and lung (8)]. In the context of HPV-
associated OPSCC, TILs appear to have a protective effect
through an adaptive host immune response directed against vi-
ral antigens, and specific lymphocytes against HPV-associated
cancer (HPV-16 E7 T cells) have been identified (3). Previous
work (9) showed that an increased density of TILs is associated
with low risk of recurrence in low-stage HPV-associated OPSCC.
Conversely, decreased TIL infiltration, associated with tobacco
exposure, has been correlated with both advanced stage at pre-
sentation and locoregional recurrence (10). Unfortunately,
quantification of TILs is difficult to implement in routine clini-
cal practice because it is hard to standardize across pathologists
and may necessitate the use of ancillary methods such as CD4
or CD8 immunohistochemistry (10).

In this study, we employed image processing and machine
learning to develop OP-TIL, an imaging biomarker that quantita-
tively characterizes the spatial patterns of TILs and surrounding
nucleated cells in digitized hematoxylin and eosin (H&E) slides
of HPV-associated OPSCC patients. OP-TIL was trained to distin-
guish between the majority of low-risk patients (overall stage I
[T1-T2/N0-N1/M0, AJCC 8th ed.] and never or light smokers)
who will have a favorable DFS and be appropriate candidates
for therapy de-escalation vs those patients who will have a poor
DFS and for whom de-intensification would be inappropriate.
We performed the analysis on patients with less than 10
pack-year, matching the inclusion criteria of smoking history in
NRG-HN002 (6) and also analyzed patients with less than 30
pack-year, a risk cutoff suggested by previous works (10-12).

Methods

Dataset

A total of 1485 OPSCC patients with pretreatment primary tu-
mor specimens (biopsies and resections) was retrospectively

collected from 6 institutions: the Michael E. DeBakey Veterans
Affairs Medical Center (D1), Johns Hopkins University (D2),
Washington University in St. Louis (D3), Southern California
Permanente Medical Group (D4), Cleveland Clinic (D5), and
Vanderbilt University Medical Center (D6). Fine-needle aspira-
tion specimens were not included in this study because they do
not provide tissue with preserved architecture. Corresponding
clinicopathologic and outcome information from patients was
obtained from the institutions at which the datasets were col-
lected after obtaining the respective institutional review board
approvals.

Because the AJCC 8th ed. HPV positivity is determined by p16
testing of tumor tissue (13), immunochemistry was performed
at the respective institutions in routine clinical practice. Only
cases classified as p16 positive by accepted standards [strong
and diffuse, block-like nuclear, and cytoplasmic staining pre-
sent in �70% of the tumor specimen (1)] were included in this
study. H&E glass slides from each patient were re-reviewed by
our collaborating pathologists at each institution for selecting
the most representative single tumor slide (ie, the slide that
contains the tumor bulk and its leading tumor edge). Patients
for whom cautery (thermal) artifact was extensive or for whom
minimal tumor was present were excluded. Cases were digi-
tized as whole slide images at 40x resolution (0.25 lm/pixel res-
olution) using a Ventana iScan HT scanner.

After reviewing the clinical data and p16 status, 438 of the
patients were excluded because of negative or equivocal p16
results, insufficient clinical data (ie, no recurrence or death
data), or insufficient tumor in the specimens. Image quality was
checked using HistoQC (14), an open-source quality control tool
for digital pathology slides; 62 cases were identified as inappro-
priate for the study because the presence of large blurry areas,
obstructive dotting pen markings, or subcoverslip bubbles.

Cohort D1 (n¼ 94) was employed for feature discovery and
model training because it was previously employed in a study
(10) that demonstrated association between TILs and patient
survival. Cohorts D2 (n¼ 51), D3 (n¼ 45), D4 (n¼ 66), D5 (n¼ 123),
and D6 (n¼ 60) were used for independently evaluating the
prognostic ability of OP-TIL in low-risk patients, so patients
with overall stages higher than I and with more than 30 pack-
year smoking history were excluded from the analysis, as well.
Figure 1 illustrates the inclusion and exclusion criteria for pa-
tient selection.

Identification of Cell Types

Figure 2 illustrates the building blocks of the introduced ap-
proach. First, for computational feasibility, each whole slide im-
age was split into nonoverlapping 2048 � 2048–pixel image tiles.
Tiles containing at least 65% of tissue were retained, and the
remaining were discarded. Image color normalization (15) was
applied to each tile to compensate staining variations of slides
acquired from different institutions.

Then, 2 cell types were automatically identified in each im-
age tile: TILs and non-TILs (Figure 2, see Nuclei segmentation
and TIL detection). In this study, following the definition
employed by the International TILs Working Group (16,17), we
consider TIL as any lymphocyte located within tumoral tissue,
which includes both intratumoral and stromal lymphocytes.
Although non-TILs include cancer cells (majority), macro-
phages, fibroblasts, and neutrophils, among other nucleated
cells, in this study, they were not differentiated but treated as a
single type. First, every individual cell nucleus in each tile was
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segmented automatically using the deep-learning (18,19) model
developed by Mahmood et al. (20). Subsequently, another vali-
dated machine learning model (21) was used to classify each
segmented nucleus as either TIL or non-TIL based off visual fea-
tures (texture, shape, and color). More details about the seg-
mentation and TIL detection models are provided in the
Supplementary Methods (available online).

Feature Extraction

Once TILs were detected, the spatial interplay between TILs and
non-TILs was characterized. The procedure involved first con-
structing clusters of TILs. A TIL was linked to another TIL if the
distance between them was below a predefined threshold. A
very large threshold value generates just a single graph, limiting
the analysis of spatial interactions to within the microenviron-
ment, whereas a small value (close to zero) produces multiple
sparse subgraphs, leading to an analysis of individual nuclei.
The value of the threshold was empirically determined to be 95
pixels (approximately 24 mm) because it showed a reasonable
trade-off in the number of generated subgraphs. This action
was repeated for each TIL until all of them were interrogated,
resulting in a set of disconnected subgraphs of TILs (Figure 2,
see Construction of cell subgraphs). Then, for each TIL sub-
graph, a polygon was constructed as the smallest convex set
that contains all the subgraph cells (the convex hull) (Figure 2,
see Construction of cell clusters). TILs not linked to other cells
cannot form clusters, so they were excluded from the subse-
quent analysis. This process was also repeated for non-TILs.

From the constructed clusters of TILs and non-TILs within
each tile, features related to density, architecture, and

colocalization were extracted (Table 1; Supplementary Figure 1,
available online). The final feature vector for each patient was
obtained by computing 8 metrics (total, mean, standard devia-
tion, median, minimum, maximum, skewness, and kurtosis) for
each feature across all its constituent tiles (2952 features per pa-
tient). Some of these metrics aim to model the intrapatient het-
erogeneity (23).

Statistical Analysis

DFS is the time from the date of diagnosis to the date of first oc-
currence of local, regional, or distant recurrence, or death from
any cause and was censored at the date of last follow-up for
those alive without recurrence. Overall survival (OS) is the time
interval between the date of diagnosis and the date of death
and was censored at the date of last follow-up for those alive.

A Cox proportional hazards regression model (24) in con-
junction with the least absolute shrinkage and selection opera-
tor (25) was used to identify the top OP-TIL features (ie, those
that are most associated with patient outcome) in the training
set (D1) along with their coefficients (which indicate the impor-
tance of each feature) for both DFS and OS. The assumption of
proportionality was verified using a time-varying coefficient
model. Then, DFS and OS risk scores were computed for each
patient in D1 as a linear combination of the top feature values
and their respective coefficients. Finally, the median value of all
risk scores of patients in D1 was computed and used as a cutoff
to discriminate among patients at low or high risk. A patient
whose risk score value is higher than the median is considered
high risk, and a patient with a risk score value lower than the
median is considered low risk.

Figure 1. Patient selection workflow for the datasets included in this study. D1 was employed for feature discovery and model training, and datasets D2-D6 were used

for independent validation of the prognostic ability of the OP-TIL classifier. AJCC ¼ American Joint Committee on Cancer.
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Figure 2. Illustration of OP-TIL building blocks. A) Corresponds to a patient with higher risk of disease recurrence and B) corresponds to a patient who has a lower risk.

TILs are represented with blue and non-TILs with green (non-TILs include different cells in the tumor microenvironment, such as cancer cells, macrophages, and fibro-

blasts, among others). HPV ¼ human papillomavirus; OPSCC ¼ oropharyngeal squamous cell carcinoma; TIL ¼ tumor-infiltrating lymphocyte.
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For validation purposes, the risk score of each patient in the
testing sets (D2-D6) is computed using the feature coefficients
found in training. Then, each patient is classified as either high
risk, if his or her computed risk score is higher than the cutoff
defined in training, or low risk otherwise.

Kaplan-Meier survival analysis with the log-rank test was
used to examine the differences of time-to-event data (DFS and
OS) between low-risk patient groups categorized by the OP-TIL
risk classifier. Multivariable Cox regression analysis with Firth’s
Penalized Likelihood (26) was employed to examine the prog-
nostic ability of the OP-TIL classifier when controlling the
effects of clinical and pathological parameters. P values were 2-
sided, and all values .05 or less were considered statistically
significant.

Results

Clinicopathologic Features of the Patient Cohorts

Among the 439 eligible patients, the median age was 57 years,
41.7% had T1 disease, 74.9% had N1 disease, and the median
follow-up was 61 months. Of the patients, 81.5% achieved a
2-year DFS and 88.4% a 2-year OS. Table 2 shows a summary of
clinical and pathological features of cohorts D1-D6, individually.

Prognostic Ability of OP-TIL

The most prognostic features, identified by the least absolute
shrinkage and selection operator, for DFS and OS were related
to spatial arrangement features of TILs and non-TILs, to close-
ness of TILs (Table 1, set 6), and to density of non-TILs
(Supplementary Table 1, available online.). Then, a linear com-
bination of the top feature values and their respective coeffi-
cients generated a risk score for each patient. Patients with
lower OP-TIL risk scores tended to have more TIL clusters inter-
mixed with non-TIL clusters, the closeness/compactness
among TILs was more variable, and the density of non-TIL clus-
ters was smaller compared with patients with high OP-TIL risk
scores. Qualitative analysis, performed using the t-stochastic
neighbor-embedding algorithm (27), suggests that OP-TIL fea-
tures are resistant to batch effects (Supplementary Figure 2,
available online). Analysis of the correlation between OP-TIL
risk scores for DFS and OS is included in the Supplementary
Methods (available online).

Figure 3 illustrates the Kaplan-Meier plots for OP-TIL applied
to different subgroups of patients in the validation set (D2-D6)
using DFS as endpoint. A total of 88 (36.6%) patients with less
than 10 pack-year smoking history was classified as OP-TIL high
risk (2-year DFS ¼ 81.8%; 5-year DFS ¼ 72.7%) and 152 (63.3%)
patients as low risk (2-year DFS¼ 96.1%; 5-year DFS¼ 90.8%).
Similarly, 120 (34.7%) patients with less than 30 pack-year
smoking history were classified as high risk (2-year DFS¼ 82.5%;
5-year DFS¼ 74.2%) and 225 (65.2%) as low risk (2-year
DFS¼ 94.2%; 5-year DFS¼ 88.4 %).

TIL was prognostic of DFS for patients with overall stage I
and with less than 10 and 30 pack-year smoking history. The
hazard ratios were 3.47 (95% confidence interval [CI] ¼ 1.79 to
6.72; P< .001) and 2.56 (95% CI ¼ 1.52 to 4.32; P< .001), respec-
tively. Furthermore, multivariable survival analysis showed
that OP-TIL was prognostic independent of age, T and N stages,
treatment, and smoking history (number of pack-year) for DFS
(Table 3) with a hazard ratio of 2.27 (95% CI ¼ 1.32 to 3.94;
P¼ .003).

Although DFS was the main focus of this study because that
was the metric employed in NRG-HN002 to demonstrate the
safety of de-escalation, we also assessed the performance of
OP-TIL for OS. OP-TIL was prognostic for patients with overall
stage I and less than 30 pack-year with a hazard ratio of 2.34
(95% CI ¼ 1.08 to 5.07; P¼ .03) (Supplementary Figure 3, available
online). Multivariable analysis illustrated that OP-TIL was also
prognostic independent of age, T and N stages, treatment, and
smoking for OS (Supplementary Table 2, available online).

Discussion

Although definitive chemoradiation therapy is often curative
for patients with HPV-associated OPSCC, the resultant toxicity
can affect the quality of life of patients meaningfully (6). This
has motivated clinicians to find patients who are at low risk of
recurrence and death and whose treatment could be de-
escalated to reduce the secondary acute and late effects of che-
moradiation therapy without affecting the cure rates (7).
Recently, Yom et al. (6) published the results of NRG-HN002, in
which low-risk HPV-associated OPSCC patients were randomly
assigned to either of 2 de-escalated treatment arms: 1) dose-re-
duced RT with weekly cisplatin or 2) accelerated RT (60 Gy)
alone. Patients in the chemoradiation therapy arm met the tar-
get 2-year DFS of 85% or higher, where those in the RT-alone

Table 1. Set of OP-TIL features, related to density, architecture, and colocalization extracted from the different cell clusters of TILs and non-
TILsa

Set No. of features Extracted from Description

1 34 Nuclei clusters Number, size, and density of clusters of each type.
2 32 Nuclei clusters Area intersected between clusters of the same and different type.
3 160 Nuclei clusters Number of clusters surrounding a specific cluster type.
4 6 Centroids of the nuclei clusters A new cluster was built for each type by drawing a convex hull containing

all its centroids. From the resulting new clusters, the intersected area was computed.
5 102 Centroids of the nuclei clusters Measures from global graphs of each type (Voronoi diagram, Delaunay triangulation,

and minimum spanning tree).
6 16 Centroids of the nuclei clusters Closeness of each nuclei type. This value was computed using a

published metric (22) that assigns to each node (the cluster centroid) a value
depending on how it is arranged with respect to other nodes. A high value indicates
that that specific node is proximal to multiple nodes, whereas a low value
implies that node is isolated.

7 19 Individual nuclei Features related to quantity and compactness of TILs with respect to non-TILs.

aTIL ¼ tumor-infiltrating lymphocyte.
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Figure 3. Kaplan-Meier plots for the DFS OP-TIL classifier applied to patients in the validation set (D2-D6) with overall stage I [AJCC 8th ed. (13)]. and with less than 30

pack-year of smoking history. Patients with less than 10- and 30 pack-year classified by OP-TIL as high risk (dashed line) are approximately 3 and 2 times, respectively,

more likely to develop disease recurrence and/or die. P values were 2-sided and computed using the log-rank test. AJCC ¼ American Joint Committee on Cancer; CI ¼
confidence interval; DFS ¼ disease-free survival; HG ¼ high-risk group; HR ¼ hazard ratio; LG ¼ low-risk group.

Table 2. Summary of clinical and pathological features of the studied HPV-associated OPSCC cohorts

Variable

Cohort

D1 D2 D3 D4 D5 D6

Total patients, No. (%) 94 (21.4) 51 (11.6) 45 (10.3) 66 (15.0) 123 (28.0) 60 (13.7)
Median follow-up, mo 57.65 52.14 45.8 83.67 65.79 70.59
Age, No. (%), y
> 55 67 (71.3) 28 (54.9) 23 (51.1) 30 (45.5) 80 (65.0) 29 (48.3)
� 55 27 (28.7) 23 (45.1) 22 (48.9) 36 (54.6) 43 (35.0) 31 (51.7)

Race, No. (%)
Caucasian — 48 (94.1) 43 (95.6) 62 (93.9) 117 (95.1) 58 (96.7)
Non-Caucasian — 3 (5.9) 2 (4.4) 4 (6.1) 6 (4.9) 2 (3.3)
No data 94 (100) — — — — —

Sex, No. (%)
Male 93 (98.9) 45 (88.2) 37 (82.2) 57 (86.4) 110 (89.4) 54 (90.0)
Female 1 (1.1) 6 (11.8) 8 (17.8) 9 (13.6) 13 (10.6) 6 (10.0)

Smoking pack-years, No. (%)
0 17 (18.1) 21 (41.2) 23 (51.1) 23 (34.9) 59 (48.0) 39 (65.0)
1–10 10 (10.6) 18 (35.3) 14 (31.1) 13 (19.7) 24 (19.5) 6 (10.0)
11–30 24 (25.5) 12 (23.5) 8 (17.8) 30 (45.5) 40 (32.5) 15 (25.0)
No data 2 (2.1) — — — — —

Overall stage by AJCC 8th edition, No. (%)
I 16 (17.0) 51 (100) 45 (100) 66 (100) 123 (100) 60 (100)
II/III/IV 78 (83.0) — — — — —

T stage, No. (%)
T1/T2 55 (58.5) 51 (100) 45 (100) 66 (100) 123 (100) 55 (91.7)
T3/T4 39 (41.5) — — — — —
No data — — — — — 5 (8.3)

N stage, No. (%)
N0/N1 23 (24.5) 51 (100) 45 (100) 66 (100) 123 (100) 58 (96.7)
N2/N3 71 (75.5) — — — — —
No data — — — — — 2 (3.3)

Treatment, No. (%)
Surgery þ adjuvant therapy 3 (3.2) 15 (29.4) 30 (66.7) 66 (100) — 25 (41.7)
Surgery alone — 1 (2.0) 13 (28.9) — — 6 (10.0)
Primary chemoradiation 91 (96.8) 35 (68.6) 2 (4.4) — 123 (100) 26 (43.3)
No data — — — — — 3 (5.0)

aAJCC ¼ American Joint Committee on Cancer; HPV ¼ human papillomavirus; OPSCC ¼ oropharyngeal squamous cell carcinoma.
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arm did not. The former regimen is being tested in a confirma-
tory phase III standard-of-care setting 3-arm trial, NRG-HN005.
This study plans to accrue more than 700 participants by
February 2025, the results of which will not be known for an-
other several years thereafter (7). It is important to mention
that a subset of the patients of such NRG-HN002 trial developed
local-regional failure and/or distant metastasis, showing that
the definition of low risk employed was not granular enough for
identifying patients who can or cannot benefit from therapy de-
escalation. It is important to note, however, that HPV-
associated OPSCC biology is not homogeneous and that several
recent studies have identified (29) distinct biological mecha-
nisms that are associated with an increased risk of treatment
failure and/or recurrence. Interestingly, multivariable analysis
showed that T stage is also prognostic of DFS, suggesting the as-
sociation between tumor size and aggressiveness, as has been
reported for multiple cancer types (30).

In this work, we present OP-TIL, an imaging biomarker, to
characterize the spatial architecture patterns of TILs and sur-
rounding nucleated cells in H&E images of HPV-associated
OPSCC patients. OP-TIL was found to be associated with DFS in
low-risk patients (overall stage I [AJCC 8th ed.] and with less
than 10 packs-year of smoking). Previous work (8,31-33) has
shown the importance of the spatial location of immune cells
for predicting patients in various cancer types such as lung,
breast, prostate, and ovary. However, this work is the first dem-
onstration of computationally derived spatial patterns of TIL ar-
chitecture as a prognostic marker in HPV-associated OPSCC
patients, a disease that presents with complex biologic and on-
cologic patterns due to the presence of transcriptionally active
high-risk HPV (34). In this multi-institutional study, OP-TIL was
able to identify patients who, according to current risk defini-
tions (low-stage disease and never or light smokers), could be
considered for therapy de-escalation but, because of their unfa-
vorable biology, are likely to have a poor prognosis. OP-TIL was
trained using a dataset containing 94 OPSCC patients. Although
the size of this training dataset was smaller than the other vali-
dation datasets, it contained a larger number of patients who
experienced death (64.9%) and recurrence (31.9%). We hypothe-
size that for training robust generalizable models, a large
dataset is not the only condition; as we are carrying out time-
to-event analysis, the percentage of events (or censoring) is
crucial.

OP-TIL is not the first biomarker to be studied for this appli-
cation; alternative risks measurements have been explored, in-
cluding liquid (eg, saliva) and tissue-based biomarkers that can
screen tumors through genomic and proteomic molecular

targets (35,36). These methods, however, have high costs, re-
stricted availability, and unclear risk stratification, which limits
clinical applicability (37,38). Other features, such as tumor cell
anaplasia and multinucleation on histopathologic examination,
are usually very focal, when present, so may not even be sam-
pled in a small biopsy sample, which is frequently all the mate-
rial that is available for diagnosis prior to treatment. When
actually present in the tissue sample, they are subject to the in-
herent quantitative subjectivity and inconsistency of human re-
view (37). Previous work (9) has shown TILs to have a great
potential to stratify patients into high-risk and low-risk groups
for low-stage HPV-associated OPSCC. Unfortunately, TIL count-
ing is cumbersome, time-consuming, and subject to intra- and
interpathologist variability (31). In contrast, OP-TIL is easy to
quantify and universally available because of the availability of
high-resolution digital slide scanning. This can be done locally
or, if an institution does not have its own scanner, a representa-
tive H&E slide could easily be shipped to a facility for digitiza-
tion. OP-TIL represents a potentially powerful, low-cost, and
easy-to-scale imaging-based biomarker that may be able to se-
lect out the patients from the so-called low-risk HPV-associated
OPSCC cohort who are nevertheless destined to recur. This can
spare them from ill-advised de-escalated therapy and thereby
enhance the outcomes for the remaining truly low-risk patients
for whom de-escalation is more appropriate.

A paper that is related to the work presented here is that by
Kemnade et al. (10). In that study, the authors used immunohis-
tochemistry to demonstrate that high density of CD4 and CD8
TILs is associated with prognosis in OPSCC (both HPV-
associated and HPV-independent) patients with extensive
tobacco exposure (median pack-years¼ 40). They found that to-
bacco exposure was correlated with decreased CD8 infiltration
in HPV-associated OPSCC. Although the study by Kemnade et al.
(10) has shown the prognostic relevance of TIL density, OP-TIL
features demonstrate the added value of analyzing the spatial
interplay and co-colocalization of TILs and surrounding nuclei
for prognosticating DFS in low-risk OPSCC and specifically on
H&E-stained slides, not immunostains.

This study has limitations. We used p16 as a surrogate
marker of high-risk HPV status; although p16 immunohisto-
chemistry is a thoroughly proven prognostic marker in OPSCC,
it is not a perfect surrogate of high-risk HPV status. Our findings
using standard H&E samples suggest that interplay between im-
mune and nonimmune cells plays a role in tumor biology and
prognosis, but in this work, we did not subtype either the im-
mune or nonimmune cells. Automatic identification of subtypes
of TILs (eg, CD4, CD8, and CD20) as well as other cellular

Table 3. Univariable and multivariable survival analyses for disease-free survival including all comers (�30 pack-year smoking history) in the
testing sets (D2-D6)a

Variable

Univariable Multivariable

HR (95% CI) Pb HR (95% CI) Pb

Age (�55 vs <55 years)c 1.63 (0.96 to 2.75) .10 1.05 (1.02 to 1.09) .001
Smoking (�10 vs <10 pack-years) 1.18 (0.68 to 2.03) .55 1.00 (0.97 to 1.02) .76
T stage (T1 vs T2) 2.52 (1.49 to 4.25) .001 2.28 (1.27 to 4.27) .005
N stage (N0 vs N1) 1.14 (0.38 to 3.41) .83 1.32 (0.50 to 4.87) .61
Treatment (surgery þ AT vs others) 0.94 (0.55 to 1.61) .82 1.07 (0.61 to 1.83) .81
OP-TIL (low vs high risk) 2.56 (1.52 to 4.32) <.001 2.27 (1.32 to 3.94) .003

aFor univariable analysis, age and smoking were dichotomized, whereas for multivariable, they were used continuously. AT ¼ adjuvant therapy; CI ¼ confidence inter-

val; HR ¼ hazard ratio.
bP values were 2-sided and computed using the log-rank test.
cThe cutoff for age was set to 55 years, as suggested by Thompson et al. (28).
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subgroups (eg, cancerous cells, macrophages, fibroblasts,
among others) could meaningfully enrich this type of work in
the future. Additionally, experimental results showed that OP-
TIL was prognostic for DFS but not for OS when applied to
patients with less than 10 pack-year of smoking. A possible rea-
son for this is the low number of deaths experienced by light or
never smoker HPV-positive OPSCC patients with overall stage I.
However, OP-TIL was able to risk stratify patients for DFS and
OS with a less than 30 pack-year smoking history.
Determination of an adequate cutoff for tobacco exposure is still
an open question as different studies (6,10-12) have used differ-
ent threshold values over the last decade. In this study, a single
slide was used for each patient because this approach applies to
both patients who underwent biopsy only and those who
underwent surgical resection. However, future work may bene-
fit from analysis of all tumor-containing slides (including lymph
node metastases) and identifying differences in the algorithm
performance when using 1 vs multiple slides. A comprehensive
analysis of the implications of the threshold value employed to
build TIL and non-TIL clusters for characterizing patients could
meaningfully enrich future work on quantitative image analy-
sis. This study was carried out using retrospectively collected
data, always subject to known and unknowable sources of bias.
As such, validation studies on specimens from cooperative
group clinical trials (RTOG 0129, 0522) are in process. We also
plan to explore the predictive capability of OP-TIL by performing
validation studies on clinical trial datasets in which alternative
treatment regimens were used (eg, RT þ cetuximab in RTOG
1016 and RT alone in NRG-HN002).

In summary, we have developed and validated a computa-
tional TIL-based biomarker, OP-TIL, that exploits features re-
lated to the spatial architectural patterns of TILs and non-TILs
using standard H&E samples on both biopsies and resection
specimens alike. This approach was able to identify low-risk
HPV-associated OPSCC patients enriched for poor outcomes in
whom treatment de-escalation should likely be avoided. If vali-
dation studies confirm these preliminary observations, OP-TIL
could be a biomarker beyond clinical stage and tobacco expo-
sure to help clinically optimize patient selection for treatment
de-escalation.
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