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Abstract

Background: The incidence of colorectal cancer (CRC) among individuals aged younger than 50 years has been increasing. As
screening guidelines lower the recommended age of screening initiation, concerns including the burden on screening
capacity and costs have been recognized, suggesting that an individualized approach may be warranted. We developed risk
prediction models for early-onset CRC that incorporate an environmental risk score (ERS), including 16 lifestyle and environ-
mental factors, and a polygenic risk score (PRS) of 141 variants. Methods: Relying on risk score weights for ERS and PRS
derived from studies of CRC at all ages, we evaluated risks for early-onset CRC in 3486 cases and 3890 controls aged younger
than 50 years. Relative and absolute risks for early-onset CRC were assessed according to values of the ERS and PRS. The dis-
criminatory performance of these scores was estimated using the covariate-adjusted area under the receiver operating char-
acteristic curve. Results: Increasing values of ERS and PRS were associated with increasing relative risks for early-onset CRC
(odds ratio per SD of ERS ¼ 1.14, 95% confidence interval [CI] ¼ 1.08 to 1.20; odds ratio per SD of PRS ¼ 1.59, 95% CI ¼ 1.51 to
1.68), both contributing to case-control discrimination (area under the curve ¼ 0.631, 95% CI ¼ 0.615 to 0.647). Based on abso-
lute risks, we can expect 26 excess cases per 10 000 men and 21 per 10 000 women among those scoring at the 90th percentile
for both risk scores. Conclusions: Personal risk scores have the potential to identify individuals at differential relative and
absolute risk for early-onset CRC. Improved discrimination may aid in targeted CRC screening of younger, high-risk individu-
als, potentially improving outcomes.

The incidence of colorectal cancer (CRC) among individuals aged
younger than 50 years (early-onset CRC) has been on the rise for
the last several decades in the United States and several other
countries (1-4). Early-onset CRC often presents at an advanced
stage because of diagnostic delay and aggressive pathology
(5), making earlier detection of susceptible individuals a high
priority. In response to this increasing public health challenge,
the American Cancer Society, the US Preventative Services
Task Force, and the American College of Gastroenterology have
recently made recommendations regarding lowering the screen-
ing age to younger than 50 years (6-8). However, other profes-
sional bodies still recommend a starting age for CRC screening
at 50 years (9,10), whereas the US Multi-Society Task Force on
Colorectal Cancer suggests a screening age of 45 years only for
African Americans (11).

Although advocates for initiating screening at an earlier age
propose that the benefits of life-years gained outweigh the con-
cerns about unnecessary invasive procedures and associated
costs, others suggest, given the extremely low absolute risk of
cancer among persons younger than age 50 years, that more tar-
geted approaches for individuals at higher risk are warranted,
especially for the use of invasive methods such as colonoscopy
(12,13). By using a combination of environmental and lifestyle
risk factors and germline genetic variants, precision cancer
screening may allow for improved risk discrimination and sub-
sequent gains in the benefit-to-harm ratio compared with more
traditional age-based screening regimens (14-18). To date, our
risk prediction models for early-onset CRC have focused on ge-
netic factors (16); thus, additional risk assessment incorporating
environmental and lifestyle factors should be explored in con-
junction with germline genetics.

In this study, we used data from 13 population-based stud-
ies, including 3486 cases and 3890 controls, to construct risk
prediction models for early-onset CRC that incorporate a novel
aggregate environmental risk score (ERS) and a recently ex-
panded polygenic risk score (PRS) (15), now including 141 com-
mon genetic variants. We additionally evaluated the absolute
risks of early-onset CRC across risk factor profiles of the ERS
and PRS. The findings of this study may contribute towards

identifying high-risk populations that may benefit from person-
alized preventive interventions for early-onset CRC.

Methods

Study Participants

Using data from 3 large consortia, the Colon Cancer Family
Registry (CCFR), the Colorectal Transdisciplinary (CORECT) Study,
and the Genetics and Epidemiology of Colorectal Cancer
Consortium (GECCO), we included 13 cohort and case-control
studies that both 1) evaluated genetic, lifestyle, and environmen-
tal factors known to be associated with CRC disease risk, and
2) included 20 or more early-onset CRC cases (<50 years of age at
diagnosis of the first primary CRC) (Supplementary Table 1, avail-
able online) [see earlier publications for additional study informa-
tion (16,19-21)]. The final study included 3486 early-onset cases,
confirmed by medical record, pathology report, or death certifi-
cate. These were contrasted with 3890 controls aged younger
than 50 years at recruitment who were ascertained using study-
specific eligibility and matching criteria, if applicable, which pre-
dominantly involved age- and sex-matched participants. Study-
specific participant recruitment occurred primarily between the
1990s and early 2010s, and participants were restricted to those
of genetically defined European descent. Written informed con-
sent was obtained from all participants, and the respective insti-
tutional review boards approved all research.

ERS Development

Lifestyle and environmental variables included self-reported
anthropometric, dietary, lifestyle, and pharmacological risk fac-
tors. The data harmonization of these epidemiological variables
used a multi-step data harmonization pipeline, reconciling each
unique protocol and data-collection instrument (see the
Supplementary Methods, available online, and previous publi-
cations) (19,20).

Missing data were addressed using sex- and study-specific
mean imputation across the complete consortia dataset, as
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detailed in our previous publication (21). To develop the
weighted sex-specific ERS for study participants, we applied
sex-specific log-odds ratios from previously published multivar-
iable logistic regression models developed for CRC, including
9748 CRC cases (>95% of which were late onset) and 10 590 age-
matched controls ascertained using data from our consortium
(19), with the referent level for each variable set at the category
associated with the lowest risk for CRC. All variables were col-
lected at the reference time of each respective study, defined as
blood collection or participant recruitment for cohort studies,
and approximately 1-2 years preceding participant recruitment
for case-control studies. The models included the following in-
dependent variables: height, body mass index, educational at-
tainment, history of type 2 diabetes, smoking status (ever vs
never), alcohol consumption, aspirin use, nonsteroidal antiin-
flammatory drug use, use of menopausal hormones (women
only), total energy consumption, sedentary lifestyle, and sex-
and study-specific quartiles of smoking pack-years and dietary
factors (intake of fiber, calcium, folate, processed meat, red
meat, fruit, and vegetables). In addition, the models were ad-
justed for study, age, family history, and endoscopy history, de-
fined as whether a participant underwent any sigmoidoscopy or
colonoscopy screening before the study reference time
(Supplementary Table 2, available online). We then multiplied
the log-odds ratios by each participant’s value in our dataset for
the corresponding risk factor, followed by summing across all
risk factors to create a weighted risk score (19,20). The ERS was
recoded as a percentile based on the distribution among control
participants.

As a sensitivity analysis, we also produced an ERS with
weights derived directly from the participants with early-onset
CRC and their associated controls using ridge regression (22) to
account for potential overfitting; 10-fold cross-validation (CV)
was used for penalty parameter selection. Using this approach,
we estimated log-odds ratios (ie, weights for the ERS) for all 16
lifestyle and environmental variables described above
(Supplementary Table 3, available online). This model was ad-
justed for age, study, total energy consumption, and family his-
tory. Using these weights to construct an ERS, associations from
multivariable logistic models with 10-fold CV between the ERS
and early-onset CRC in this sensitivity analysis were compara-
ble with those produced in the main analysis as indicated
above, using the previously published log-odds ratios
(Supplementary Table 4, available online). Furthermore, given
that no participants from CCFR were used in the previously pub-
lished study in which the external weights were derived (19), we
carried out an additional sensitivity analysis restricting to the
CCFR study after applying the externally derived weights for the
ERS using the same methodology as above, which resulted in
very comparable estimates compared with our main analysis
(Supplementary Table 5, available online).

PRS Development

As previously described (16), we developed a PRS that included
141 single nucleotide polymorphisms (SNPs) that reached
genome-wide statistical significance (P� 5� 10–8) in a previous
large-scale CRC genome-wide association study (GWAS) as of
January 2021 (15,23-43). The SNPs were imputed to the
Haplotype Reference Consortium panel (44). Directly genotyped
SNPs were coded as 0, 1, or 2 copies of the risk allele, whereas
imputed SNPs were coded as imputed dosages representing the
expected number of copies of the risk allele. To account for

population substructure, all models including the PRS were ad-
justed for principal components of genetic ancestry. We devel-
oped the weighted PRS for 76 SNPs using previously published
log-odds ratios from seminal GWAS publications among partici-
pants of European ancestry (15,23-43). For the 65 SNPs initially
discovered in the GECCO and CORECT studies, using all avail-
able studies in our consortium (N ¼ 118 673; approximately 10%
aged <50 years), we estimated the log-odds ratios from a model
fit with overall CRC (no age restrictions) as the outcome and the
141 SNPs as independent variables, adjusted for age, sex, princi-
pal components, and genotype platform; we then implemented
a winner’s curse adjustment for these 65 SNPs (45). The
weighted PRS was then estimated by multiplying the number of
risk alleles for each SNP by their log-odds ratios (Supplementary
Table 6, available online), followed by summing and recoding as
a percentile based on cut points in the controls.

Statistical Analysis

Baseline participant characteristics between cases and controls
were evaluated for comparability (Table 1). We used logistic re-
gression to examine the association between the ERS and early-
onset CRC, adjusting for reference age in years, sex, family his-
tory of CRC, total energy consumption, and study; models for
PRS included additional adjustment for principal components,
and genotype platform. ERS and PRS were modeled as continu-
ous variables per 1 SD, transformed to the standard normal dis-
tribution (subsequently referred to as z-transformed), and as
quartiles. Additionally, we evaluated for the presence of biologi-
cal interaction between the 2 risk scores using the relative ex-
cess risk because of interaction, the proportion attributable to
interaction, and the synergy index. Tenfold CV was used to
evaluate model performance through the K-fold CV accuracy es-
timate because of the limited data sample. Relationships were
explored by anatomic subsite (ie, proximal colon, distal colon,
and rectum) using multinomial logistic regression and chi-
squared tests for heterogeneity of associations across CRC sub-
sites. We also used logistic regression to model combinations of
ERS and PRS tertiles, adjusting for reference age in years, sex,
family history of CRC, total energy consumption, principal com-
ponents, study, and genotype platform.

We estimated the discriminatory accuracy of the ERS and
PRS by computing the covariate-adjusted area under the re-
ceiver operating characteristic curve (AUC), using the adjusted
ROC function from the R Package ROCt. We computed the 95%
confidence intervals (CIs) for the AUC estimates using 1000
bootstrap samples. Further, we evaluated the 5-year and 10-
year absolute risks of developing early-onset CRC for selected
risk profiles of the ERS and PRS, as previously detailed (14,19,20).
Using age- and sex-specific population CRC incidence rates
among non-Hispanic White individuals from the Surveillance,
Epidemiology, and End Results (SEER) registry between 1992 and
2015 (Supplementary Table 7, available online) (46), we esti-
mated the sex-specific baseline hazard function by multiplying
the incidence rate with 1 minus the sex-specific population at-
tributable risk, which was computed using the mean inverse ex-
ponential of risk scores among cases (47). In addition, we
accounted for competing risks from death because of non-CRC
causes in the absolute risk estimation using mortality rates
from the National Center for Health Statistics (Supplementary
Table 8, available online). The 95% confidence intervals for the
absolute risks were obtained based on 1000 bootstrap replicates.

A
R

T
IC

LE

530 | JNCI J Natl Cancer Inst, 2022, Vol. 114, No. 4

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac003#supplementary-data


Table 1. Baseline participant characteristics of participants

Characteristic
Cases Controls

(n¼ 3486) (n¼ 3890)

Mean age (SD), y 44.43 (7.39) 44.52 (5.38)
Sex, No (%)

Female 1818 (52.2) 2043 (52.5)
Male 1668 (47.8) 1847 (47.5)

Disease site, No. (%)
Proximal colon 891 (27.5) —
Distal colon 1056 (32.5) —
Rectum 1298 (40.0) —

Family history, No. (%)
No 2407 (76.5) 2327 (87.3)
Yes 741 (23.5) 340 (12.7)

Combined risk scores
ERS

Quartile 1 828 (23.8) 1019 (26.2)
Quartile 2 801 (23.0) 1081 (27.8)
Quartile 3 915 (26.2) 960 (24.7)
Quartile 4 942 (27.0) 830 (21.3)

PRS
Quartile 1 640 (18.4) 1209 (31.1)
Quartile 2 820 (23.5) 1089 (28.0)
Quartile 3 920 (26.4) 933 (24.0)
Quartile 4 1106 (31.7) 659 (16.9)

Education, highest level completed, No. (%)
<High school graduate 483 (13.9) 622 (16.0)
High school graduate or completed GED 762 (21.9) 538 (13.8)
Some college or technical school 1058 (30.3) 1190 (30.6)
�College graduate 1183 (33.9) 1540 (39.6)

Mean height (SD), cm 171.2 (9.8) 170.8 (9.5)
Mean BMI (SD), kg/m2 27.2 (5.6) 26.9 (5.2)
Red meat, No. (%), servings/d

Quartile 1a 828 (24.7) 1004 (26.4)
Quartile 2a 843 (25.2) 1234 (32.4)
Quartile 3a 888 (26.5) 998 (26.2)
Quartile 4a 791 (23.6) 573 (15.0)

Processed meat, No. (%), servings/d
Quartile 1a 263 (13.7) 385 (13.0)
Quartile 2a 580 (30.1) 1006 (34.0)
Quartile 3a 698 (36.2) 1296 (43.8)
Quartile 4a 385 (20.0) 272 (9.2)

Fruit, No. (%), servings/d
Quartile 1a 1045 (31.3) 1241 (33.0)
Quartile 2a 1054 (31.5) 1097 (29.1)
Quartile 3a 711 (21.3) 750 (19.9)
Quartile 4a 531 (15.9) 678 (18.0)

Vegetable, No. (%), servings/d
Quartile 1a 801 (23.7) 1173 (30.9)
Quartile 2a 1271 (37.6) 1101 (29.0)
Quartile 3a 882 (26.1) 878 (23.2)
Quartile 4a 424 (12.6) 639 (16.9)

Total fiber, No. (%), g/d
Quartile 1a 354 (26.4) 238 (27.1)
Quartile 2a 331 (24.7) 217 (24.7)
Quartile 3a 309 (23.0) 202 (23.0)
Quartile 4a 348 (25.9) 221 (25.2)

Total calcium intake, No. (%), mg/d
Quartile 1a 298 (8.5) 215 (5.5)
Quartile 2a 1926 (55.2) 2426 (62.4)
Quartile 3a 1011 (29.0) 1027 (26.4)
Quartile 4a 251 (7.2) 222 (5.7)

(continued)

A
R

T
IC

LE

A. N. Archambault et al. | 531



All tests of statistical significance were 2-sided, and a P value
less than .05 was considered statistically significant.

Results

ERS and PRS and Risk of Early-Onset CRC

A greater ERS value was linked to increased risk for early-onset
CRC (odds ratio [OR] per SD ¼ 1.14, 95% CI ¼ 1.08 to 1.20)
(Table 2); risks were 36% greater comparing the highest ERS
quartile with the lowest (OR ¼ 1.36, 95% CI ¼ 1.16 to 1.58). A
greater PRS value was also linked to increased risk for early-
onset CRC (OR per SD ¼ 1.59, 95% CI ¼ 1.51 to 1.68); risks for
early-onset CRC were 3.5-fold greater (OR ¼ 3.50, 95% CI ¼ 3.00
to 4.09) comparing the highest PRS quartile with the lowest. The
10-fold CV accuracy was greater than 0.70 across all models. ERS
and PRS had independent predictive values; including both risk
scores in a risk prediction model showed that effect estimates
were largely unchanged compared with those from models in-
cluding only one of the predictors. Furthermore, given that no
participants from CCFR were included in the previously pub-
lished study from which the external weights were derived (19),
we carried out an additional sensitivity analysis restricting
analysis to the CCFR study, using the same methodology as
above. The results were strongly comparable for the CCFR
(Supplementary Table 5, available online) and main analyses
(Table 2).

When models were restricted by anatomic location, risks for
early-onset disease according to the ERS were relatively

consistent across sites, whereas the PRS showed greater risks
for rectal (OR per SD ¼ 1.67, 95% CI ¼ 1.55 to 1.80) and distal co-
lon cancer (OR per SD ¼ 1.73, 95% CI ¼ 1.60 to 1.87) compared
with proximal colon cancer (OR per SD ¼ 1.38, 95% CI ¼ 1.27 to
1.50; P < .001, respectively) (Supplementary Table 9, available
online).

Evaluating the risks for early-onset CRC across varying risk
profiles of the ERS and PRS demonstrated a clear trend in in-
creasing risk for early-onset disease with increasing risk scores
in both the ERS and PRS (Figure 1). Individuals with a risk profile
characterized by the highest tertiles of both the ERS and PRS
had a 4.2-fold greater risk (OR ¼ 4.21, 95% CI ¼ 3.27 to 5.42) for
early-onset disease compared with those in the lowest tertiles
for both measures. As indicated by the proportion attributable
to interaction and the synergy index estimates, there is a possi-
bility that modest positive interaction or more than additivity
may be occurring between the ERS and PRS (Supplementary
Table 10, available online).

Discriminatory Accuracy of the ERS and PRS

Covariate-adjusted AUC comparisons between risk prediction
models for early-onset CRC showed greater risk discrimination
with the PRS compared with the ERS (Table 3). The AUC estimate
for the ERS was 0.536 (95% CI ¼ 0.519 to 0.552), whereas the AUC
for the PRS was 0.628 (95% CI ¼ 0.613 to 0.644). When including
both risk scores into a combined model, the AUC was 0.631 (95%
CI ¼ 0.615 to 0.647), suggesting limited additional contribution of
the ERS, as currently constructed, to the overall AUC. Further, the

Table 1. (continued)

Characteristic
Cases Controls

(n¼ 3486) (n¼ 3890)

Total folate intake, No. (%), mcg/d
Quartile 1a 787 (23.7) 467 (12.4)
Quartile 2a 1331 (40.1) 2138 (56.7)
Quartile 3a 646 (19.4) 774 (20.5)
Quartile 4a 559 (16.8) 393 (10.4)

Sedentary lifestyle, No. (%)
No 654 (78.9) 1697 (82.2)
Yes 175 (21.1) 367 (17.8)

Pack-years of smoking, No. (%)
Never smoker 1772 (55.9) 2196 (63.2)
Quartile 1a 395 (12.5) 413 (11.9)
Quartile 2a 401 (12.6) 368 (10.6)
Quartile 3a 376 (11.9) 336 (9.7)
Quartile 4a 226 (7.1) 162 (4.7)

Alcohol use, No. (%), g/d
0 1450 (43.1) 1104 (28.7)
1–28 1490 (44.3) 2222 (57.9)
>28 424 (12.6) 514 (13.4)

Aspirin use, No. (%)
No 3090 (91.7) 3520 (91.9)
Yes 281 (8.3) 312 (8.1)

NSAID use, No. (%)
No 2967 (89.4) 3115 (82.5)
Yes 353 (10.6) 661 (17.5)

Diabetes diagnosis, No. (%)
No 3234 (95.5) 3693 (97.4)
Yes 154 (4.5) 100 (2.6)

aStudy and sex-specific quartiles. Note that the majority of lifestyle and environmental variables were modeled as ordinal sex- and study-specific quartiles throughout

the analysis. BMI ¼ body mass index; ERS ¼ environmental risk score; GED ¼ general educational development; NSAID ¼ nonsteroidal antiinflammatory drug; PRS ¼
polygenic risk score.
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combined model (PRS plus ERS) showed markedly improved dis-
crimination for early-onset CRC compared with family history
alone (AUC ¼ 0.563, 95% CI ¼ 0.555 to 0.571). Similar patterns were
also observed when AUC estimates were stratified by sex.

ERS and PRS and Absolute Risk of Early-Onset CRC

The absolute risk of early-onset CRC varied considerably given
the ERS and PRS-dependent risk profile (Table 4; Figure 2). Also,
absolute risks of early-onset CRC tended to be cumulative with re-
spect to combined ERS and PRS scores. For example, the 10-year
absolute risks of CRC for a 40-year-old at the 90th risk percentile
of both the ERS and PRS were 0.47% (47 cases per 10 000) for men
(Figure 2, A) and 0.39% (39 cases per 10 000) for women (Figure 2,
B). In contrast, the 10-year absolute risks of CRC for a 40-year-old
at the 10th risk percentile of both the ERS and PRS was 0.08% (8
cases per 10 000) for men and women. Compared with average
10-year absolute risks using data from SEER (21 cases per 10 000
men and 18 cases per 10 000 women), we can expect approxi-
mately 26 excess cases per 10 000 men and 21 excess cases per
10 000 women among 40-year-olds who score at the 90th percen-
tile for both the ERS and PRS (estimated using data from Table 4).

In addition, comparing average risks from SEER with those sepa-
rately for the ERS and PRS at the 90th percentile, we can expect
for men roughly 16 excess cases per 10 000 for the PRS and 6 ex-
cess cases for the ERS, whereas for females we can expect 16 ex-
cess cases per 10 000 for the PRS and 4 excess cases for the ERS
(estimated using data from Table 4). Five-year risk differences
comparing the 90th and 50th percentiles for both ERS and PRS for
40-year-olds resulted in 9 excess cases per 10 000 for men and
8 excess cases per 10 000 for women, whereas among 45-year-
olds, excess cases in 5 years were 18 per 10 000 for men and 14 per
10 000 for women (estimated using data from Supplementary
Table 11, available online).

Discussion

In this study, we demonstrated that greater values of the ERS
and PRS were linked to greater risk for early-onset CRC. The dis-
criminatory capacity of the scores, as measured by the
covariate-adjusted AUC, was greatest for the PRS, with limited
improvement after additional incorporation of the ERS.
Similarly, analysis of 5-year and 10-year absolute risks showed
that the excess of expected cases varied considerably, with

Table 2. Odds ratio of ERS and PRS associated with early-onset CRC risk using repeated 10-fold cross-validation

Model OR (95% CI) Pa

K-Fold cross-validation accuracy
(SD)

Models with ERS as predictor
Model 1: ERS per 1 SDb 1.14 (1.08 to 1.20) <.001 0.721 (0.011)
Model 2: ERS by quartilec 0.721 (0.013)

1 1 (Referent) — —
2 1.00 (0.86 to 1.16) .97 —
3 1.22 (1.05 to 1.42) .009 —
4 1.36 (1.16 to 1.58) <.001 —

Models with PRS as predictor
Model 3: PRS per 1 SDd 1.59 (1.51 to 1.68) <.001 0.720 (0.014)
Model 4: PRS by quartilee 0.717 (0.016)

1 1 (Referent) — —
2 1.54 (1.32 to 1.80) <.001 —
3 2.15 (1.84 to 2.51) <.001 —
4 3.50 (3.00 to 4.09) <.001 —

Models with ERS and PRS as
predictors
Model 5f: 0.737 (0.014)
ERS per 1 SD 1.12 (1.06 to 1.19) <.001 —

PRS per 1 SD 1.59 (1.50 to 1.68) <.001 —
Model 6g: 0.734 (0.011)

ERS by quartile
1 1 (Referent) — —
2 0.99 (0.85 to 1.16) .91 —
3 1.24 (1.06 to 1.44) .008 —
4 1.32 (1.12 to 1.54) <.001 —

PRS by quartile
1 1 (Referent) — —
2 1.50 (1.28 to 1.75) <.001 —
3 2.06 (1.77 to 2.41) <.001 —
4 3.52 (3.00 to 4.14) <.001 —

a2-sided P values per the Wald test. CI ¼ confidence interval; CRC ¼ colorectal cancer; ERS ¼ environmental risk score; OR ¼ odds ratio; PRS ¼ polygenic risk score.
bThe model includes age, sex, total energy consumption, study, family history, and a continuous z-transformed ERS.
cThe model includes age, sex, total energy consumption, study, family history, and ERS in quartiles.
dThe model includes age, sex, genotype platform, family history, principal components, and a continuous z-transformed PRS.
eThe model includes age, sex, genotype platform, family history, principal components, and PRS in quartiles.
fThe model includes age, sex, total energy consumption, study, family history, principal components, genotype platform, and continuous z-transformed ERS and PRS.
gThe model includes age, sex, total energy consumption, study, family history, principal components, genotype platform, and ERS and PRS in quartiles.
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greatest risk stratification stemming from the combined risk
scores, although only moderately greater than when consider-
ing the PRS alone. However, the absolute number of cases
expected was relatively modest even in high-risk categories,
largely driven by the overall low rates of CRC at ages younger
than 50 years. With screening recommendations increasingly
beginning to consider including younger age groups (6-11), con-
cerns need to be recognized regarding societal costs, including
increased burden on screening capacity by diverting resources
away from higher-risk, older populations to younger, low-risk
groups, and furthering disparities in CRC (13,48). Therefore, it is
important to evaluate more targeted screening approaches
compared with traditional age-based models.

This study is the first to our knowledge to implement a risk
score integrating lifestyle, environmental, and genetic factors in
early-onset CRC, which complements similar efforts for cohorts
consisting predominantly of late-onset disease. Some of these
late-onset studies relied either on lifestyle and environmental
factors (20,49,50) or on genetics only (51). Previous research in
our consortia, using 19 lifestyle and environmental factors and
63 common genetic variants, found similar increases in risk of
predominantly late-onset CRC per equivalent increase in the
ERS or PRS, with improved case-control discrimination for the

combined measures compared with using family history alone
(AUC ¼ 0.63 vs 0.53) (19). However, we show here that the PRS
contributes most importantly to case-control discrimination for
early-onset CRC (AUC: family history alone ¼ 0.563; plus ERS ¼
0.536; plus PRS ¼ 0.628; plus both risk scores ¼ 0.631). The
weaker performance of the ERS in early-onset disease may be
due to the lesser importance of certain lifestyle and environ-
mental CRC risk factors that have been generally identified in
older people and, most provocatively, indicates the need for fur-
ther research specifically in the early-onset setting to identify
novel lifestyle risk factors for CRC and potentially other cancers
in this age group (52). Furthermore, as prediction models move
to implementation, it will be important to track changes in ex-
posure prevalence and time-dependent risks.

Additional insight into developing risk prediction models for
early-onset CRC can be gleaned from models developed for ad-
vanced colorectal neoplasia (adenoma and cancer) in individu-
als aged younger than 50 years, as recently reported from Korea
(53,54), with analysis of established CRC risk factors (53) and
clinical factors including H. pylori (54), the latter of which was
previously linked to CRC in adults younger than 55 years of age
(55). Further opportunities for refinement of risk prediction in
early-onset CRC include incorporating information on

Table 3. Covariate-adjusted AUC comparisons between risk prediction models

Model
All participants Men Women

AUC (95% CI) AUC (95% CI) AUC (95% CI)

Model 1: Family historya 0.563 (0.555 to 0,571) 0.568 (0.558 to 0.580) 0.558 (0.547 to 0.569)
Model 2: ERS per 1 SDb 0.536 (0.519 to 0.552) 0.546 (0.519 to 0.571) 0.525 (0.494 to 0.543)
Model 3: PRS per 1 SDc 0.628 (0.613 to 0.644) 0.621 (0.592 to 0.651) 0.633 (0.612 to 0.655)
Model 4: ERS and PRS per 1 SDd 0.631 (0.615 to 0.647) 0.629 (0.604 to 0.654) 0.630 (0.607 to 0.652)

aThe model includes family history as the predictor, adjusting for sex (for the model including all participants) and age. AUC ¼ area under the receiver operating char-

acteristic curve; CI ¼ confidence interval; ERS ¼ environmental risk score; PRS ¼ polygenic risk score.
bThe model includes a z-transformed ERS as the predictor, adjusting for age, sex (for the model including all participants), total energy consumption, study, and family

history.
cThe model includes a z-transformed PRS as the predictor, adjusting for age, sex (for the model including all participants), family history, genotype platform, and prin-

cipal components.
dThe model includes z-transformed ERS and PRS as predictors, adjusting for age, sex (for the model including all participants), study, family history, total energy con-

sumption, principal components, genotype platform, and a z-transformed ERS.

Figure 1. Odds ratio of different combinations of environmental risk score (ERS) and polygenic risk score (PRS) risk profiles across tertiles and associations with early-

onset colorectal cancer (CRC) risk. Models were adjusted for age, sex, total energy consumption, study, family history, genotype platform, and principal components.

The referent category is the first tertile for both the ERS and PRS. Two-sided P values per the Wald test. The error bars represent the 95% confidence intervals (CIs). OR

¼ odds ratio.
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childhood radiation exposures, antibiotic use, and the micro-
biome (56,57). Simulation studies suggest that risk-stratified
CRC screening may be cost-effective compared with age-based
uniform screening if AUC estimates for the PRS are approxi-
mately 0.65 or greater (58), pointing to the potential for targeted
CRC prevention with improved understanding of the causes of
CRC in those younger than 50 years of age.

Our study has the unique strengths of a large sample of
cases and controls aged younger than 50 years, in which we lev-
eraged 13 cohort and case-control studies with participants
stemming from heterogeneous populations that underwent rig-
orous harmonization of risk factors (19,20). The study also used
data from individuals of European ancestry, thus limiting gener-
alizability to other racially and ethnically diverse populations.

Figure 2. Ten-year absolute risk estimates for early-onset colorectal cancer (CRC) with varying risk factor profiles for a 40-year-old individual. Dashed lines indicate the

average 10-year absolute risks of early-onset CRC estimated using Surveillance, Epidemiology, and End Results for a 40-year-old person: A) 0.21% in men and B) 0.18%

in women. The environmental risk score (ERS) and polygenic risk score (PRS) combined model adjusted for age, study, total energy consumption, family history, geno-

type platform, and principal components. The ERS-only model adjusted for age, study, total energy consumption, and family history. The PRS-only model adjusted for

age, family history, genotype platform, and principal components.

Table 4. Ten-year absolute risk estimates for early-onset CRC with variable risk factor profiles and starting ages

ERS risk percentile PRS risk percentile

Starting age of 30 y Starting Age of 40 years

Men Women Men Women
%, (95% CI) %, (95% CI) %, (95% CI) %, (95% CI)

Average riska 0.06 (—) 0.05 (—) 0.21 (—) 0.18 (—)
ERS and PRS combinedb

1 1 0.02 (0.02 to 0.02) 0.02 (0.02 to 0.02) 0.06 (0.06 to 0.07) 0.06 (0.06 to 0.07)
10 10 0.02 (0.02 to 0.02) 0.02 (0.02 to 0.02) 0.08 (0.08 to 0.08) 0.08 (0.07 to 0.08)
50 50 0.05 (0.05 to 0.05) 0.05 (0.05 to 0.05) 0.19 (0.19 to 0.19) 0.17 (0.17 to 0.17)
90 90 0.13 (0.13 to 0.14) 0.11 (0.11 to 0.12) 0.47 (0.46 to 0.49) 0.39 (0.38 to 0.41)
99 99 0.16 (0.16 to 0.17) 0.14 (0.13 to 0.14) 0.58 (0.56 to 0.60) 0.47 (0.46 to 0.49)

PRSc

— 1 0.03 (0.02 to 0.03) 0.02 (0.02 to 0.02) 0.09 (0.09 to 0.09) 0.07 (0.07 to 0.08)
— 10 0.03 (0.03 to 0.03) 0.02 (0.02 to 0.03) 0.10 (0.10 to 0.11) 0.09 (0.08 to 0.09)
— 50 0.05 (0.05 to 0.05) 0.05 (0.05 to 0.05) 0.20 (0.19 to 0.20) 0.17 (0.17 to 0.17)
— 90 0.10 (0.10 to 0.11) 0.10 (0.10 to 0.10) 0.37 (0.36 to 0.38) 0.34 (0.34 to 0.35)
— 99 0.12 (0.12 to 0.12) 0.11 (0.11 to 0.12) 0.43 (0.42 to 0.44) 0.40 (0.39 to 0.41)

ERSd

1 — 0.04 (0.04 to 0.04) 0.04 (0.04 to 0.04) 0.15 (0.15 to 0.16) 0.15 (0.15 to 0.16)
10 — 0.05 (0.04 to 0.05) 0.04 (0.04 to 0.05) 0.16 (0.16 to 0.17) 0.16 (0.15 to 0.16)
50 — 0.06 (0.06 to 0.06) 0.05 (0.05 to 0.05) 0.21 (0.21 to 0.21) 0.18 (0.18 to 0.19)
90 — 0.07 (0.07 to 0.08) 0.06 (0.06 to 0.06) 0.27 (0.26 to 0.27) 0.22 (0.21 to 0.22)
99 — 0.08 (0.08 to 0.08) 0.06 (0.06 to 0.07) 0.28 (0.28 to 0.29) 0.23 (0.22 to 0.23)

aAverage risks in general population were calculated based on SEER incidence rates for men and women separately. CI ¼ confidence interval; CRC ¼ colorectal cancer;

ERS ¼ environmental risk score; PRS ¼ polygenic risk score.
bAdjusted for age, study, total energy consumption, family history, genotype platform, and principal components.
cAdjusted for age, family history, genotype platform, and principal components.
dAdjusted for age, study, total energy consumption, and family history.
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The risk factors in the ERS could be strengthened in future stud-
ies. The environmental risk factors in our study were self-
reported, which could lead to misclassification, although re-
search suggests that self-reported lifestyle and dietary factors
are fairly reliable (59,60). In addition, because risk factors were
evaluated after cancer diagnosis in case-control studies, data
may have been vulnerable to recall bias and may not entirely re-
flect the most relevant period of exposure for CRC carcinogene-
sis, particularly for early-life exposures, which were not
systematically captured in these studies. Further, imputation to
account for missing data can lead to biased estimates, although
our prior work with these data showed robustness of estimates
to missingness (21). Another limitation related to our study is
that we were unable to account for genetic mutations related to
hereditary cancer syndromes (61-65) or variants specifically
linked to early-onset CRC, given the absence of GWAS specific
for early-onset CRC (16).

In conclusion, we showed that an ERS developed from life-
style and environmental risk factors and a PRS developed with
141 genetic variants provide risk stratification for early-onset
CRC. Absolute risks for developing early-onset CRC varied sub-
stantially across the various risk profiles of both the ERS and
PRS, although the excess number of cases in higher risk strata
remained modest, largely due to the relatively low incidence of
CRC in young age groups. Additionally, moderate improvement
of the predictive performance for the combined risk scores vs
the PRS alone indicated that risk stratification of young individ-
uals may be more easily achieved using the PRS alone, although
future improvement of the ERS may argue for its eventual utility
as well. These risk scores provide an important step toward de-
veloping personalized screening regimens targeting individuals
younger than 50 years of age who are at increased risk of early-
onset CRC (17,18).
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