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Abstract: Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids.
Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active
metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and
somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary
organ for retinoid storage and metabolism in humans. For reasons that remain incompletely under-
stood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and
reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocel-
lular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases.
Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic
retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number
of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a
role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.

Keywords: nonalcoholic fatty liver disease; retinoic acid receptor; liver steatosis; vitamin A; hepato-
cellular carcinoma; alcohol-associated liver disease; retinoic acid

1. Introduction to Retinoids, Vitamin A, and Retinoic Acid Receptors
1.1. Actions of the Retinoic Acid Receptors and Retinoic Acid (RA) in Transcriptional Activation

Vitamins, including vitamin A [1–3], vitamin B3 [4], and vitamin C [5] are capable,
through various signaling pathways, of changing the epigenetic states of stem cells. This
feature of some vitamins makes this area of research both timely and important for both
long-term health and longevity, and for understanding and treating diverse diseases, such
as cancer, heart disease, respiratory diseases, liver diseases, and Alzheimer’s Disease.
In fact, in an analysis of a large cohort of men (>500,000 person-years of accumulated
observation) over 3 decades, a statistically significant inverse association between higher
serum vitamin A (retinol) and a lower risk of overall mortality was found [6].

The term ‘retinoids’ is used to designate all metabolites and chemicals with structures
that are similar to that of the micronutrient vitamin A [7,8]. Vitamin A (all-trans-retinol) is
an essential micronutrient that must be obtained from the diet. The absorption of vitamin
A from the diet, the hepatic storage of vitamin A, and the mobilization of vitamin A from
the liver have been recently reviewed by Blaner et al. [9]. Vitamin A is metabolized in
various cell types to all-trans-retinoic acid (RA) [10], which is an endogenous agonist for
the retinoic acid receptors (RARs) α, β, and γ [11].

The RARs are members of the larger nuclear receptor (NR) family, a family of DNA-
binding proteins that acts to regulate transcription of distinct sets of target genes via
binding to specific DNA sequences called ‘response elements’ at enhancers, defined as DNA
sequences that increase transcription independently of their distance from a promoter [12].
The resulting changes in transcription lead to alterations in reproduction, metabolism, cell
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fate, and inflammation. RA response elements have been identified in many genes, such
as Hoxa1 [13], HoxB1 [14–17], laminin B1 [18,19], and RARβ itself [20]. The RARs form
heterodimers with the retinoid X receptors (RXRs) α, β, and γ to regulate the transcriptional
activation of RAR target genes [21] (Figure 1).
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Figure 1. Model of Intracellular Retinol Metabolism and Molecular Actions. Retinoic acid (RA), the
endogenous agonist for the three retinoic acid receptors (RARα, β, and γ), moves to the nucleus
where it binds an RAR in a heterodimer with an RXR. This results in transcriptional activation of
primary target genes that contain a retinoic acid response element (RARE) on DNA. A metabolite
of RA, 4-OxoRA, can also act as an agonist for RARs. RARα can move to the cytoplasm, actively
transported out of the nucleus, where RARα can regulate the rate of translation of target mRNAs into
proteins, with different effects if the ligand RA is bound to RARα. RARα, without the ligand RA, can
also inhibit ERK and mTORC1 signaling. The cytoplasmic actions of RARα have only been shown to
date in neurons. Abbreviations: RDHs: retinol dehydrogenases; ALDH: aldehyde dehydrogenase;
CYP26: Cytochrome P450 family 26 subfamily A member 1; ERK: extracellular signal-regulated
kinase; mTORC1: mammalian target of rapamycin complex 1; LRAT: lecithin retinol acyltransferase;
REH: retinyl ester hydrolase; S6K1: 40S ribosomal protein S6 kinase p70/p85.

The actions of these nuclear receptors can result in transcriptional activation or repres-
sion of sets of target genes. To activate transcription, ligand binding stabilizes the nuclear
receptors in an active state in which they bind co-activator proteins that enzymatically make
chromatin more accessible to RNA polymerase II [22,23]. Nuclear receptors are known to
repress transcription by at least three different mechanisms. Without ligand binding, these
NRs can bind co-repressor proteins that restrict the accessibility of chromatin for RNA
polymerase II. Second, some nuclear receptors interact with ‘negative response elements.’
When bound to these ‘negative response elements’, these receptors adopt structures that
favor co-repressor recruitment even in the presence of an agonist [24,25]. While these
mechanisms are generally true for NRs, binding of RARs to ‘negative response elements’
has not been documented to date. A third mechanism is the repression by RA-bound RARs
of the AP1 transcription factor complex consisting of Fos and Jun. Evidence suggests that
RAR interferes with AP1 by binding to Jun and Fos (e.g., trans-binding) rather than by
directly binding to a ‘DNA RA-response element’ [26,27].

Post-translational modifications of the RARs are also important for the proper activities
of these RARs. Such modifications include the trimethylation modification at Lys347 of
RARα [28] and phosphorylation of RARγ2 by p38MAPK [29]. These modifications impact
the activities of the RARs.

The transcription of enhancer RNAs (eRNAs), small 1–2 kb transcripts, accompanies
ligand-induced transcriptional activation, and these enhancer RNAs may act to mediate
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looping of enhancers and promoters [30,31]. Depending on the sets of enhancers affected by
these eRNAs, eRNAs can repress target gene expression [32]. Estrogen receptor α, another
member of the NR family, directly binds eRNAs via its DNA binding domain [32]. The
roles eRNAs play in modulating the actions of RARs are not known.

Nucleotide excision repair occurs in response to DNA damage [33], but these DNA
repair proteins are also involved in effecting efficient transcription. For example, even in
the absence of genotoxic stress, the repair proteins XPF (ERCC4) and XPG (ERCC5) are
recruited to the RARβ2 gene, which is transcriptionally activated by RA. If these proteins
are knocked down in HeLa cells, the RA-associated activation of RARβ2 transcription
is greatly reduced [34]. The endonuclease activities of these proteins, XPF and XPG, are
required for chromatin looping and re-organization [34].

1.2. The Actions of RARs in Sequence-Specific Translational Control

RA/RARα can control the translation of specific mRNAs in neuronal dendrites, in-
cluding the mRNA that encodes GluR1, the glutamate receptor subunit [35]. The activities
of extracellular signal-related kinase (ERK) and mammalian target of rapamycin (mTOR)
were elevated in neurons after RARα deletion, revealing a signaling pathway linking RARα
to the neuronal-activity-dependent regulation of protein synthesis [36] (Figure 1). More-
over, RARα binds the RNA-binding protein, FMRP, and this binding is enhanced by the
ligand, RA. This interaction between RARα and FMRP is required for proper transcription-
independent RA signaling [37]. RARα transcription-independent actions to date have been
demonstrated in neuronal cells, but future research may show such actions in other cell
types. RARβ is also involved in the RA-dependent control of the rate of protein synthesis
in hematopoietic stem cells [2].

1.3. Endogenous Ligands of the RARs

The endogenous agonist, RA, is metabolized to 4-oxo-RA and 4-OH-RA by the cy-
tochrome P450 enzymes Cyp26a1 and Cyp26b1; 4-oxo- and 4-OH-RA have biological
activity, but data show that these retinoids are generally further metabolized in a catabolic
pathway that inactivates these ligands [38–41]. However, production of 4-oxo-RA by
Cyp26b1 was recently shown to be required to maintain hematopoietic stem cells’ iden-
tity, and depletion of dietary vitamin A in animals resulted in a dysfunctional stemness
phenotype in hematopoietic stem cells [42]. Notably, we showed that embryonic stem cells
(ESCs) that lack Cyp26a1 differentiate poorly when compared to wild-type (wt) embryonic
stem cells, even though the Cyp26a1 null ESCs contain much higher intracellular RA levels
and express higher levels of one of the early, RAR-primary target genes, Hoxa1 [43,44].
We interpret our data to show that these more oxidized metabolites of RA are more ef-
fective agonists for regulating subsets of genes in stem cells and that the levels of these
metabolites of RA play a major role in regulating stem cell differentiation [44]. Whereas
Cyp26a1 knockout during development is lethal to the embryos [45], Cyp26a1 knockout in
adult mice results in a relatively mild phenotype [46]. In contrast, Cyp26b1 knockout in
adult mice reduces lifespan and causes systemic inflammation [47]. Whether this Cyp26b1
knockout phenotype is related to the dysfunctional stemness phenotype of hematopoietic
stem cells described above is not clear at present, nor is it clear that these effects of Cyp26a1
or Cyp26b1 are mediated exclusively by their effect on retinoid metabolism.

Thus, various metabolites of RA, as well as RA itself and synthetic retinoid analogs,
can bind to the RARs α, β, and γ, acting as agonists, to change cell fates and alter stem cell
functions (Figure 1). Multiple cell fate outcomes are possible, given that there are three
RARs and several RA metabolites that arise from the metabolism of RA by the enzymes
Cyp26a1 and Cyp26b1.

2. Effects of Vitamin A Deficiency in the Liver

Many experiments have been performed to assess the effects of dietary vitamin A
deficiency on liver functions. Adult, vitamin-A-deficient (VAD) rats showed hepatocyte
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vacuolization, a sign of steatosis, and mild inflammation in the liver [48]. In VAD rats,
hepatic gluconeogenesis is decreased relative to that in vitamin-A-sufficient animals [49].
Moreover, a low level of retinoids in the liver at the time of carbon tetrachloride treatment
greatly accelerated the process of liver fibrosis in rats [50]. This occurred concomitant with
a selective loss of retinyl palmitate and a larger percentage of retinyl esters in the form of
retinyl oleate and retinyl stearate. Furthermore, after common bile duct ligation, VAD rats
displayed enhanced proliferation of bile duct epithelial cells [51].

Vitamin A is required for hepatocyte survival in a liver regeneration model partial
hepatectomy (PHE) in rats [52]. Moreover, compared to wild-type mice, mice that lack
lecithin:retinol acyltransferase (Lrat−/−) and thus are unable to store hepatic retinoids
show delayed hepatic regeneration after partial hepatectomy [53]. These data indicate
that a lack of hepatic retinoid hinders the survival and regeneration of hepatocytes after
liver injury; however, the mechanisms by which low retinoids lead to defective hepatic
regeneration were not identified in these studies.

3. RARs Are Required to Prevent Liver Disease (Steatohepatitis) and Hepatocellular
Carcinoma in a Mouse Model

The RARs α, β, and γ and the RXRs α, β, and γ are all expressed in the liver [54]. The
critical functions of the RARs in the liver were strikingly shown by using transgenic mice
in which an RAR-α-dominant negative construct, driven by the albumin promoter, was
expressed selectively in hepatocytes [55,56]. This construct suppresses the functions of all
three RARs, α, β, and γ. The liver-selective RARα-dominant-negative mice showed both
microvesicular steatosis at 4 months of age and a decrease in mitochondrial β-oxidation
of fatty acids. These mice had hepatocellular carcinoma and adenoma of the liver at one
year. Notably, feeding these mice a high-RA diet reversed these biochemical abnormalities
and reduced the development of liver tumors. Thus, loss of RA actions specifically in
the liver led to steatohepatitis and liver tumors. Since all three RARs were affected in
these experiments, it is not possible to determine the roles of each of the RARs in the
prevention of steatohepatitis and liver tumors. Conversely, treatment of wild-type mice
with exogenously added RA shifted lipid metabolism toward reduced lipogenesis and
increased catabolism [57,58]. We will discuss the actions of retinoids in the inhibition of
non-alcohol-associated liver disease and liver cancer in rodent models and in humans in
more detail in Sections 4 and 6.

4. Non-Alcohol-Associated Fatty Liver Disease

Dr. Jürgen Ludwig first described nonalcoholic fatty liver disease (NAFLD) in 1980 [59].
NAFLD is a progressive disease, starting with hepatic steatosis; in some patients NAFLD
progresses to nonalcoholic steatohepatitis (NASH), which is characterized by the develop-
ment of fibrosis and cirrhosis [60]. Currently, NAFLD is the most common liver disorder in
the world [61,62]. NASH will soon surpass alcoholic liver disease as the leading disease for
liver transplant [63], and the United States spends more than $100 billion annually in direct
medical costs primarily for NASH and its sequelae [64]. NAFLD is significantly associated
with metabolic syndrome and obesity [64], and NAFLD increases the risk of type 2 diabetes
and cardiovascular diseases [65]. Many NASH patients progress to liver cirrhosis, liver
failure, and HCC [66]. The cumulative incidence of NAFLD-associated HCC was 7.6% in
people who had had advanced fibrosis or cirrhosis for 5 years [67]. Currently, there are no
FDA-approved pharmacological approaches for NAFLD, and therapy relies on the control
of risk factors (diabetes, hypertension, obesity, and dyslipidemia) [68].

NAFLD pathophysiology is manifested by liver steatosis, i.e., lipid accumulation, fi-
brogenesis, and inflammation. Liver steatosis results in lipotoxicity that induces liver stress
and injury, leading to fibrogenesis and inflammation [69]. In addition to this, dysbiosis,
i.e., a disruption to the microbiota homeostasis in the gut, and dysregulated innate and
adaptive immunity are crucial contributors to NAFLD progression [70]. Here, we will
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review the alterations in vitamin A metabolism and actions of retinoids in NAFLD with a
focus on novel therapeutic approaches.

4.1. NAFLD Is Associated with Reductions in Hepatic Retinoids—A Possible Inverse Relationship
between Intrahepatic Triglyceride Levels and Retinoids

For reasons that remain unclear, data show that hepatic retinoid levels are reduced
in high-fat diet (HFD) and genetic murine models of NAFLD [71–74], human
NAFLD [71,72,75,76], and acute liver injury [77]. The liver is the primary organ for retinoid
storage, with approximately 80% of the total body retinoid pool stored as retinyl esters
in triglyceride-rich lipid droplets in quiescent hepatic stellate cells (HSCs), specialized
mesenchymal cells of the liver [78]. It is well documented that upon liver injury, HSCs
transdifferentiate into activated myofibroblasts that execute wound repair, but in the pro-
cess rapidly lose their retinoid content [78]. The loss of HSC retinoids in response to liver
injury is incompletely understood, but it is reasonable to hypothesize that unchecked
activation of HSCs is a key event in the NAFLD-associated hepatic retinoid reductions [79].
As such, evidence shows that hepatic retinoid levels are more severely depleted in ad-
vanced human liver disease (NASH vs. NAFLD) [75], and that hepatic retinoid levels show
an inverse correlation with the severity of liver fat content and damage [71,76]. Trasino
et al. [69] found that hepatic retinoid levels were inversely correlated with hepatic steatosis
in murine and human NAFLD, suggesting that ectopic hepatic lipid itself may be an early
trigger for the loss of hepatic retinoid before the onset of appreciable HSC activation. Recent
evidence from a humanized mouse model of NAFLD supports this, as these mice do not
develop liver scarring but show that hepatic retinoids are among the top analytes reduced
in response to high-fat-diet induced NAFLD [74].

Nevertheless, it remains unclear if HSC loss of retinoid is a driver or a bystander of
NAFLD progression [78]. Given emerging evidence of roles that hepatic lipids play in HSC
biology [79] and a possible relationship between hepatic triglyceride levels and reductions
in hepatic retinoids in NAFLD [71,76], in this section we will focus on current literature
demonstrating a relationship between retinoids and hepatic triglyceride levels. This in-
cludes the primary pathways involved in regulating ectopic hepatic lipid accumulation: (i)
de novo fatty acid synthesis, (ii) fatty acid oxidation, (iii) hepatic influx of plasma-free fatty
acids (FFAs), and (iv) export of lipids from the liver in triglyceride-rich lipoproteins [68,69].

4.1.1. De Novo Lipogenesis

Excessive free fatty acids in the liver are esterified into triglycerides that are stored
as lipid droplets in hepatocytes, manifested as liver steatosis. De novo fatty acid syn-
thesis converts non-lipid precursors into fatty acids, and de novo fatty acid synthesis
can contribute almost 40% of intrahepatic triglycerides in subjects with NAFLD [80]. In
mammalian cells, first, acetyl-CoA carboxylase converts acetyl-CoA to malonyl-CoA. Then
fatty acid synthase (FASN), an enzyme containing multi-functional subunits with seven
enzymatic activities: acetyl-CoA-ACP transacylase, malonyl-CoA-ACP transacylase, β-
ketoacyl-ACP condensase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydratase,
enoyl-ACP reductase, and palmitoyl-ACP thioesterase, initiates fatty acid synthesis using
acetyl-CoA and malonyl-CoA [81]. The final product of FASN is palmitate, a saturated
fatty acid. Fatty acids with longer chains and unsaturated fatty acids are produced from
palmitate through different enzymes, i.e., elongases (ELOVLs) and desaturases [82,83].
Stearoyl-CoA desaturase 1 (SCD1) catalyzes the first desaturation reaction to produce the
first double bond in palmitate and stearate [83]. Many lipid species, including triglycerides
and phospholipids, are generated from saturated and unsaturated fatty acids.

Retinoic acid suppresses lipid biosynthesis in mouse liver, and RA decreases the
mRNA levels of both SREBF and FASN, which are involved in de novo lipogenesis [57,84]
(Figure 2). RA also reduces lipid accumulation and steatosis in the liver of NAFLD mouse
models [85–88].
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Figure 2. Retinoid actions in nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver
disease (ALD). De novo lipogenesis and free fatty acid influx contribute to liver steatosis manifested
in both NAFLD and ALD. Liver-steatosis-induced lipotoxicity and dysbiosis in the gut results in
hepatic inflammation and hepatic fibrosis. Retinoid signaling inhibits these events and attenuates
these events, which can cause liver injury. Upward red arrows and downward blue arrow indicate
increases and decreases, respectively. Abbreviations: HSC: hepatic stellate cell.

We discovered that highly selective synthetic RARβ2 agonists reduce the mRNA
and protein levels of multiple gene products (including SREBF, PPARG, and FASN) that
are involved in lipogenesis in the liver in a high-fat-diet (HFD)-induced NAFLD mouse
model [89,90] (Figure 2). Fructose and sucrose intake promotes de novo lipogenesis in
the liver [91,92], and a recent pre-clinical study indicates that a fructokinase (also called
ketohexokinase) inhibitor improves NAFLD/NASH [91]. We discovered that, in a high-fat
diet mouse NAFLD model, one of the key mechanisms by which a highly selective synthetic
RARβ2 agonist suppresses lipid accumulation in the liver could be inhibition of fructose
metabolism [90] (Figure 2).

4.1.2. Fatty Acid Oxidation

In addition to suppressing de novo lipogenesis, RA treatment upregulates hepatic
lipid oxidation by increasing the expression of PPARα, FGF21, CPT1, and UCP2 [57,72,93].
Rdh10+/− mice, which have reductions to hepatic RA levels, develop increases in hepatic
triglycerides and reductions in expression of genes involved in fatty acid β-oxidation,
including PPARα [87]. It is unclear if each of the RARs is dedicated to regulating specific
aspects of fatty acid β-oxidation, or if there is redundancy among them. The data currently
suggest roles for both RARα and RARβ in regulating hepatic β-oxidation of fatty acids. For
example, as mentioned in Section 3 above, mice expressing a hepatocyte-specific dominant
negative RARα that suppresses the signaling of all endogenous RARs develop hepatic
steatosis, with impaired capacity for mitochondrial β-oxidation of fatty acids, which can
be reversed with RA treatment [56]. Interestingly, these mice also show increased hepatic
expression of genes involved in peroxisomal β-oxidation of lipids [56], demonstrating that
the role of RARs in oxidation of fatty acid is more complex and incompletely understood.
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A role for RARβ in hepatic fatty acid oxidation has also been demonstrated, as mice
overexpressing RARβ in the liver show increases in FGF21-mediated fatty acid β-oxidation
and an increase in whole-body energy expenditure [93]. In line with this, RARβ2 selective
agonists increase the transcript levels of genes that promote and mediate mitochondrial
fatty acid β-oxidation, including PPARα and CPT1A [89]. In contrast to the effects of
RARβ2 selective agonists on liver steatosis in HFD-induced NAFLD models [89,90,94], the
RARα agonist Am 80 exacerbates [95] and the RARγ agonist CD1530 [94] has no major
effect on liver steatosis in these models, respectively. Although murine genetic studies
demonstrate a role for RARα and RARβ in the regulation of fatty acid oxidation in the
liver [56,93], studies using RAR-specific agonists can also further enhance understanding
of the effects of specific RAR activation in mediating hepatic fatty acid oxidation.

4.1.3. Free Fatty Acid Influx to the Liver and Export of Lipids from the Liver

Another primary source of fatty acids in the liver is from the influx of free fatty acids
from blood [69], including oleate and palmitate [96]. There have been few studies of the
impact of natural retinoids on hepatic influx of free fatty acids; however, we found that a
RARβ2-selective agonist inhibits high-fat-diet induced increases in the mRNA and protein
levels of the fatty acid transporter CD36, indicating that this agonist attenuates free fatty
acid influx to the liver [90] (Figure 2). To date, we found no studies reporting the effects of
retinoids on lipid export from the liver.

4.2. Targeting Hepatic Stellate Cell (HSC) Activation and Fibrogenesis

Fibrogenesis during NAFLD progression is initiated by activation of quiescent hepatic
stellate cells (HSCs) that produce excessive extracellular matrix proteins, generating fibrous
scars [97]. HSCs and fibrosis are the targets for novel therapy development for NAFLD,
including using α-bromomethylene phosphonate lysophosphatidic acid and silencing the
lysophosphatidic-acid-producing enzyme autotaxin to inhibit activated HSCs, tyrosine
kinase inhibitors (sorafenib, imatinib, or nilotinib) to suppress HSC proliferation and
migration, and lysyl oxidase inhibitors to reduce ECM deposition [98].

The effects of retinoids on HSCs remain controversial [99]. RA and retinol mitigate car-
bon tetrachloride (CCL4)-induced liver fibrosis in mice [98] and cholestatic liver fibrosis in
rats [100], respectively. On the contrary, another study suggests that RA in HSCs promotes
HSC activation and liver fibrosis in rats [101]. An isomer of all-trans RA, 9-cis retinoic acid,
promotes liver fibrosis in rats [102]. Treatment with 9-cisRA also caused resistance to IFN-γ
therapy in advanced stages of liver fibrosis in mice [103]. Some studies have suggested
that the varied effects of retinoids on HSCs are because of different responses of HSCs to
different retinoid species, such as RA and 9-cisRA, which may selectively activate different
RARs [104]. Indeed, RARα activation promotes inflammatory signaling and fibrosis in
lipopolysaccharide-activated HSCs [105]. RARα activation also promotes HSC activation
in a high-fat-diet (HFD)-induced NAFLD mouse model [95]. Acting through RARβ and
RXRα, RA reduces type I collagen production in in vitro cultures of activated HSCs through
RARβ and RXRα [106]. A selective RARβ2 agonist mitigates HSC activation and early
fibrosis events in HFD-induced NAFLD mouse models [90,94], while RARγ activation
has no effect [94]. In addition to the direct effects of retinoids on HSCs, some studies
suggest that retinoids modulate the interaction between HSCs and liver natural killer (NK)
cells [107] that kill activated HSCs and mitigate liver fibrosis [108,109]. However, these
studies did not explore which RAR(s) is (are) involved in these actions. We conclude that
additional studies using genetics or selective agonists are needed to resolve the roles of
retinoids in promoting and/or limiting fibrosis (Figure 2).

4.3. Targeting Inflammation in NAFLD

Intermittent, chronic, sterile low-grade inflammation (metaflammation) in the liver
occurs in 10–30% of NAFLD patients [70,110,111]. Gut microbiome, dietary factors, and
certain lipid species contribute to this metaflammation in the liver in NAFLD [70]. Both
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innate and adaptive immune systems are involved in this process [69,70]. Natural and
synthetic retinoids suppress the liver’s resident macrophages’ production of inflammation
mediators TNFa [112] and IL12 [113]. We discovered that a selective RARβ2 agonist
attenuates the increases in the expression of pro-inflammatory mediators in NAFLD mouse
models, including TNFα, CCL2, CCR2, and IL1β, while a RARγ agonist has no effect [90,94]
(Figure 2). Interestingly, RARα activation exacerbates inflammation, indicated by F4/80
staining, in an HFD-induced NAFLD mouse model [95]. These data are consistent with
earlier studies in that the three RARs have different and sometimes antagonistic effects,
likely because of competition at some DNA response elements [114], i.e., RARγ1 can inhibit
other RARs’ actions via competition for the response element and direct interaction with
other receptors in model cell culture systems.

4.4. Targeting the Effects of the Gut Microbiome on NAFLD Progression

Compelling evidence shows that the gut microbiome-liver axis plays an important role
in NAFLD progression [115]. Gut bacteria modulate the gut-liver axis via intestinal FXR-
FGF19 signaling that regulates bile acid synthesis and lipid and glucose metabolism [69].
Additionally, dysbiosis in the gut, i.e., an alternation in the gut microbiota homeostasis,
results in an increase in intestinal permeability, leading to invasion of gut bacteria and their
products in the liver that trigger downstream inflammatory responses and HSC activation,
resulting in worsening of liver injuries in NAFLD [116,117]. Although the exact mechanism
is not understood, one study suggests that RA may prevent dysbiosis in the gut [118]
(Figure 2). RA also reduced intestinal permeability by improving the intestinal barrier
function, and this effect is mediated via RARβ [119]. Thus, RARβ may exert an effect on
NAFLD progression via its actions in the intestine, and RARβ and its signaling pathway in
the gut could be novel targets for NAFLD therapy development.

5. The Roles of Retinoids in the Pathogenesis and Treatment of Alcohol-Associated
Liver Disease (ALD)

Retinoids have been extensively studied in ALD, both in rodent models and in human
disease. Here we review much of this literature.

5.1. Chronic Alcohol Abuse Is Associated with Depletion of Liver Retinoids

Alcohol-associated liver disease (ALD) is one of the most common causes of liver
cirrhosis and is responsible for approximately 25% of all liver-related deaths globally [120].
ALD has a broad clinical spectrum; beginning with simple steatosis, ALD can progress to
alcoholic steatohepatitis, alcoholic cirrhosis, and end-stage liver disease [121]. The liver
is responsible for the detoxification of alcohol [121], but it is also the primary organ for
the metabolism and storage of retinoids [122], with approximately 80% of the total body
retinoid pool stored in the liver HSCs [78]. There are a number of enzymes shared both
by alcohol and retinoid metabolism in the liver [123–125], and over more than 50 years,
researchers have found abnormal retinoid homeostasis in individuals suffering from chronic
alcoholism and ALD [126–131]. Notably, even prenatal alcohol exposure results in a major
decrease in retinyl ester levels in the livers and lungs of adult rodents [132]. Increases in
extra-hepatic tissue RA [133] also indicate long-term effects of prenatal alcohol exposure
on whole-body retinoid homeostasis.

A landmark study by Leo et al. [128] demonstrated that, when compared to livers
from normal control subjects, levels of total hepatic retinoid content (retinyl esters and
retinol) were markedly decreased with increasing severity of ALD (from simple steatosis to
steatohepatitis). Moreover, subjects with early stages of ALD (simple steatosis) had normal
serum retinol, and only in subjects with advanced stages of ALD (alcoholic steatohepatitis
and cirrhosis) were serum retinol levels depressed compared to controls [128]. Other
human studies have similarly reported hepatic retinoid reductions in individuals with
chronic alcoholism [134] and serum retinol levels that are unchanged with chronic alcohol
abuse [135,136], but depressed in advanced ALD [130]. The implications of these findings
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are that individuals in early stages of chronic alcoholism who present with normal serum
retinol levels may already have severely depleted hepatic retinoid levels.

What remains unclear is whether depletion of hepatic retinoid itself promotes liver
damage and the onset and progression of ALD [123]. It has been hypothesized that retinoid
deficiency may be involved in the keratinization of the liver and formation of Mallory
Bodies [137], hepatic lesions associated with alcoholic steatohepatitis and cirrhosis [138].
However histopathology studies show that the prevalence of Mallory Bodies in individ-
uals with and without hepatic retinoid depletion is similar [128]. Clugston et al. [139]
reported that alcohol-fed LRAT−/− mice, which are unable to store hepatic retinoid, are
protected against alcohol-mediated increases in extra-hepatic tissue retinoid levels. How-
ever, no assessment of liver damage and pathology in alcohol-fed LRAT−/− mice versus
alcohol-fed wild-type mice was reported [139]. Evidence does show that LRAT−/− mice
are not more prone to bile duct ligation or chemically induced fibrotic liver disease, though
they are protected against chemically induced hepatocarcinoma [140]. Given the con-
vincing body of data showing that chronic alcohol abuse leads to reductions in hepatic
retinoids [126–131], more studies are needed to determine whether reductions in hepatic
retinoids are specifically involved in the progression of ALD.

5.2. Mechanisms of Hepatic Retinoid Depletion in ALD

Numerous factors might contribute to the reductions in hepatic retinoid in chronic
alcohol abuse and ALD, including poor dietary retinoid intake, poor absorption, and
increased retinoid demands from infection [131,141]. However, alcohol feeding studies
in vivo demonstrated that even in the absence of any dietary retinoid, hepatic alcohol
metabolism itself promoted reductions in hepatic retinoid content [129,142,143]. Based
on the understanding that liver retinol is primarily derived from hepatocytes, and retinyl
esters from HSCs [78], it is likely that alcohol promotes reductions in retinoids in both these
cell types.

Since the findings by Leo et al. [128], numerous in vitro and in vivo studies have
focused on three potential mechanisms for alcohol-mediated reductions to hepatic retinoid:
(i) increased retinoid catabolism, (ii) decreased all-trans retinoic acid (RA) synthesis, and
(iii) increased hepatic retinoid mobilization [123]. The increased catabolism theory pur-
ports that chronic alcohol intake increases numerous xenobiotic enzymes, including cy-
tochrome P450 2E1(CYP2E1), the major CYP450 in the microsomal ethanol-oxidizing system
(MEOS) [144], which promiscuously catabolizes and reduces hepatic retinoids (i.e., retinol,
retinyl esters, and RA) [143,145]. For example, Liu et al. [143] demonstrated that incuba-
tion of liver microsomal fractions high in CYP2E1 from alcohol-treated rats resulted in
increased catabolism of RA and appearance of RA catabolites, such as 4-oxo-RA. In another
study, Liu et al. [145] reported that alcohol-fed rats treated with the CYP2E1 inhibitor,
chlormethiazole, had higher hepatic retinol and retinyl-palmitate compared to untreated
alcohol-fed rats, suggesting that CYP2E1 is a key CYP450 enzyme involved in the hepatic
degradation of all retinoid species found in the liver. That notion, however, was challenged
in a study by Clugston et al. [139] that demonstrated that Cyp2e1−/− mice were only
protected from alcohol-mediated reductions in hepatic retinol, not retinyl esters [139]. The
Clugston et al. study [139], and a similar study by Ferdouse et al. using alcohol-treated
Cyp2e1−/− mice [146], did not determine if loss of CYP2E1 could mitigate alcohol-driven
reductions in hepatic RA.

The Ferdouse et al. study [146] did show, in agreement with a recent RNA-sequencing
study of livers from alcohol-treated mice by Melis et al. [147], that 3–4 weeks of chronic
alcohol treatment leads to robust and broad hepatic mRNA increases in numerous CYPs
(including Cyp2c29, Cyp3a11, Cyp26a1, and Cyp26b1) that are capable of degrading
retinoids [125]. These data strongly suggest that in addition to CYP2E1, alcohol-induced
CYP450s, including the RA hydroxylases CYP26A1 and CYP26B1, are likely involved in
alcohol-mediated reductions in hepatic retinoids.
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The less explored ‘decreased RA synthesis hypothesis’ suggests that chronic alcohol
intake can potentially competitively inhibit the synthesis of RA from retinol, due to the
overlap of enzymes involved in the two-step oxidative metabolism of alcohol to acetate and
retinol to RA (i.e., alcohol/retinol dehydrogenase 1 (ADH1), and aldehyde/retinaldehyde
dehydrogenase A1 (ALDH1A1), reviewed in [148]). However, there is little convincing data
that the overlap between alcohol and retinol oxidation/metabolism has any physiological
effects on retinoid homeostasis [148]. Furthermore, there is debate as to whether alcohol
leads to reductions to hepatic RA [123,148]. Three studies using highly sensitive tandem
mass spectrometry (LC-MS/MS) approaches to measure hepatic RA in male mice show that
chronic alcohol feeding resulted in either no changes [133,147] or reductions in hepatic RA
levels [146]. The discrepancies in these findings may be partly explained by data from Kane
et al. [133], who performed the most comprehensive examination of both acute and chronic
effects of alcohol on hepatic and extra-hepatic RA. They showed that alcohol intake causes
rapid increases in hepatic RA synthesis, followed by equally rapid metabolism, likely by
hepatic CYP26 RA hydroxylases and other CYPs, resulting in no long-term changes to
steady-state hepatic RA levels. Therefore, the data from Kane et al. [133] suggest that the
timing of the hepatic RA measurements is likely critically important in the determination
of the effects of alcohol on hepatic RA levels. In the same regard, differences in the length
of reported alcohol exposure and dose across these studies (4 weeks of 6.5% v/v in Kane
et al. [133], vs. 3 weeks of 5% v/v in Melis et al. [147], vs. 2 weeks of 6.4% v/v in Ferdouse
et al. [146]), should also be considered when comparing these findings.

Nevertheless, the conclusions from these studies were in agreement that alcohol pro-
motes hepatic RA catabolism [133,146,147]. However, this phenomenon does not appear to
occur in some extra-hepatic tissues, as Kane et al. [133] also demonstrated that chronic alco-
hol exposure increases RA levels in the testes, and, consistent with another report [149], the
brain. Kane et al. [133] also found that hippocampal mRNA levels of CYP26 hydroxylases
and other RA-metabolizing CYPs, such as CYP2C39 [125], were unchanged, suggesting
that tissues which lack sufficient RA-metabolizing enzymes are susceptible to RA toxicity
in response to chronic alcohol intake. Given the challenges in measuring endogenous RA
(i.e., low tissue levels and rapid metabolism), future studies of the effects of alcohol on
hepatic and extra-hepatic RA levels should seek to standardize LC-MS/MS analytical ap-
proaches of endogenous RA levels, which have been addressed in numerous methodology
papers [150–152].

The increased ‘hepatic retinoid mobilization’ theory was already put forward in the
first observations by Leo et al. [128] of hepatic retinoid depletions in human subjects with
ALD. This theory is reasonable, given that the liver is the primary organ for retinoid
export to maintain steady-state serum retinoid levels [122,153]. The first evidence of
increased hepatic mobilization of retinoids came from a study by Kane et al. [133], which
demonstrated that both acute and chronic alcohol consumption resulted in increases in RA
levels in extrahepatic tissues, including the serum, brain and testis. The increases in serum
RA were accompanied by reductions in hepatic retinoids and high levels of retinol and
retinoid dehydrogenases in extra-hepatic tissues [133], suggesting that the liver was the
likely source. In a study by Clugston et al. [139], it was shown that with chronic alcohol
abuse there is a two-phase hepatic response to alcohol; first, there is an increased hepatic
retinoid export to serum and extra-hepatic tissues, followed by a phase of increased hepatic
degradation, which was subsequently demonstrated to likely be due to marked rises in
CYP26A1, CYP26B1, and other CYPs capable of degrading retinoids [146,147]. Using
alcohol-fed LRAT−/− and cellular retinol binding protein 1−/− (RBP1) mice, Clugston
et al. [139] convincingly demonstrated that extra-hepatic tissue retinol is derived from
the liver during chronic alcohol intake and that RBP1 plays a key role in extra-hepatic
accumulation of excessive retinoids. In another model system, alcohol stimulated the
differentiation of embryonic stem cells by increasing the influx and metabolism of retinol,
which then led to RARγ-dependent transcription of RBP1 and other genes involved in RA
synthesis [154].
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5.3. Effects of Retinoids on ALD

As ALD progresses, the severity of the reductions in hepatic retinoids also
increases [128], suggesting that loss of hepatic retinoid content may be involved in the
progression of ALD. In keeping with the hypothesis that endogenous retinoids are hep-
atoprotective against ALD, many studies have examined the protective properties of
exogenous retinoids (including RA and retinyl-palmitate) [131,155–161]. A study by Mo-
tomura et al. [155] demonstrated that 16 h of ex vivo RA (500 nm) treatment of hepatic
Kupffer cells (macrophages), isolated from rats fed alcohol, reduced lipopolysaccharide
(LPS)-mediated expression of a number of pro-inflammatory cytokines, including TNF-
α, IL-6, IL-1α, and IL-1β (Figure 2). Interestingly, this study found that RA levels were
lower in Kupffer cells from alcohol-fed rats compared to controls, suggesting that RA
reduction in Kupfer cells may be associated with progression of ALD. Similarly, a study
by Chung et al. [156] showed that alcohol-fed rats treated with RA for 30 days resulted
in restoration of endogenous RA and retinol levels, but not retinyl palmitate, in the liver;
mitigation of hepatocyte proliferation; and expression of the cell cycle regulatory proteins
c-Jun and cyclin D1. In a follow-up study, Chung et al. [157] demonstrated that 6 months
of exogenous RA treatments in alcohol-treated rats mitigated changes in hepatic protein
levels of the cell cycle regulatory proteins phosphorylated Jun N-terminal kinase (JNK) and
its upstream regulator mitogen-activated protein kinase kinase-4 (MKK-4). Interestingly,
despite evidence that alcohol promotes apoptosis of hepatocytes [162], Chung et al. [157]
found that alcohol suppressed hepatocyte apoptosis, which was increased by RA in alcohol-
fed rats [157]. The findings by Chung et al. [156,157] are consistent with the established
anti-proliferative, anti-cancer properties of RA and other retinoids [7], suggesting that
with long-term (>3 months) chronic alcohol intake, exogenous RA may increase apoptosis
of severely damaged hepatocytes, reducing the risk of hepatocellular carcinoma that is
associated with ALD [163].

In a more comprehensive analysis of the biochemical and histopathological hallmarks
of ALD, Pan et al. [158] showed that a daily RA dose of 150 µg/kg mitigated hepatic
steatosis and liver damage, as measured by reductions to serum aspartate aminotransferase
(AST) and alanine aminotransferase (ALT), in rats fed alcohol [158]. Unlike low dose RA,
which restored hepatic RA and retinol, a higher dose of RA also restored hepatic retinyl
esters in alcohol-fed rats [158]. The latter result is consistent with evidence that RA itself
can increase retinol esterification in the liver [164]. Thus, high doses of RA could be a
pharmacological approach for preserving hepatic retinoid stores with chronic alcohol abuse.
Given that they found no differences in the liver protection between the lower and higher
doses of RA, retinol, rather than retinyl esters, may be involved in the hepatoprotective
properties of exogenous RA.

Many potential mechanisms of the anti-ALD properties of RA remain unexplored, but,
as discussed here, the hepatoprotective effects of RA in models of ALD are consistent with
a large body of evidence that RA favorably modulates ALD-relevant pathways, including
hepatic lipid metabolism [165], oxidative stress, and inflammation in other fibrotic liver
diseases, such as NAFLD [166–169] (Figure 2).

These studies show promise for RA as a potential anti-ALD drug, and they suggest that
RA would have to be consumed concomitantly with alcohol as a prophylactic therapy against
the onset of ALD. However, long-term RA therapy in ALD would be challenging, given
the rapid, first-pass metabolism of RA [164]. For example, pharmacokinetic data show that
patients given continuous, daily oral RA therapy for leukemia show decreases in systemic
RA levels and in some cases, returns to baseline levels after approximately 21 days [170,171].
Moreover, in individuals who struggle with alcohol cessation, long-term RA therapy would
be further hampered given that alcohol-mediated increases in CYP2E1 and other xenobiotic
CYP450s increase the catabolism of RA and other retinoids [143,145,146]. Supplementation
with retinyl palmitate or the pro-retinoid β-carotene to raise endogenous RA levels may not
be feasible or safe, because, for reasons that remain unclear, supplementation with these
RA precursors in the presence of alcohol promotes liver damage, myofibroblast formation,
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and fibrosis in rat models of ALD [131,159–161]. A possible alternative approach may be
the use of oral RA treatment in conjunction with a chemical CYP2E1 inhibitor, which can
prevent RA catabolism and protect against ALD [145]. Notably, a new class of CYP2E1
inhibitor has been used for prophylactic treatment of early stages of ALD [172].

Another novel approach for the treatment or prevention of ALD could be the use of
synthetic retinoids that might not be as negatively impacted by alcohol as natural retinoids.
Melis et al. [147] reported that in mice concomitantly treated with alcohol (5% v/v) and an
orally available, synthetic agonist of retinoic acid receptor β2 (RARβ2), AC261066 [173],
liver damage and the clinical pathology associated with ALD were decreased, including
reductions in liver triglycerides, micro- and macrovesicular steatosis, oxidative stress,
and serum AST and ALT levels (Figure 2). That study also reported that despite marked
reductions in hepatic retinoids in the alcohol-fed mice, liver levels of AC261066 were
unaffected by alcohol treatments [147]. Unlike the reports with RA treatments [156,158],
AC261066 did not restore the alcohol-driven reductions in hepatic retinol or retinyl esters,
and hepatic RA was unchanged between control and alcohol plus AC261066 treatment
groups. Whether the hepatoprotective effects of AC261066 involved RARβ2 signaling was
not rigorously tested. Interestingly, alcohol treatments still increased hepatic mRNA levels
of RARβ2 and other RAR target genes, including Cyp26a1, Cyp26b1, and LRAT [147].

The synthetic retinoid fenretinide (N-(4-hydroxyphenyl)retinamide; 4-HPR),which
is known for its anti-cancer effects [174], also has anti-ALD properties. A study by Tang
et al. [175] reported that mice chronically fed alcohol for 3 weeks and treated with 4-
HPR had reductions in alcohol-associated steatosis, oxidative stress, and liver damage.
Daily 4-HPR treatments also diminished alcohol-mediated gut damage and systemic en-
dotoxemia [175], which is a critical aspect of the molecular pathogenesis of ALD and
alcohol-associated systemic damage [121]. Tang et al. [175] found that the hepatic mRNA
levels of the retinoid target genes Cyp26a1 and RARβ2 [153] were unchanged by the 4-HPR
treatments, which is consistent with the fact that 4-HPR is an atypical retinoid, in that it
also possess biological properties that are RAR-independent [176].

Collectively, these data suggest a role for exogenous retinoids in the prevention
and treatment of ALD. However, further studies are needed to identify whether long-
term retinoid treatment is feasible, given the effects of alcohol on retinoid metabolism.
Alternative approaches, using either synthetic retinoids or high-affinity RAR agonists that
show hepatoprotective properties but are less susceptible to the metabolic changes induced
by alcohol, should also be given consideration as novel approaches for retinoid treatment
of ALD.

6. Retinoids in Liver Cancer

Liver cancer is the third most deadly cancer worldwide following lung and colorectal
cancers [177,178]. The most prevalent form of liver cancer is hepatocellular carcinoma
(HCC), which mainly develops in individuals with chronic hepatitis B and C (HBV and
HCV) or with alcohol-related chronic liver disease [177]. Additionally, because of the global
increases in NAFLD/NASH, obesity, and metabolic syndrome, all of which are associated
with HCC, global HCC cases are expected to increase in the next decade [179]. Despite the
increased precision in the diagnosis of HCC, this tumor is usually recognized in advanced
stages and treatments are still not effective. Therefore, HCC has a poor outcome, with one
of the highest rates of recurrence and the lowest 5-year survival rates of 5–10% [180].

In patients with HCV-associated, chronic liver disease there is a progressive decrease
in serum retinol levels as the disease becomes more severe [181]. However, the potential
roles of retinoids in the prevention and treatment of HCC are not fully understood, and this
lack of understanding contributes to our limited ability to design effective therapies for this
type of tumor. Here we discuss some recent findings that shed light on mechanisms linking
RA signaling to HCC prevention and therapy, opening new avenues for the potential uses
of retinoids in HCC treatment.
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6.1. Association of Hepatitis B and C Viruses with Abnormal RARβ Function

Despite both viruses being hepatotropic, HBV and HCV cause HCC via distinct
pathways. The HBV genome has a partially double-stranded DNA genome that gives
origin to multiple proteins essential for the virus life cycle. The gene encoding the HBx
protein is associated with direct carcinogenic potential, in part because of its ability to
integrate into the host genome, its ability to interact with the host cell cycle, transcription
factors, and DNA repair, hence, the name ’viral oncoprotein’ [182]. HCV has a single-
stranded RNA genome whose ability to induce carcinogenesis is primarily by promoting
accumulation of lipids in the liver via increasing endoplasmic reticulum stress [183,184],
and by eliciting a dramatic immune response in the liver [185]. People with HCV often
have lower serum vitamin A than healthy controls [186], suggesting two key scenarios in
HCV pathogenesis, i.e., loss of vitamin A may increase susceptibility to HCV infection and
it may promote hepatic fibrosis because of the vitamin A depletion in hepatic stellate cells,
which store vitamin A in healthy individuals. These aspects are discussed in detail in a
separate review [187]. In support of these observations, vitamin A showed activity against
HCV infection in cell culture models [188–190]. Despite the fact that this antiviral effect was
also observed in HCV-infected patients after treatment with RA alone or in combination
with standard HCV therapies, the patients experienced viremia after the treatment [191].

Among the RARs, there may be a unique relationship between RARβ and HBV. Indeed,
the gene for RARβ was first discovered in human HCC, where it flanks an HBV integration
site [192,193]. In the case of human HCC, HBV integration often causes a microdeletion and
rearrangement in the RARβ open reading frame which produces an HBV-RARβ chimera
that possesses oncogenic properties, suggesting that aberrations in RARβ may be involved
in HBV-associated HCC [194]. There is evidence showing that HBx transfection into HepG2
cells causes a decrease in RARβ2, the most abundant RARβ isotype, by an HBx-driven
aberrant promoter methylation. Consequently, growth arrest of these HBx-transfected
HepG2 cells upon RA treatment does not occur [195].

Although other studies showed no differences in RARβ expression between HCC and
non-tumor tissues [196], more recent studies confirmed the decrease in vitamin A in human
HCC associated with HCV infection [181], as well as a reduction in RARβ in cirrhosis and
HCCs of unknown etiology compared with normal livers [197,198] (Figure 3).
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protein 1) is expressed predominantly in hepatic stellate cells rather than in the hepatocytes, in HCC
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and γ in HCC.
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6.2. Aberrant Regulation of Retinoid Metabolism and RARβ in Hepatocellular Carcinoma

Retinoids modulate numerous cellular functions, including signal transduction, cell
proliferation, apoptosis, and immunity [122,199], and it is likely that endogenous retinoids
may also play a role in the inhibition of carcinogenesis. As discussed in Section 3 above, in
mice deficient in all three RARs (α, β, γ) because of the expression of a dominant negative
RAR construct expressed only in the liver, liver steatosis was seen at 4 months of age and
HCC developed after 12 months [56]. Treating these mice with exogenous RA prevented
the appearance of steatosis and its progression to cirrhosis (8). In rodent models of alcohol-
associated liver cancer, there is a major reduction in endogenous retinoids [200,201].

Additional evidence of RAR dysfunction in HCC comes from the comparison across
various liver conditions, including liver regeneration, multiple fetal development stages,
human hepatocellular carcinoma, hepatoblastoma cell lines (i.e., HepG2), and finally, less
frequent types of liver cancer, such as adenoma, fibrolamellar carcinoma, and cholangiocar-
cinoma. The levels of RARβ mRNA in this spectrum of liver diseases ranged from low to
undetectable in all liver cancers and other conditions, except for cholangiocarcinoma [202].
Moreover, Cortes et al. demonstrated that decreased RARβ activity, generated by treating
cultured hepatic stellate cells with a RARβ antagonist (the drug used in this study targets
both RARβ and γ), resulted in an increase in myosin light chain 2 (MLC-2), a protein
produced by hepatic stellate cells that confers cell contractility and invasive potential [197].
Thus, a reduction in RARβ level and/or activity may be one driver of liver carcinogenesis.

One of the key biomarkers to assess HCC presence is alpha-fetoprotein
(AFP) [203–205]. Some have proposed a mechanism in which AFP acts as a suppres-
sor of RARβ and γ, as shown by co-immunoprecipitation experiments [206,207]. Although
the potential mechanisms behind this interaction could be crucial for our understanding of
the RA signaling pathway’s role in limiting HCC, there is the need to better define whether
AFP binds to or acts on specific RARs.

While the RARs exert transcriptional control of the retinoid signaling pathway, en-
zymes that synthesize RA may play major roles in liver homeostasis and in the pathophysi-
ology of liver cancer. One of the enzymes that catalyzes the conversion of retinol to retinoic
acid, ALDH1A1 [208], showed a negative correlation with HCC recurrence in patients that
underwent HCC-related liver transplantation [209]. Likewise, RBP1, which is responsible
for the transport of intracellular retinol, exhibited the classic cytoplasmic expression in hep-
atic stellate cells and myofibroblasts in healthy human liver, whereas in human HCC RBP1
staining was aberrantly distributed in the cytoplasm and nucleus of neoplastic hepatocytes
as well as in a few myofibroblasts in non-tumor liver tissue while RBP1 expression was
almost absent in hepatic stellate cells [210]. These findings are recapitulated in Figure 3.
It is not clear if RBP1 expression in hepatocytes occurs as a compensatory effect from the
loss of RBP1 expression in hepatic stellate cells or because RBP1 in hepatocytes participates
in different pathways. The mechanisms behind these findings and the potential crosstalk
between hepatic stellate cells and hepatocytes are presently unknown.

6.3. Therapeutic Potential of Retinoids in HCC

Despite the finding that RA treatment caused growth arrest in the hepatoma HepG2
cell line [211] and decreased the level of proline isomerase 1 (PIN2), one of the proteins
highly expressed in HCC [212], the use of RA as a therapeutic option in HCC treatment
requires further research. One important approach might be to use isoform-specific agonists,
and we outline newer synthetic retinoids that may overcome the limitations of the rapid
metabolism of RA and the binding of RA to all of the RARs, while preserving the anti-cancer
properties of retinoids such as RA. This approach is similar to that described in Sections 1
and 5.

Fenretinide is a compound with RAR-dependent and RAR-independent mechanisms
of action [176]. For example, fenretinide induced apoptosis and showed anti-proliferative
effects in HepG2, Huh 7, and HepB3 cells through RARβ actions [213–216]. Recently,
researchers reported that sulfarotene (WYC-209), an acyclic retinoid, overcame HCC re-
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sistance in a subset of cancer cells that were responsible for drug resistance (i.e., tumor-
repopulating cells), possibly via RARα [217]. A promising retinoid at present for the
prevention of HCC recurrence is peretinoin (NIK-333) [218,219], which is in clinical trials
that are discussed in a separate review [220]. Pre-clinical studies showed that peretinoin
suppressed steatosis and tumorigenesis in a mouse model of diet-induced NASH and HCC
by promoting autophagy and inhibiting pro-inflammatory pathways [221]. Peretinoin
also resulted in a reduction in activated hepatic stellate cells and oval cells in rats [222].
Peretinoin’s mechanism of action involves the canonical RA-signaling pathway via in-
creases in the RAR and RXRs in multiple experimental models [223,224]. Another synthetic
retinoid, 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), inhibited cell proliferation and
caused apoptosis more efficiently than RA in HepG2 cells, although the concentrations
used were extremely high (25 µM) [225].

In conclusion, the treatment of HCC with synthetic retinoids warrants further research
both in pre-clinical and clinical studies. The development of new, synthetic retinoids
presents substantial advantages compared to RA when used in patients with HCC and may
provide more efficient therapies for this deadly cancer.

7. General Summary

In summary, many studies have demonstrated that endogenous hepatic retinoid
storage and metabolism are altered in all of the liver diseases discussed here. Moreover,
numerous reports of therapeutic effects of RA and synthetic retinoids in these liver diseases
have been published. The complexity of the retinoid signaling system provides a challenge
to the identification of therapeutics, but our improved understanding of this complexity,
coupled with the use of genetics and selective agonists and antagonists, holds great promise
for the development of retinoid-based therapies for a wide variety of liver disorders where
current therapies are not adequate.
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