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Abstract: The human gait can be described as the synergistic activity of all individual components of
the sensory–motor system. The central nervous system (CNS) develops synergies to execute endpoint
motion by coordinating muscle activity to reflect the global goals of the endpoint trajectory. This
paper proposes a new method for assessing temporal dynamic synergies. Principal component
analysis (PCA) has been applied on the signals acquired by wearable sensors (inertial measurement
units, IMU and ground reaction force sensors, GRF mounted on feet) to detect temporal synergies in
the space of two-dimensional PCA cyclograms. The temporal synergy results for different gait speeds
in healthy subjects and stroke patients before and after the therapy were compared. The hypothesis
of invariant temporal synergies at different gait velocities was statistically confirmed, without the
need to record and analyze muscle activity. A significant difference in temporal synergies was noticed
in hemiplegic gait compared to healthy gait. Finally, the proposed PCA-based cyclogram method
provided the therapy follow-up information about paretic leg gait in stroke patients that was not
available by observing conventional parameters, such as temporal and symmetry gait measures.

Keywords: gait; gait cycle; ground reaction force; inertial measurement unit; principal component
analysis; stroke; synergy; wearable device

1. Introduction

The central nervous system (CNS) controls many degrees of freedom (DOFs) of the
musculoskeletal system, coordinating many muscle activities on many joints. Human
movements can have different trajectories, speeds, and accelerations even when they
achieve the same goal. To control so many DOFs, it becomes necessary for the CNS to have
a complex and delicate organizational structure [1]. Different mathematical approaches for
modeling realistic multi-joint movements were suggested in the literature, based on the
various optimization functions such as minimum jerk [2,3], minimum torque change [4],
minimum effort [5], as well as more complex functions [6,7]. An organizational approach
based on activities of functional groups (called synergies) was also suggested [8]. Synergies
represent patterns of body segment coactivations. Researchers have hypothesized that
the nervous system activates synergies by a neural signal and creates a set of temporal–
spatial synergy modules. These modules represent a smaller dimensional space than the
space formed by individual DOFs. Synergies can be found at various levels, such as joint
coordinates or muscles [9,10]. Kinematic synergies may result from muscle synergies, i.e., as
a consequence of muscle activity [11,12]. In addition, researchers have suggested that CNS
develops synergies to execute endpoint motion [13,14]. Motor intra-limb coordination is the
ability to coordinate segments in a sequence [15]. This coordination can be accomplished
by controlling the endpoint trajectory.

The human gait can be described as a synergistic activity of all individual compo-
nents of the human sensory–motor system. Different mathematical models of muscle
synergies are known in the literature: invariant temporal (“temporal synergies”), spatial
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(“synchronous synergies”), and spatiotemporal (“time-varying synergies”) [16]. All of
these approaches reduce the dimensionality of the movements, but they are not equivalent
to each other.

Temporal muscle synergies imply the existence of a set of temporal components com-
mon to different activation tasks [17,18]. Ivanenko et al. [19] showed that there is a basic
set of five temporal components extracted from recorded electromyography (EMG) signals
in controls and patients with a spinal cord injury (SCI). The consistent timing of motor
patterns across various walking tasks was shown even with considerable variation of mus-
cle coactivation. These temporal components represent the timings of the intersegmental
coordination and may reflect a neural strategy for coordination in a low dimensional set of
patterns that facilitate control of gait. Furthermore, these timings are argued to represent a
control variable in central pattern generators [20]. Furthermore, it was reported that the
nervous system’s activation pattern during walking does not depend on walking speed,
including running [21].

However, EMG analysis has certain limitations; for example, adipose tissue can affect
EMG recordings. There is also the problem of muscle crosstalk and a lack of deep muscles
reliability [22]. Furthermore, it was shown that the synergy structure is dependent on
the number and choice of muscles [23]. On the other hand, the intermediate dynamic
representation is a logical connection between highly variable muscle activity and whole-
body mechanics [20].

The synergism in people without sensorimotor impairment differs from patients with
sensorimotor disorders. Injury to the CNS, such as stroke, leads to changes in gait modality
and synergism [24]. These differences can be observed concerning the parameters that
characterize gait. Characteristics of gait in stroke hemiplegic patients are: decreased speed,
decreased and asymmetrical step length, decreased stance and single support times on the
affected side, changes in joint kinematics, and overall asymmetry in different metrics [25].
The rehabilitation process restores the gait, i.e., retrains the patient to stand and walk with
reduced sensory–motor resources and to walk in the way most similar to the gait before
the disorder. During rehabilitation, it is essential to objectively quantify the success of the
applied protocols and therapies on gait performance.

The gold standard for quantitative gait analysis implies the usage of high cost, space,
and time-consuming 3D motion capture systems and force platforms [26,27]. Recently, the
development of wearable technology enabled the usage of alternative low-cost approaches
for gait assessment based on inertial measurement units (IMU) and ground reaction force
(GRF) sensors [28,29]. These portable, wireless systems are suitable for clinical and home
monitoring [30]. They are easy to use, non-invasive, small, compact, and robust enough to
provide valuable information for the objective evaluation of the gait performance of people
with neurological disorders [31,32]. Conventionally, the prerequisite for quantitative gait
analysis is gait segmentation. Several algorithms were developed to tackle this problem in
IMU-based systems, such as zero-crossing and threshold methods [33,34]. However, these
algorithms usually have lower accuracy in pathological gait [35]. The gold standard for
gait phase partitioning is the measurement signal of the direct contact between the foot and
the ground. For this reason, some wearable systems, in addition to the IMUs, also contain
foot pressure insoles in shoes. However, gait phases’ detection accuracy and reliability also
depend on the location of the GRF sensors [36]. It is difficult to determine the heel-strike
events automatically in the recordings of the person after a stroke, precisely because of the
problem with the drop foot [37]. Thus, a gait analysis methodology that does not need the
segmentation process is preferred.

The principal component analysis (PCA) has been widely used to discover “hidden”
patterns in the high dimensional space of human gait signals in healthy and pathological
gait [19,38,39]. Many researchers used PCA to identify muscle [21] and limb synergies [40],
which are proposed to be building blocks for motor behavior [19]. Recently, it was shown
that the space of two-dimensional PCA cyclograms allows simple assessment of gait
performance in stroke hemiplegic patients [41].
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This study aims to evaluate whether invariant (temporal) features of synergies can
be extracted by analyzing foot (endpoint) dynamics (kinetics and kinematics) acquired
by a wearable device, without the need for gait segmentation and need of EMG data
acquisition. PCA was applied on the signals acquired by wearable sensors (IMU and GRF
integrated into shoe insoles and mounted on feet) to detect temporal synergies in the space
of two-dimensional PCA cyclograms. The idea of invariant temporal components “hidden”
in motion dynamics signals was explored, as shown in the literature for EMG signals [19].
To test the hypothesis about invariant temporal dynamic synergies, the gait was analyzed
at different speeds in healthy subjects. The gait of stroke hemiplegic patients before
and after the rehabilitation therapy was also analyzed. The differences between healthy
and pathological gait patterns were observed concerning the parameters which define
the temporal dynamic synergies. Additionaly, it was investigated whether the method
for detecting temporal dynamic synergies from IMU and GRF signals has an additional
practical value for the paretic side recovery follow-up of stroke patients compared to the
conventional gait analysis results, such as symmetry and temporal gait parameters.

2. Materials and Methods
2.1. Subjects

Nineteen subjects took part in this study: 14 healthy persons (without sensory–motor
deficiency) and five hemiplegic stroke patients in the subacute phase (4–6 months after
stroke). Subject characteristics are shown in Table 1. The patients could follow instructions
from clinicians. The patients could walk with or without cane support.

Table 1. Subject characteristics.

Variable
Mean ± SD

Healthy Subjects (n = 14) Patients (n = 5)

Age (years) 34.8 ± 12.6 61 ± 5.1
Gender 8 male, 6 female 1 male, 4 female

Total body mass (kg) 73.3 ± 12.7 78.4 ± 9.2
Height (m) 1.78 ± 0.08 1.7 ± 0.05

BMI (kg/m2) 23 ± 2.18 28.18 ± 3.6
Affected side - 4 left, 1 right

The patients participated in functional electrical stimulation (FES)-based therapy. The
effectiveness of FES therapy for the drop foot correction was assessed by observing the
neuroplasticity changes using electroencephalography examination. Eight-channel MO-
TIMOVE electronic stimulator (3F—FIT FABRICANDO FABER, Belgrade, Serbia, [42])
was used for FES therapy, augmenting the patient’s pedaling (OMEGO® Plus, Graz, Aus-
tria, [43]). The duration of the rehabilitation protocol was four weeks. The healthy subjects
did not participate in the FES therapy.

The experimental design was approved by the ethical review board of the Rehabilita-
tion Clinic “Dr Miroslav Zotović” in Belgrade. Participants were well-informed about the
noninvasive protocol and they signed informed consent forms prior to gait assessment.

2.2. Instrumentation

The Gait Teacher (RehabShop, Belgrade, Serbia) [44] was used in the study. This
system comprises 10 GRF sensors (five per foot insole) that measure vertical forces and two
IMUs (MPU6050 module) with integrated three-axis accelerometers and gyroscopes into the
insoles. Each foot insole has two piezoresistive GRF sensors in the heel zone (medial heel—
HeelM, lateral heel—HeelL), two sensors in the metatarsal (medial metatarsal—MetaM,
lateral metatarsal—MetaL), and one sensor in the toes zone (Toe). Each sensor can estimate
pressure up to 3.5 MPa. The characteristics of GRF sensors are: linearity < ±0.25% FS,
BFSL, repeatability < ±0.075% FS, hysteresis < ±0.05% FS, zero thermal error < 0.75% FS,
@35 ◦C, span thermal error < 0.75% FS, @35 ◦C, and stability error < ±0.2% FS/year. The
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gyroscope and accelerometer specifications within IMU are: supply voltage 2.3–3.4 V,
consumption 3.9 mA, calibration tolerance ±3%, I2C interface support, and operating
temperature −40 ◦C to −85 ◦C. The IMU can measure the 3D acceleration (range of ±4 g)
and the 3D angular velocity (range of ±500 deg/s). The 3D directions in the IMU are as
follows: the z-axis directs up from the insole, the x-axis directs ahead, and the y-axis directs
medially. The direction of angular velocity ωx is from heel to toe. This angular rate is
perpendicular to the insole (frontal plane). The rate ωy is also orthogonal to the insole and
directed laterally. The angular rate ωz is in the plane of the insole pointing up. Each insole
is wirelessly connected to the computer. Eleven signals from each insole are transferred
at a sampling rate of 100 Hz. The acquisition software was built in LabView (National
Instruments, Austin, TX, USA). The built-in software synchronizes IMU and GRF sensors.
The system provides data with a time delay of 20 ms. Data are stored in text format (.txt)
for further offline analysis (Figure 1). In conclusion, the data obtained with the Gait Teacher
are a set of five GRF time series and six-time series of angular velocities and accelerations
per insole. The output is a large matrix with 22 components [41].

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18 
 

 

the insoles. Each foot insole has two piezoresistive GRF sensors in the heel zone (medial 
heel—HeelM, lateral heel—HeelL), two sensors in the metatarsal (medial metatarsal—
MetaM, lateral metatarsal—MetaL), and one sensor in the toes zone (Toe). Each sensor can 
estimate pressure up to 3.5 MPa. The characteristics of GRF sensors are: linearity < ±0.25% 
FS, BFSL, repeatability < ±0.075% FS, hysteresis < ±0.05% FS, zero thermal error < 0.75% 
FS, @35 °C, span thermal error < 0.75% FS, @35 °C, and stability error < ±0.2% FS/year. The 
gyroscope and accelerometer specifications within IMU are: supply voltage 2.3–3.4 V, con-
sumption 3.9 mA, calibration tolerance ±3%, I2C interface support, and operating temper-
ature −40 °C to −85 °C. The IMU can measure the 3D acceleration (range of ±4 g) and the 
3D angular velocity (range of ±500 deg/s). The 3D directions in the IMU are as follows: the 
z-axis directs up from the insole, the x-axis directs ahead, and the y-axis directs medially. 
The direction of angular velocity ωx is from heel to toe. This angular rate is perpendicular 
to the insole (frontal plane). The rate ωy is also orthogonal to the insole and directed later-
ally. The angular rate ωz is in the plane of the insole pointing up. Each insole is wirelessly 
connected to the computer. Eleven signals from each insole are transferred at a sampling 
rate of 100 Hz. The acquisition software was built in LabView (National Instruments, 
Texas). The built-in software synchronizes IMU and GRF sensors. The system provides 
data with a time delay of 20 ms. Data are stored in text format (.txt) for further offline 
analysis (Figure 1). In conclusion, the data obtained with the Gait Teacher are a set of five 
GRF time series and six-time series of angular velocities and accelerations per insole. The 
output is a large matrix with 22 components [41]. 

 
Figure 1. Gait Teacher instrumentation and output signals from both insoles. 

2.3. Experiment Protocol 
The Gait Teacher insoles were fitted to the subjects’ shoes. First, the outputs from 

GRF sensors were zeroed: a participant raised the left foot and then the right and held it 
in the air for about 2 s (no load) while the clinician pressed the set button on the host 
computer. The IMU signals were zeroed while the participant stood on both feet for about 
2 s. 

Healthy subjects walked on a flat surface 10 m long. Before the recording, the re-
spondent practiced walking for a few minutes. Signals from all sensors were recorded 
from three consecutive sessions. They walked at different speeds: 0.4 m/s, 0.8 m/s, 1 m/s, 
1.6 m/s, and 2 m/s. The lowest speed was chosen to mimic the speed of the patients after 
stroke in the subacute phase ∼0.4 m/s [45]. The highest speed was set to be the highest 
speed of the oldest participant. The oldest participant in the study was a healthy individ-
ual, 70 years old, and the maximal speed for this age is ∼2 m/s [46]. Different speeds were 
recorded to address the diversity of different gaits and therefore generalize results from 
temporal synergies detection as much as possible, controlling for speed. To ensure a par-
ticular gait speed on the ground (avoiding the treadmill effect on the gait performance 
[47]), the subject followed the sound of the metronome, which signaled the cadence de-

Figure 1. Gait Teacher instrumentation and output signals from both insoles.

2.3. Experiment Protocol

The Gait Teacher insoles were fitted to the subjects’ shoes. First, the outputs from GRF
sensors were zeroed: a participant raised the left foot and then the right and held it in the
air for about 2 s (no load) while the clinician pressed the set button on the host computer.
The IMU signals were zeroed while the participant stood on both feet for about 2 s.

Healthy subjects walked on a flat surface 10 m long. Before the recording, the re-
spondent practiced walking for a few minutes. Signals from all sensors were recorded
from three consecutive sessions. They walked at different speeds: 0.4 m/s, 0.8 m/s, 1 m/s,
1.6 m/s, and 2 m/s. The lowest speed was chosen to mimic the speed of the patients
after stroke in the subacute phase ~0.4 m/s [45]. The highest speed was set to be the
highest speed of the oldest participant. The oldest participant in the study was a healthy
individual, 70 years old, and the maximal speed for this age is ~2 m/s [46]. Different
speeds were recorded to address the diversity of different gaits and therefore generalize
results from temporal synergies detection as much as possible, controlling for speed. To
ensure a particular gait speed on the ground (avoiding the treadmill effect on the gait
performance [47]), the subject followed the sound of the metronome, which signaled the
cadence depending on the desired walking speed (Table 2). Markers were placed at one
of the predefined distances: 0.5, 0.75, and 1 m, Figure 2. The markers were not moved
between consecutive gait sessions of one participant for the same walking speed. This
distance between markers was changed depending on the height or walking speed of
the participant, so that the subject feels comfortable while walking. For higher subjects
or higher speeds, markers were set at a greater distance. The metronome signaled the
beginning of each stride, which occurred at specific markers on the floor. Table 2 shows the
cadences required for different speeds, on a path of 10 m, for three possible stride lengths
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(the most suitable one for a particular respondent, heuristically chosen depending on the
subject’s height and the specified speed).

Table 2. Cadence for various speeds and stride lengths on a path of 10 m (SPM = strides per minute).

SPM 2 m
s 1.6 m

s 1 m
s 0.8 m

s 0.4 m
s

0.5 m 240 192 120 96 48
0.75 m 160 128 80 64 32

1 m 120 96 60 48 24
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Figure 2. An example of the experimental setup.

The patients were asked to walk at a self-selected preferred speed. Signals from all
sensors were recorded from three consecutive sessions. The rest between runs was about
1 min long. The clinician could monitor the signals on the computer screen during the
recording. Signals recorded from sensors mounted on the paretic leg before therapy (p.b.),
nonparetic leg before therapy (np.b.), paretic leg after therapy (p.a.), and nonparetic leg
after therapy (np.a.) were separately analyzed. The number of strides performed by healthy
subjects was 534, 534, 400, 366, and 300, respectively for speeds: 0.4 m/s, 0.8 m/s, 1 m/s,
1.6 m/s, and 2 m/s. The number of strides performed by patients was 110 before and 168
after therapy.

2.4. Data Preprocessing

The first and last strides were excluded from the gait analysis since the person needs to
adapt the gait speed to the sound of a metronome. The signals were filtered by a low-pass
Butterworth filter, third order, with a cut-off frequency of 5 Hz [48]. Signals obtained
by sensors from different legs were analyzed separately. The input for PCA included
five signals from five GRF sensors, angular velocity in the sagittal plane, Gyro_Y, and
accelerations in the frontal plane, Acc_X, and transverse plane, Acc_Z, (in total, eight
signals per leg, Figure 3). They are chosen heuristically because the gait is predominant in
the profile plane. All PCA and statistical analyses were done in the R software environment,
version 3.5.1.
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Figure 3. PCA cyclogram generation in the first two principal components space. Example data are
from a person with no known sensory–motor impairment. The original signals were acquired by the
Gait Teacher system (left panel). The subset of signals from the whole gait session (middle panel)
was used to form a cyclogram (PC2 vs. PC1, right panel).

2.5. Detection of Temporal Synergies

PCA was used to find common temporal components hidden in the waveforms of
dynamics’ signals. The PCA input signals were normalized to have unit variance. Bartlett’s
sphericity test showed that the signals were suitable for PCA [49]. The PCA allowed the
mapping of original data into the orthogonal space, where the principal axis is the direction
of the data’s maximal variance [50].

The analysis included calculating the correlation matrix, extracting the principal
component of the varimax rotation, and calculating factor scores. These factor scores
can be interpreted geometrically as the projections of the observations onto the principal
components [49]. The whole preprocessed gait session (gait cyclogram) per subject was
input for PCA. Therefore, the standardization across subjects with a different range of
motions (subjects may engage in different walking strategies) was avoided [41]. After PCA,
no stride segmentation was performed. Consequently, there was no need for the time
interpolation of the signals for separate gait cycles.

The proposed method uses 2D gait cyclograms to represent recorded foot dynamics
in the space of the first two principal components, PC1 and PC2 (Figure 3). The repetitive
nature of near-cyclic events resulted in the overlapped cyclogram (cyclograms of gait cycles
were overlapped) [41]. The calculation of principal components’ quantitative parameter of
cyclogram, introduced in [41], is shown in Equation (1) and expressed as an angle θ in each
time point (observation).

θ = arctg
PC2

PC1
, (1)

where PC1 and PC2 are the coordinates of the observations on the first two principal
components (PC).

Figure 4a shows examples of specific time points where three temporal components
exist during the single gait cycle by different colors (green, blue, yellow). These points
correspond to the local extremums of PC1 or PC2. In Figure 4b the corresponding points of
temporal synergy are presented in gait cyclogram using the same colors as in Figure 4a. The
corresponding angles θ of observations that belong to each of three temporal components
are marked by θ1, θ2, and θ3.
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The overall schema of the performed methodology on the PCA gait cyclogram is
shown in Figure 5, and it includes:

(1) Thresholding of gait cyclograms—Only observations (points in time) where prin-
cipal components contribute significantly have been extracted and analyzed; namely, the
threshold values for the squared cosine of the angle θ which was set heuristically to 0.8
(cos2

PC1
> 0.8 and cos2

PC2
> 0.8).

(2) Estimation of the distribution density applying nonparametric kernel density
estimation (KDE) [51] on the angle θ (obtained after thresholding in the last stride)—KDE
was obtained for nine groups of data separately: H2, H1.6, H1, H0.8, H0.4 (both legs analyzed
together for healthy subjects with the following walking speeds: 2 m

s , 1.6 m
s , 1 m

s , 0.8 m
s ,

0.4 m
s , respectively), Pp.b and Pp.a (patients’ paretic legs before and after therapy), Pnp.b and

Pnp.a (patients’ nonparetic legs before and after therapy). Shapiro–Wilk normality test [52]
was used to check the (non)normality of the distributions.

(3) Clustering of distribution density to three clusters θ1, θ2, and θ3 (related to three
temporal components) for each of nine groups—distribution density was smoothed by
the bandwidth parameter. The bandwidth of the kernel is a free parameter that exhibits
a strong influence on the resulting estimate; it is the real positive number that defines
the smoothness of the density plot. The formula used to calculate optimal bandwidth
parameter bw for each group is shown in Equation (2) [53].

bw =
0.9 ∗min

(√
Var(X), IQR(X)

1.349

)
5
√

n
, (2)

where n is the number of observations of X, Var(X) is its variance, and IQR(X) is the
interquartile range. Cluster limits were extracted as local minimums of the bandwidth
smoothed distribution density.

(4) Statistical analysis—Mann–Whitney U nonparametric test was performed to deter-
mine whether the same clusters (detected temporal synergies) differ statistically between
patients and healthy groups [54]. Wilcoxon test for partially matched two sample data
(the combination of Wilcoxon signed-rank statistics for paired data and Mann–Whitney
U statistics) was used to compare healthy groups for different speeds [55]. The same test
was used to compare patients before and after therapy. Finally, it was analyzed whether
the statistically significant results before and after therapy can be assessed based on tem-
poral synergism and compared the effects to conventional parameters (Section 2.6). The
significance level was p = 0.001 for estimating the statistically significant differences.
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2.6. Conventional Gait Analysis

The threshold method extracted the swing and stance phases for each gait session.
The threshold was set to be 5% of the sum of all GRF signals in each insole divided by the
number of force sensors, which was 5. The signals were filtered by a low-pass Butterworth
filter, third order, with a cut-off frequency of 5 Hz. For each stride, stance and swing
durations were calculated as a percentage of the gait cycle. In addition, since gait after
stroke is characterized by high asymmetry, four symmetry measures were calculated for
both the swing and stance phase, as in Equations (3)–(6). These measures were used to
assess therapy impact on stroke patients [56,57].

Symmetry ratio (SR) :
Tle f t

Tright
, (3)

Symmetry index (SI) :


∣∣∣Tle f t − Tright

∣∣∣
0.5 ∗

(
Tle f t + Tright

)
 ∗ 100%, (4)

Gait asymmetry (GA) : ln(
Tle f t

Tright
) ∗ 100%, (5)

Symmetry angle (SA) :
45
◦ − arctan

( Tle f t
Tright

)
90◦

∗ 100%, (6)

where Tle f t is the duration of the specific gait phase (stance or swing) for the left leg, and
Tright is the duration of the specific gait phase (stance or swing) for the right leg.

Whether statistically significant results could be assessed before vs. after therapy was
assessed using the Wilcoxon test for partially matched two-sample data. The significance
level was p = 0.001 for estimating the statistically significant differences.

3. Results
3.1. PCA Cyclograms

Figure 6 (top) presents an example of overlapped cyclograms in a healthy subject
for gait sessions with different gait speeds. For healthy subjects, the signals from sensors
mounted on left and right feet were analyzed together. Figure 6 (bottom) shows thresholded
cyclograms (cos2

PC1
> 0.8 and cos2

PC2
> 0.8, as explained in Section 2.5) that contain

observations where temporal synergies are activated.
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olded cyclograms (bottom). Extracted (red) observations on thresholded cyclograms correspond to
temporal synergies in PCA space, for the following gait speeds: (a) 2 m

s ; (b) 1.6 m
s ; (c) 1 m

s ; (d) 0.8 m
s ;

(e) 0.4 m
s . In brackets, the percentages of explained variance of the specific principal component (PC1

or PC2) are shown.

Cyclograms for patients’ paretic and nonparetic sides, before and after therapy, were
separately analyzed (Figure 7).
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Figure 7. Examples of overlapped cyclograms for one patient (top) and thresholded cyclograms
(bottom). Extracted (red) observations on thresholded cyclograms correspond to temporal synergies
in PCA space: (a) before therapy (the paretic leg is in the left column, the nonparetic leg is in right
column), and (b) after therapy (the paretic leg is in the left column and the nonparetic leg is in right
column). In brackets, the percentages of explained variance of the specific principal component (PC1

or PC2) are shown.

Angles θ were calculated by Equation (1) for each observation on thresholded cyclo-
grams (for red points in Figure 6 bottom and Figure 7 bottom). Arrays of angles’ values for
each of nine groups (H2, H1.6, H1, H0.8, H0.4, Pp.b, Pnp.b, Pp.a, Pnp.a) were further used as an
input for KDE.

3.2. Temporal Synergies Extracted by KDE

KDE was used to detect temporal synergies (clusters in time) for each of the nine
groups. The cluster limits were estimated (Table 3) as local minimums in bandwidth-
smoothed density distribution plots (red dots in Figures 8 and 9).
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Table 3. Cluster limits (temporal components) in distribution density of angle values θ1, θ2, and θ3,
mean ± standard deviation, all expressed in degrees.

Healthy Subjects Patients before
Therapy

Patients after
Therapy

H2 H1.6 H1 H0.8 H0.4 Pp.b Pnp.b Pp.a Pnp.a

θ1
cluster limits [198–360] [198–360] [198–360] [206–360] [213–360] [257–360] [235–360] [191–360] [206–360]
mean ± SD 265 ± 14.9 262 ± 15.7 266 ± 7.9 271 ± 15.8 276 ± 12.8 318 ± 24.4 295 ± 38.6 291 ± 40.3 272 ± 27.6

θ2
cluster limits [73–197] [73–197] [73–197] [88–205] [81–212] [110–256] [110–234] [118–190] [59–205]
mean ± SD 138 ± 8.9 138 ± 7.5 140 ± 9.7 147 ± 14 147 ± 22.6 183 ± 26.1 172 ± 18.4 162 ± 4.3 152 ± 11.7

θ3
cluster limits [0–72] [0–72] [0–72] [0–87] [0–80] [0–109] [0–109] [0–117] [0–58]
mean ± SD 16 ± 7 13 ± 5.2 13 ± 8.3 21 ± 12.9 23 ± 16.7 36 ± 18.9 39 ± 12.7 25 ± 12.7 12 ± 6.9
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Figure 9. Clustering of temporal components (red dots are cluster limits) in patients for: (a) Paretic
legs before therapy; (b) Nonparetic legs before therapy; (c) Paretic legs after therapy; (d) Nonparetic
legs after therapy. Top graphics represent distribution densities, and bottom graphics represent
bandwidth-smoothed distribution densities.

In Table 3, cluster limits in distribution density of angle values θ1, θ2, and θ3 are shown
in degrees for healthy subjects and patients before and after therapy.

Based on Equation (1), the mean values and standard deviations of the θ1, θ2, and θ3
angles in cyclograms (i.e., the significant contribution of activation of the first two principal
components) are shown in Table 3 for all patients and healthy subjects with different speeds.
It could be noticed that the angles were shifted in time by approximately one-third of the
walking cycle. These angles quantify temporal activations of gait synergies.

3.3. Comparison of Synergies between Different Speeds in Healthy Subjects

No significant differences were found between H2, H1.6, H1, H0.8, H0.4 groups for θ1,
θ2, and θ3 (p > 0.001).
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3.4. Comparison of Synergies between Patients and Healthy Subjects

Table 4 shows the results of statistic tests between healthy groups (H2, H1.6, H1, H0.8,
H0.4) and patients (Pp.b, Pnp.b, Pp.a, and Pnp.a). Significant differences were found in all
angles (θ1, θ2, and θ3) between all healthy groups and paretic leg gait before therapy (Pp.b).
After therapy, the shift in the angle towards a healthy angle can be found in some angles,
specifically for the lowest gait speed (0.4 m

s ), which is the most similar to the speed of the
patient’s gait after stroke [58].

Table 4. Statistical differences between healthy and patient groups (before and after therapy).

Healthy
Patients

Pp.b. Pnp.b. Pp.a. Pnp.a.

H2

θ1 0 * 0 * 0 * 0 *
θ2 0 * 0 * 0 * 0 *
θ3 0 * 0 * 0 * 0.008

H1.6

θ1 0 * 0 * 0 * 0 *
θ2 0 * 0 * 0 * 0 *
θ3 0 * 0 * 0 * 0.332

H1

θ1 0 * 0 * 0.001 0.115
θ2 0 * 0 * 0 * 0 *
θ3 0 * 0 * 0 * 0.594

H0.8

θ1 0 * 0 * 0.022 0.045
θ2 0 * 0 * 0 * 0.004
θ3 0 * 0 * 0.024 0.002

H0.4

θ1 0 * 0.588 0.301 0.001
θ2 0 * 0 * 0.008 0.138
θ3 0 * 0.002 0.190 0.001

* p < 0.001.

3.5. Comparison of Synergies between Patients before and after Therapy

The significant differences in patients before and after therapy were found in all angles
θ1, θ2, and θ3 (p < 0.001). The boxplots for each angle θ1, θ2, and θ3 for all nine groups are
shown in Figure 10. The temporal synergies (angles) shift can be observed after therapy
towards healthy synergies.
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Figure 10. Temporal synergies (angles θ1, θ2, and θ3) for all groups.

Additionally, it is important to consider the relative weight of each dynamic’s signal,
which is called loading. Loadings from the first two principal components are interpreted
as the coefficients of the linear combination of the input variables from which the principal
components are constructed. The relative strength of the effect of each factor on an input
signal is given by this weighting coefficient. For each input signal, the mean weighting
coefficients (loadings) of the first two components were obtained by averaging the values
across all subjects for specific gait speed [19]. Figure 11 shows average weighting coeffi-
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cients for all nine groups. Some input variables loaded highly on the specific component,
such as angular velocity Gyro_Y on PC2. Most of the input variables are loaded on both
components. The noticeable gradual change of weightings with gait speed can be noticed
in loadings on both PC1 and PC2. For patients, it could be noticed that loadings in PC1 are
approaching values from healthy subjects’ gaits.
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3.6. Comparison with Conventional Methods
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No significant differences between gait before and after therapy with the paretic leg
could be found in swing or stance duration (p = 0.94). A significant difference has been
found in swing and stance durations in nonparetic leg gait. Furthermore, this significant
difference was reflected in swing symmetry parameters since it is proportional to the
ratio of paretic and nonparetic leg parameters (p < 0.001) but not in the stance symmetry
parameters (p = 0.017–0.019).

Unlike temporal parameters for the paretic leg, by observing the temporal synergies
parameters (Equation (1)), the statistically significant differences for the paretic leg after
therapy were found compared to before therapy (p < 0.001, Figure 10).
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4. Discussion

This paper proposes a new method for detecting temporal gait synergies in dynamic
space using PCA without recording muscle activity. The foot trajectory has been represented
with respect to time in the PCA cyclogram space. The foot dynamics reflect the muscle
activity but in a more straightforward way. Analyzing the dynamics of the endpoint—i.e.,
foot—is important since it is assumed that the control of limb dynamics, instead of muscle
activity, would help ensure whole-body mechanical stability and energy [59]. The control
of limb segment motion may happen by encoding the limb endpoint dynamics.

The inputs for PCA were GRF signals measured at the lateral and medial heel, lateral
and medial metatarsal, and toe on each foot, as well as the accelerations and angular
velocities measured at the rear part of each foot. The Gait Teacher system is easy to use,
wearable, and relatively cheap compared to EMG-based and other gait analysis systems.
It can be used in everyday life, not just in a hospital environment [60,61]. The clinician
does not need the training to manage the system, unlike EMG equipment, where electrode
montage and data acquisition are more time-consuming. The system’s set-up comes down
to putting on shoes with insoles and following the simple interface. Due to the high level
of impairment of patients in the subacute phase of stroke [62], it is crucial to provide fast
and straightforward screening to make the gait evaluation more comfortable and effortless
for patients.

PCA used whole preprocessed gait session recordings as an input. There was no gait
segmentation before or after PCA; therefore, there was no loss of information due to the
interpolation to the specific time base or incorrect stride segmentation. The problem of gait
phase detection accuracy and reliability was bypassed by observing the whole gait session
and evaluating the sequence at once. Unlike when calculating symmetry and temporal
parameters, valuable data were lost due to incorrect gait event detection.

In this paper, three temporal activations of synergies were extracted (three modules,
related to angles θ1, θ2, and θ3). Statistical tests proved the differences between healthy
and patient gait before therapy and confirmed that the temporal synergies are invariant
in healthy gait, regardless of different gait speeds, Table 4. These temporal activations are
shifted 30% in time, which agrees with previous studies. Researchers have also claimed
that three main temporal components from a set of five are also shifted by approximately
30% in time. Additionally, the existence of three synergies was statistically confirmed. The
time shift of synergies was not significantly different in healthy gait for different speeds,
which was not aligned with the observation from the literature [19].

The rehabilitation helps recovery of cortical neuronal networks controlling gait, and
the re-emergence of healthy synergies can be noticed [63]. In this paper, synergies have been
analyzed before and after therapy for stroke patients, and synergies were also compared to
healthy subjects. Before the therapy, there were significant differences in all three temporal
synergies compared to healthy gait. This can be explained by a change in double limb
support and single limb support duration [64]. After therapy, the temporal activations
‘moved’ closer (i.e., cyclogram has rotated towards healthy cyclogram orientation) to the
activations of lower speed healthy gait. The time-shift of specific synergies towards healthy
values was statistically confirmed for synergies because of the FES therapy, Table 4. To the
best of our knowledge, no prior studies have statistically compared temporal synergies
from dynamics perspective between stroke hemiparetic gait before and after therapy with
different healthy gait speeds.

On the other side, an observation can be reported about the second module related to
the angle θ2 in the paretic leg before and after therapy, indicating less complex locomotor
control of the affected side (Figure 7). The reduction in observations for the second module
could be noticed because the same amount of variance can be explained with fewer syner-
gies. These results agree with previous findings of the relation between less complex control
and poorer walking performance [17]. A decreased number of synergies (‘disappearing’ of
the second module, from three to two synergies) in the paretic leg can be explained by the
merging of synergies [17,65,66]. This decrease is explained by the greater cohesion between
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the parts of the body and the generally reduced complexity of movement due to injury. The
merging of synergies was shown in paretic gait after the therapy, indicating the possible
development of abnormal synergies [17,67].

The difference in the distribution of weightings reflects complex motor coordination,
although the temporal synergies are consistent (Figure 11). This means that even though
the input variables had a different contribution to each PC, the activations of PCs in time
remained the same. It could be noticed that some weightings in the paretic leg after therapy
became more exaggerated than in a healthy one, such as lateral metatarsal force weighting
on PC1 (Figure 11). This aligns with the possible development of abnormal synergies
(merging of synergies) but needs further investigation.

By applying PCA, it was possible to characterize better the specific features of gait
disorders in relation to commonly used techniques [40]. Therefore, the conventional
temporal and symmetry parameters were also calculated. The proposed method was
more advantageous than conventional gait analysis since the statistical test proved the
significant difference in the paretic leg, which was not observed in temporal or symmetry
parameters (Figure 12). After the therapy, symmetric gait may not be the only measure of
therapy success and may not reveal the complete picture [68]. On the other hand, maximal
gait variability was preserved by using PCA, and variability is a complementary way of
quantifying locomotion and monitoring rehabilitation effects [69–71].

Other studies have examined the possibilities for follow-up of stroke patients based on
the analysis of temporal muscle synergies [72]. Abnormal patterns of muscle synergies were
used to provide additional measures for clinicians during various therapy sessions, such
as robotic-assisted, conventional gait, or FES-cycling training [73,74]. Whether temporal
synergies indicate the gait recovery of stroke patients is still arguable [65,73–75]. The present
study showed significant changes in the temporal synergies during the rehabilitation from
a dynamics perspective without considering muscle synergies.

The detection of temporal synergies from a dynamic perspective is helpful for gait
assessment. Visually monitoring 2D cyclograms is a robust and straightforward qualitative
measure for clinicians. The values of the proposed θ angles—i.e., temporal synergies—are
quantitative measures of gait performance. The rotation of a 2D cyclogram (the change
in temporal synergy) is a direct and simple measure that clinicians can use to assess gait
performance by comparing values with healthy temporal synergies. As a result, clinicians
will better understand and follow up with the therapy’s effect on gait after a stroke. Whether
the gait synergies represent an input or an output of neuromuscular control is still a point of
debate [76,77]. Nevertheless, defining changes in gait from a dynamic systems perspective
can be useful in rehabilitation for clinical gait assessments [41,78].

The performed study has several limitations. First, the COVID-19 pandemic restric-
tions caused a lack of participants following the rehabilitation protocol, and for that reason,
a limited number of stroke patients were included in the study. Future studies will include
a larger patient population. Additionally, for the therapy efficiency assessment, data could
be acquired before and after different therapy protocols [73]. Second, the study was un-
derpowered when comparing healthy subjects and patients since they were unmatched
by confounding factors, such as age and gender. Future studies will also include matched
healthy and patient groups by confounding factors. Third, the wearable device used in
the study has lower accuracy and reliability than the gold standard optoelectronic systems
with force platforms. However, the trade-off between good performance characteristics
and high cost should also be considered [79]. Finally, the question may be asked whether
data loss due to PCA affects the results. Even though the initial dataset of 11 signals per leg
contains more information than two PCs, the valuable information about the gait variability
is kept using PCs. This dimensionality reduction imitates the problem of neural control,
where many input signals fire one control signal [41]. More synergies could be observed,
and more data information could be kept by adding additional components and creating
three-dimensional cyclograms. Nonetheless, observing cyclograms in 2D coordinate frames
(and monitoring only θ angles) is more convenient for the clinician than monitoring the
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higher dimensionality graphs and parameters. The presented concept of 2D PCA-based
temporal synergies assessment is suitable for near real-time monitoring purposes and can
be used to improve the current clinical tools for gait assessment in the future.

5. Conclusions

In this paper, an innovative method for directly observing the limb’s endpoint dynamics
and detecting temporal synergies during walking with different speeds is proposed, without
stride extraction, and without using EMG recordings. Furthermore, the hypothesis about
invariant temporal dynamic synergies was statistically confirmed, and the potential use of this
information in practical gait assessment during rehabilitation after stroke was highlighted.
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