Skip to main content
. 2022 Mar 23;22(7):2457. doi: 10.3390/s22072457

Table 1.

List of network architecture information and their trainable parameters, where N is the number of input images.

Fusion
Block
Network
Architecture
Layer
Type
Filter
Size
Input
Channel
Output
Channel
Number of
Parameters
1 Conv. ConvLayer+ReLU+BN 3×3 1 32 352
Pool MaxPool 1×1 32N 32 -
2 Conv. ConvLayer+ReLU+BN 3×3 64 32 18,496
Pool MaxPool 1×1 32N 32 -
3 Conv. ConvLayer+ReLU+BN 3×3 64 32 18,496
Pool MaxPool 1×1 32N 32 -
4 Conv. ConvLayer+ReLU+BN 3×3 64 32 18,496
Pool MaxPool 1×1 32N 32 -
Bottleneck Conv. ConvLayer+ReLU+BN 3×3 64 32 18,496
Conv. ConvLayer+ReLU+BN 3×3 32 32 9280
Conv. ConvLayer 3×3 32 32 9248
5 Conv. ConvLayer+ReLU+BN 3×3 32 32 9280
Pool MaxPool 1×1 32N 32 -
6 Conv. ConvLayer+ReLU+BN 3×3 96 32 27,712
Pool MaxPool 1×1 32N 32 -
7 Conv. ConvLayer+ReLU+BN 3×3 96 32 27,712
Pool MaxPool 1×1 32N 32 -
8 Conv. ConvLayer+ReLU+BN 3×3 96 32 27,712
Pool MaxPool 1×1 32N 32 -
Tail Conv. ConvLayer+ReLU+BN 3×3 96 32 27,712
Pool MaxPool 1×1 32N 32 -
Conv. ConvLayer+ReLU+BN 3×3 32 1 321