Skip to main content
. 2022 Mar 27;22(7):2560. doi: 10.3390/s22072560

Table 3.

Detailed description of the convolutional neural network used in this study. The first convolutional together with the batch normalization layers are used once for the acceleration data and once for the gyroscope data.

Layer Type Hyperparameter Output Shape # of Parameters
1D Convolution Filter: 128, kernelsize: 8 (64, 128) 3200
Batch Normalization Momentum: 0.9, epsilon: 0.001 (64, 128) 256
1D Convolution Filter: 256, kernelsize: 5 (60, 128) 164,096
Batch Normalization Momentum: 0.9, epsilon: 0.001 (60, 128) 240
1D Convolution Filter: 128, kernelsize: 3 (58, 128) 98,432
Batch Normalization Momentum: 0.9, epsilon: 0.001 (58, 128) 232
Global max-pooling (128) 0
Fully Connected (64) 16,448
Dropout dropout: 0.2 (64) 0
Dense (5) 325