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Abstract: As a gas signal molecule, hydrogen sulfide (H2S) can enhance plant stress resistance. Here,
cucumber (Cucumis sativus ‘Xinchun NO. 4’) explants were used to investigate the role of H2S in
adventitious root development under salt stress. The results show that sodium chloride (NaCl) at
10 mM produced moderate salt stress. The 100 µM sodium hydrosulfide (NaHS) treatment, a H2S
donor, increased root number and root length by 38.37% and 66.75%, respectively, indicating that
H2S effectively promoted the occurrence of adventitious roots in cucumber explants under salt stress.
The results show that under salt stress, NaHS treatment reduced free proline content and increased
the soluble sugar and soluble protein content during rooting. Meanwhile, NaHS treatment enhanced
the activities of antioxidant enzymes [peroxidase (POD), superoxide dismutase (SOD), ascorbate
peroxidase (APX) and catalase (CAT)], increased the content of ascorbic (ASA) and glutathione
(GSH), reduced the content of hydrogen peroxide (H2O2) and the rate of superoxide radical (O2−)
production, and decreased relative electrical conductivity (REC) and the content of malondialdehyde
(MDA). However, the NaHS scavenger hypotaurine (HT) reversed the above effects of NaHS under
salt stress. In summary, H2S promoted adventitious root development under salt stress through
regulating osmotic substance content and enhancing antioxidant ability in explants.

Keywords: hydrogen sulfide; osmotic substances; antioxidant system; lipid peroxidation; adventitious
root development

1. Introduction

Adventitious rooting, a root formed by non-root tissues, is an important part of
vegetative propagation. Adventitious roots not only have the functions of fixing and
supporting plants, but also increase the ability of plants to absorb nutrients and water [1].
Both abiotic stress and biotic stress can make plant organs and tissues develop adventitious
roots [2]. The formation of adventitious roots can expand plant root systems and give plants
and cells the ability of regeneration. Study has shown that traditional plant hormones
and small gaseous molecules, as signal molecules, participate in adventitious rooting [3].
Therefore, in-depth study of adventitious roots will help us to clarify the mechanism of
plant growth and development.

During crop growth and development, biotic and abiotic stresses have an increasing
impact on the yield and quality of agricultural products. Salt stress, as a major abiotic stress,
severely affects plant growth and development. About 50% of irrigated land in the world is
affected by salinization, and non-irrigated land in the region also undergoes salinization [4].
Excessive salinization of the soil seriously reduces the absorption of water and nutrients in
plants, which in turn affects the normal metabolism in plants [5]. In addition, excessive
intake of sodium (Na+) and chloride ion (Cl−) by plants may cause many adverse effects
on plants, such as nutrient imbalance, cell membrane damage, and antioxidant system
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damage, even leading to plant death, and ultimately reducing crop yield and quality [6,7].
During growth and development, the water and mineral ions required by plants need
to be absorbed from the rhizosphere environment through plant roots. Under salt stress
conditions, the structure of the plant root system is affected. Salt stress may inhibit plant root
cell division and cell elongation, and affect root tip meristem, thereby affecting the growth
and development of plant roots [8]. Hydrogen sulfide (H2S) is a colorless, flammable gas
with the smell of rotten eggs, and has long been considered a harmful gas. In 1996, H2S was
proved to exist in the human body as a neuroactive substance for the first time, and people
began to pay attention to its physiological functions [9]. Nowadays, H2S is considered
to be the third gas signaling molecule after nitric oxide (NO) and carbon monoxide (CO),
and it plays an essential role both in animals and plants. For example, H2S could promote
seed germination [10] and root development, regulate stomatal movement [11], and keep
flowers fresh [12]. Additionally, H2S is involved in plant responses to abiotic stresses,
including drought stress [13], osmotic stress [14], salt stress [15], chilling stress [16], and
heavy metal stress [17].

In recent years, there have been various studies on the roles of gas signal molecules in
adventitious root generation under abiotic stress conditions. For example, H2 was associ-
ated with the development of adventitious root of cucumber under cadmium stress [17,18].
CO is associated with H2-induced adventitious root development in cucumber under stress
of drought [19]. Liao et al. [20] found that NO and H2O2 could promoted adventitious
root development in Marigold explants under drought stress. Nevertheless, there is little
research on the roles of H2S in adventitious root formation under abiotic stresses. Hence,
we speculate that H2S might promote adventitious root development under abiotic stress
conditions. Therefore, in this study, sodium hydrosulfide (NaHS) was used to investigate
the effect of H2S on adventitious root development in response to salt stress, and its specific
mechanism was also revealed.

2. Results
2.1. Effects of Different Concentrations of NaCl on Adventitious Root Development

As shown in Figure 1, as the concentration of NaCl increases, both root number and
length were decreased. The number of roots and root length in the 10 mM NaCl treatment
were significantly lower than those in control and 8 mM NaCl treatments. Meanwhile,
10 mM NaCl treatments resulted in higher root number and length than 12, 14, and 16 mM
NaCl treatments. Moreover, there was no significant change in root number and root length
among 12, 14, and 16 mM NaCl treatments. These results indicate that treatments with
8, 10, and 12–16 mM NaCl could be termed as mild, moderate, and severe NaCl stress,
respectively. As 10 mM NaCl induced moderate stress, the following experiments used
the concentration.
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which has no significant difference with the control (Figure 2). Therefore, 100 µM NaHS 
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Figure 1. Effects of different concentrations of NaCl on adventitious root development in cucumber
explants. The primary roots were removed from hypocotyl of 5-day-old seedlings. Explants were
incubated for 5 days with distilled water (the control) and different concentrations of NaCl (0, 8,
10, 12, 14, and 16 mM). The numbers (A) and root length (B) of adventitious root were expressed
as mean ± SE (n = 3, 10 explants were used per replicate). Values are means of three independent
replicates. Photos [overall plant morphology (C)] of the plants were taken 5 days after treatment.

2.2. Effects of Different Concentrations of NaHS on Adventitious Rooting under Salt Stress

To investigate the positive effect of H2S on adventitious rooting under salt stress, we
treated an explant with NaHS of different concentrations under salt stress. NaCl treatment
significantly reduced the number and length of roots in a concentration-dependent way
(Figure 2A,B). Compared with NaCl treatment, treatments with 25, 50, 100, and 150 µM
NaHS significantly increased root number by 62.25%, 82.42%, 122.48%, and 95.39%, respec-
tively (Figure 2A,C). Additionally, compared to NaCl treatment, 25, 50, 100, and 150 µM
NaHS treatments significantly increased root length by 44.51%, 35.10%, 78.08%, and 24.44%,
respectively (Figure 2B,C). Among all concentrations of NaHS, 100 µM NaHS treatment
produced the highest root number and the longest root length under salt stress, which has
no significant difference with the control (Figure 2). Therefore, 100 µM NaHS was used for
the following experiments.
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Figure 2. Effects of different concentrations of NaHS on adventitious root development in cucumber
explants. The primary roots were removed from the hypocotyl of 5-day-old seedlings. Explants were
incubated for 5 days with distilled water (the control) and different concentrations of NaHS (25, 50,
100, and 150 µM) + 10 mM NaCl. The number (A) and length (B) of adventitious roots were expressed
as mean ± SE (n = 3, 10 explants were used per replicate). Values are means of three independent
replicates. Photos [overall plant morphology (C)] of the plants were taken 5 days after treatment.
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2.3. Effects of H2S Scavenger HT on Adventitious Root Development under Salt Stress

To further confirm the role of H2S in adventitious root development under salt stress,
the H2S scavenger HT was used in our study. Compared with NaCl treatment alone,
NaCl + NaHS treatment significantly increased root number and root length by 38.37%
and 66.7%, respectively (Figure 3A,B). Additionally, in comparison to NaCl + NaHS treat-
ment, NaCl + NaHS + HT treatment significantly decreased root number and root length
by 18.43% and 27.30%, which further indicates the key roles of H2S in inducing the adventi-
tious root development when facing salt stress. Similarly, when the explants were grown in
substrate for 20 days, NaHS + NaCl treatment significantly enhanced the growth of cucum-
bers in comparison with NaCl treatment alone (Figure 3D). Thus, these results suggest that
the addition of NaHS significantly reduced the damaging effect of salt stress on cucumber
seedlings, inducing adventitious root development and then promoting cucumber growth.
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Figure 3. Effects of H2S scavenger HT on adventitious root development under salt stress. The
primary roots were removed from hypocotyl of 5-day-old seedlings. Explants were incubated for
5 days with distilled water (the control), NaCl, NaCl + NaHS, NaCl + NaHS + HT. The number
(A) and length (B) of adventitious roots were expressed as mean ± SE (n = 3, 10 explants were used
per replicate). Values are means of three independent replicates. Photos [overall plant morphology
of explants (C)] of the plants were taken 5 days after treatment. Photos [overall plant morphology
(D)] of the plants were taken 20 days after treatment.

2.4. Effects of H2S on the Content of Osmotic Substances during Adventitious Rooting under
Salt Stress

In comparison with the control, NaCl treatment significantly decreased the content of
soluble sugar and soluble protein (Figure 4A,B), showing that salt stress induces osmotic
stress in the explants. In addition, the content of soluble sugar and soluble protein was
significantly increased after adding NaHS under salt stress. Additionally, compared with
NaCl + NaHS treatment, NaCl + NaHS + HT treatment significantly reduced soluble
sugar and soluble protein. On the contrary, the proline content was increased by NaCl
treatment (Figure 4C). Compared with NaCl treatment alone, NaCl + NaHS treatment
decreased proline content, which was reversed in NaCl + NaHS + HT treatment. These
results mentioned above suggest that H2S could regulate the levels of osmotic substances
during adventitious rooting under salt stress.
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Figure 4. Effect of NaHS application on soluble sugar content (A), soluble protein content (B), and
proline content (C) of explants species. The primary roots were removed from hypocotyl of 5-day-old
seedlings. Explants were incubated for 5 days with distilled water (the control), NaCl, NaCl + NaHS,
NaCl + NaHS + HT. Values are means of three independent replicates.

2.5. Effect of H2S on the Degree of Membrane Lipid Peroxidation during Adventitious Root
Development under Salt Stress

To investigate the effect of NaHS on the plasma membrane of explant under salt stress,
the relative conductivity and MDA content were measured in this experiment. Compared
with the control, NaCl treatment significantly increased REC and MDA content by 62.46%
and 102.11%, respectively (Figure 5). In contrast to NaCl treatment alone, NaHS + NaCl
treatment led to a marked decline in the REC and MDA content. However, the REC
and MDA content in NaCl + NaHS + HT treatment were significantly higher than those
in NaCl + NaHS treatment. These results indicate that NaHS significantly reduced salt
stress-induced damage to cell membranes during adventitious rooting.
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Figure 5. Effect of NaHS application on Relative conductivity (A) and MDA content (B) of explants
species. The primary roots were removed from hypocotyl of 5-day-old seedlings. Explants were
incubated for 5 days with distilled water (the control), NaCl, NaCl + NaHS, NaCl + NaHS + HT.
Values are means of three independent replicates.
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2.6. Effect of H2S on the O2− Production Rate and H2O2 Content during Adventitious Root
Development under Salt Stress

As shown in Figure 6, compared with the control, salt stress treatment significantly
increased the O2− production rate and H2O2 content of cucumber explants, further exacer-
bating the degree of membrane lipid peroxidation. However, this increase was inhibited
in the presence of NaHS. NaHS + NaCl treatment led to a marked decrease in O2− pro-
duction rate and H2O2 content by 44.73% and 36.24%, respectively, as compared to the
NaCl treatment alone. Compared to the NaCl + NaHS treatment, NaCl + NaHS + HT
treatment significantly increased the O2− production rate and H2O2 content by 45.77% and
29.41%, respectively, implying the roles of H2S in decreasing membrane lipid peroxidation.
Therefore, these results suggest that the application of exogenous NaHS may inhibit the
accumulation of ROS and thus protect cucumber plants from oxidative stress.

Plants 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 
Figure 5. Effect of NaHS application on Relative conductivity (A) and MDA content (B) of explants 
species. The primary roots were removed from hypocotyl of 5-day-old seedlings. Explants were 
incubated for 5 days with distilled water (the control), NaCl, NaCl + NaHS, NaCl + NaHS + HT. 
Values are means of three independent replicates.  

2.6. Effect of H2S on the O2− Production Rate and H2O2 Content during Adventitious Root 
Development under Salt Stress 

As shown in Figure 6, compared with the control, salt stress treatment significantly 
increased the O2− production rate and H2O2 content of cucumber explants, further exacer-
bating the degree of membrane lipid peroxidation. However, this increase was inhibited 
in the presence of NaHS. NaHS + NaCl treatment led to a marked decrease in O2− produc-
tion rate and H2O2 content by 44.73% and 36.24%, respectively, as compared to the NaCl 
treatment alone. Compared to the NaCl + NaHS treatment, NaCl + NaHS + HT treatment 
significantly increased the O2− production rate and H2O2 content by 45.77% and 29.41%, 
respectively, implying the roles of H2S in decreasing membrane lipid peroxidation. There-
fore, these results suggest that the application of exogenous NaHS may inhibit the accu-
mulation of ROS and thus protect cucumber plants from oxidative stress. 

 
Figure 6. Effect of NaHS application on O2− content (A) and H2O2 content (B) of explants species. 
The primary roots were removed from hypocotyl of 5-day-old seedlings. Explants were incubated 
for 5 days with distilled water (the control), NaCl, NaCl + NaHS, NaCl + NaHS + HT. Values are 
means of three independent replicates.  

2.7. Effect of H2S on Antioxidation Abilities during Adventitious Root Development under Salt 
Stress 

As is shown in Figure 7A–D, the activities of all four enzymes—POD, SOD, APX, and 
CAT—were significantly increased under salt stress. Meanwhile, compared with NaCl 
treatment alone, the addition of exogenous NaHS significantly increased the activities of 

Figure 6. Effect of NaHS application on O2− content (A) and H2O2 content (B) of explants species.
The primary roots were removed from hypocotyl of 5-day-old seedlings. Explants were incubated for
5 days with distilled water (the control), NaCl, NaCl + NaHS, NaCl + NaHS + HT. Values are means
of three independent replicates.

2.7. Effect of H2S on Antioxidation Abilities during Adventitious Root Development under
Salt Stress

As is shown in Figure 7A–D, the activities of all four enzymes—POD, SOD, APX, and
CAT—were significantly increased under salt stress. Meanwhile, compared with NaCl
treatment alone, the addition of exogenous NaHS significantly increased the activities of
POD, SOD, APX, and CAT. However, the addition of HT significantly decreased the activi-
ties of these four enzymes compared to NaCl + NaHS treatment. Thus, NaHS increased the
activities of antioxidant enzymes during adventitious root development under salt stress.
As shown in Figure 7E,F, ASA and GSH contents were significantly reduced under NaCl
treatment compared with the control. However, compared to NaCl treatment, when NaHS
was applied, ASA and GSH contents were increased by 49.14% and 43.50%, respectively.
After the addition of HT, both ASA and GSH contents decreased to different degrees than
the NaCl + NaHS treatment, with no significant difference in ASA content and a significant
decrease of 45.28% in GSH content. These results imply that NaHS application enhances
the antioxidant capacity of explants in response to NaCl stress.
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3. Discussion

Salt stress is an essential limiting element in plant growth and development [21]. The
generation of adventitious roots is a reflection of plant propagation ability. The formation
of adventitious roots expands the root system of plants and increases plant tolerance
under stress conditions [22]. In this study, salt stress reduced the number and length of
adventitious roots in cucumber (Figure 1). Previous study has shown that H2S might play a
critical role in response to abiotic stress in plants [23]. H2S also may regulate many aspects
of plant nutritional and reproductive growth, such as improved seed germination rate and
adventitious root induction [24]. In our preliminary experiment, both morpholin-4-ium
4-methoxyphenyl(morpholino)phosphinodithioate (GYY 4137) and NaHS were used to
screen the most suitable H2S concentration. The experimental results showed that both
GYY 4137 and NaHS could promote adventitious rooting, but the positive roles of GYY
4137 under salt stress was much less than that those of NaHS. Thus, NaHS was chosen as
the H2S donor in the experiment. Our results demonstrate that NaHS-induced adventitious
root formation in cucumbers under salt stress in a concentration-dependent manner, and
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100 µM NaHS obtained the maximum biological effect (Figure 2). Our results are consistent
with the results of Deng et al. [25], who reported that H2S could alleviate the inhibition of
salt stress on the growth of wheat seedlings. Meanwhile, Zhang et al. [24] found that NaHS
increased root number and length in excised willow (Salix matsudana var. tortuosa Vilm)
and soybean (Glycine max L.) seedlings. Moreover, our results suggested that H2S could
strengthen the antioxidant system, reduce lipid peroxidation and the accumulation of
reactive oxygen species, and relieve oxidative stress caused by salt, which is consistent
with the results from Jiang et al. [26]. Overall, these results suggest that H2S reduces root
injury from salt stress by increasing adventitious root development.

Plants can alleviate the adverse effects of salt stress by accumulating soluble proteins,
amino acids, soluble sugars, and other small molecular organic substances [27]. Soluble
sugars can maintain intracellular osmotic pressure [28]. In addition to participating in
osmotic regulation, soluble proteins also partly represent the change of plant organ func-
tion [29]. The increase of proline content can also regulate plant osmotic potential and
improve plant tolerance [30]. In our study, salt stress significantly reduced the contents
of soluble sugar and soluble protein in cucumber explants, while it increased the proline
content (Figure 4). It indicates that the breakdown of soluble proteins may produce many
free amino acids that facilitate osmoregulation by the root system. Therefore, the decom-
position of soluble protein under salt stress may be one of the reasons for the increase of
proline content. Meanwhile, NaHS treatment significantly reduced the proline content but
increased the soluble sugar and soluble protein level, indicating that H2S might maintain
osmotic pressure and enhance rooting under salt stress. While, a NaHS scavenger HT
decreased the soluble sugar and soluble protein content and increased the proline content
(Figure 4). The results seem to be consistent with those of Wei et al. [12], which show that
NaHS application increases the content of soluble sugar and soluble protein in cut rose
and chrysanthemum flowers. Meanwhile, Li et al. [31] found that NaHS application also
increased the content of soluble sugar and soluble protein in Lanzhou lily. It was also found
that the exogenous H2S application enhanced soluble sugar content and decreased proline
content in zucchini under nickel stress [32]. Therefore, H2S may promote the emergence of
adventitious roots under salt stress by maintaining and adjusting osmotic pressure.

Under salinity stress, plants usually produce excess reactive oxygen species (ROS)
such as O2− and H2O2 [33]. Excessive accumulation of ROS results in impaired membrane
integrity and oxidative damage in plants. Plants enhance antioxidant capacity by removing
accumulated reactive oxygen species [34]. REC and MDA content can usually reflect
the status of plant cell membrane and lipid peroxidation [35]. Here, NaCl treatment
significantly increased the O2− production rate, H2O2 content, and REC and MDA content
in cucumber explants (Figures 5 and 6), suggesting that salt stress may lead to the imbalance
of ROS metabolism, cause membrane lipid peroxidation, and increase cell membrane
permeability. However, H2S significantly decreased the O2− production rate, H2O2 content,
and REC and MDA content, which effectively alleviated the inhibition caused by salt stress
to adventitious rooting. Similar results were reported in Spinacia oleracea L. seedlings, where
they found that NaHS decreased ROS accumulation and reduced MDA content under
drought stress [36]. Meanwhile, Ahmad et al. [37] found that NaHS increased electrolyte
leakage (EL) and H2O2 and MDA content in cauliflower under Cr stress. Moreover,
Ding et al. [38] found that exogenous H2S application reduced H2O2 and MDA content in
wheat seedlings under salt stress. Thus, H2S may enhance adventitious root formation by
reducing membrane lipid peroxidation and maintaining cell membrane integrity under
salt stress.

The antioxidant system developed during plant evolution contributes to the balance
of ROS metabolism and directly reflects plant salt tolerance [39]. For instance, among
the antioxidant enzymes, SOD, CAT, GPX, APX, and GR are vital enzymes to scavenge
intracellular ROS [40]. The increased antioxidant defenses are positively correlated with
the reduced oxidative damage in plants under abiotic stress [41]. In this study, salt stress
significantly increased the activities of POD, SOD, APX, and CAT during rooting (Figure 7).
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Guo et al. [42] found that the antioxidant enzyme activities in wheat were significantly
increased under cadmium stress. Our results show that NaHS treatment could also sig-
nificantly increase the activities of POD, SOD, APX, and CAT under salt stress (Figure 7),
confirming that H2S scavenges O2− content in the explants by increasing the activity of
antioxidant enzymes, thus reducing the damage of salt stress on adventitious root develop-
ment. The addition of NaHS was also found to significantly increase antioxidant enzyme
activity in wheat and tomato [38,43]. Moreover, addition appropriate doses of NaHS can
effectively activate antioxidant enzyme activity and prolong the postharvest freshness
in cut flowers [12]. Therefore, the increase in antioxidant enzyme activity reduced ROS
accumulation, thereby alleviating salt stress damage on adventitious root formation and
further improving salt tolerance during rooting.

ASA and GSH are two vital antioxidants which can assist antioxidant enzymes in
H2O2 metabolism, thus scavenging ROS overproduction [44]. In this study, exogenous
H2S application led to a significant increase in ASA and GSH contents during adventitious
rooting under NaCl stress (Figure 7). Our results indicate that H2S could maintain cellular
oxidative homeostasis by increasing antioxidant contents, thereby mitigating cytotoxicity
and oxidative damage caused by ROS accumulation, and thus promoting rooting.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Cucumis sativus ‘Xinchun 4’ seeds (Gansu Academy of Agricultural Sciences, Lanzhou,
China) were soaked in room temperature water for 5 h. After that the seeds were fished
out and placed in a warm environment to germinate. The main roots were removed after
5 days of growth. The explants were placed in conical flasks containing distilled water or
the compounds, maintained at a temperature of 25 ◦C, set with appropriate light intensity
and photoperiod. After 5 days of growth again, the number and length of adventitious
roots of each explant were counted and recorded, and photographed. In addition, the
explants were planted in substrate and managed normally, and the overall morphology of
plants was photographed and recorded after 20 days.

4.2. Explant Treatments

Cucumber explants were cultured in an artificial intelligence type of light incubator
(HGZ-H400, Shanghai Xinnuo Instrument Group Co. LTD, Shanghai, China) for 5 days
with 50 mL distilled water (the control) or various concentrations of NaCl solution (8, 10,
12, 14, and 16 mM). The number and length of the roots were measured after the treatment,
and the appropriate NaCl concentration was evaluated.

After selecting the appropriate NaCl concentration, the H2S donor NaHS concentration
was screened. In this experiment, a total of 4 NaHS gradients were set up: 0 (distilled water,
the control), NaCl, 25 µM NaHS + NaCl, 50 µM NaHS + NaCl, 100 µM NaHS + NaCl,
150 µM NaHS + NaCl. The cucumber explants were incubated with the above six solutions
in an artificially intelligent lighted incubator for 5 days. The experiment was repeated three
times, 10 seedlings per replicate, and a total of 180 seedlings.

After the appropriate NaHS concentration was selected, the cucumber explants were
treated with the H2S scavenger (HT). In this experiment, four different treatments were used:
distilled water (the control), NaCl, NaCl + NaHS and NaCl + NaHS + HT. The experiment
was repeated three times, 10 seedlings per replicate, and a total of 180 seedlings.

4.3. Determination of Soluble Sugar, Soluble Protein Content

Soluble sugar content was measured using the method of Van Handel [45]. About
0.2 g of cucumber explants were ground and mixed with 10 mL of distilled water in a
test tube. The samples were boiled in a water bath for 30 min and the supernatant was
collected. This step needs to be repeated twice. Next, 0.5 mL supernatant and 7 mL of
reaction solution [1.5 mL of distilled water, 0.5 mL of ethyl anthranilate, and 5 mL of 98%
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H2SO4] were mixed in a boiling water bath for 1 min and then cooled to room temperature.
The absorbance was monitored at 630 nm.

Soluble protein content was determined using the Kučerová [46] method. A total
of 0.2 g of sample was added to 5 mL of distilled water, was ground into a homogenate,
and was centrifuged at 4 ◦C, 12,000× g for 20 min to collect the supernatant. A total of 1
mL of the supernatant was transferred to a test tube and 5 mL of Coomassie blue G-250
solution was added. After standing for 2 min, colorimetric and absorbance were measured
at 595 nm. The protein content was calculated by the standard curve.

Proline content was measured using the Storey [47] method. The 0.2 g cucumber
explants were cut into small pieces, put in a test tube, and 5 mL 3% sulfosalicylic acid
was added to obtain the proline extract in a boiling water bath for 15 min. The 2 mL of
glacial acetic acid and acid ninhydrin were added to the extract, which was then heated in
a boiling water bath for 30 min. Next, extraction solution was cooled to room temperature
and 5 mL of toluene was added. The mixture was shaken to extract the red product and
left in the dark for 20 min. The absorbance value at 520 nm was measured and recorded.

4.4. Determination of REC and MDA Content

Relative electrical conductivity (REC): 0.1 g of cucumber explants were placed in 10 mL
of deionized water in a test tube and soaked in a thermostat at 25 ◦C for 2 h to measure
the electrical conductivity R1. After this, the sample is boiled in a water bath for 30 min,
and once the temperature has dropped to room temperature, the conductivity R2 can be
measured. The content of REC can be calculated by the formula which is R1/R2 × 100%.

Malondialdehyde (MDA): 0.2 g of cucumber explants were placed in pre-chilled
mortar, 5 mL of TCA was added and ground, the homogenate was transferred to a test
tube. After centrifugation at 4 ◦C, 12,000× g for 15 min, the supernatant was aspirated. A
total of 1 mL of supernatant was mixed with 0.5% TBA solution. The mixture was boiled in
a water bath for 30 min, rapidly cooled, and centrifuged for 10 min. The supernatant was
taken to determine the absorbance at 450 nm, 532 nm, and 600 nm.

4.5. Determination of the O2− Production Rate and H2O2 Content

A 0.5 g quantity of sample was ground in 1 mL of PBS buffer (pH 7.8) and centrifuged
for 15 min (4 ◦C, 12,000× g). Totals of 1 mL of PBS buffer and 1 mL of hydroxylamine
chloride reagent were added to 1 mL of the supernatant mix and left at room temperature
for 1 h. A total of 0.5 mL of the incubation solution was mixed with 1 mL of 17 mM
p-aminobenzene sulfonic acid and 1 mL of 7 mM α-naphthylamine. This reaction mixture
was left at 25 ◦C for 20 min and the absorbance was read at 530 nm.

A 0.5 g quantity of sample was ground with pre-chilled acetone. The homogenate
was centrifuged at a low temperature for 20 min, and 1 mL of supernatant was mixed with
0.1 mL of 10% TiCl4 and 0.2 mL of NH3·H2O. After reacting for 5 min, this was further
centrifuged at 12,000× g and a temperature of 4 ◦C for 15 min. The precipitate was collected,
3 mL of 2 M H2SO4 was added, and the absorbance was measured at 415 nm.

4.6. Determination of Antioxidant Enzymes and Antioxidants

To extract the enzyme solution, three cucumber explant samples were collected ran-
domly from each treatment. A 0.5 g quantity of sample was ground to powder with liquid
nitrogen and extracted with 5 mL of 0.05 M phosphate buffer (pH 7.8). The homogenate
was centrifuged for 15 min (12,000× g, 4 ◦C) and the supernatant was used for subsequent
enzyme activity assays.

Peroxidase (POD) activity: the supernatant (100 µL) was added to 2.6 mL of 0.3%
guaiacol and 0.3 mL of 0.6% H2O2, and the reaction was stopped by adding 2 mL of 20%
TCA in an ice bath. Next, the OD value was measured at 470 nm.

Superoxide dismutase (SOD) activity: the reaction system included 3 mL of reaction
mixture [1.5 mL phosphate buffer (0.05 M, pH 7.8), 0.3 mL methionine (130 mM), 0.3 mL
NBT solution (750 µM), 0.3 mL ethylene diamine tetraacetic acid (1 mM), 0.3 mL riboflavin
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(20 µM) and 0.3 mL distilled water] and 20 µL of enzyme solution. Quantities of 3 mL
of reaction mixture and 20 µL of PBS buffer were added to the control tube and covered
with tin foil to block the light. The reaction tube was reached at 4000 Lux light at 25 ◦C for
20 min. After the reaction was finished, the absorbance was monitored at 560 nm.

Ascorbate peroxidase (APX) activity: 100 µL of the supernatant was added to 2.6 mL
of reaction solution [containing potassium phosphate buffer (pH 7.0), 0.5 mM ascorbic acid,
and 2 mM H2O2)], and the OD was measured at 290 nm.

Catalase (CAT) activity: 2.9 mL of reaction solution [containing 50 mM potassium
phosphate buffer (pH 7.0) and 20 mM H2O2] was mixed with 100 µL of supernatant, and
the absorbance was monitored at 240 nm.

Ascorbic acid (AsA): samples (0.5 g) were grinded and centrifuged. The mixture of
0.2 mL of supernatant, 0.5 mL of PBS buffer (pH 7.4), and 0.1 mL of 10 mM dithiothreitol
(DTT) was placed in the reaction solution for 60 min at 40 ◦C. The absorbance was measured
at 525 nm.

Glutathione (GSH): The reaction mixture contained 0.2 mL supernatant, 0.05 mL H2O,
0.5 mL of 2.5 mM EDTA, 0.1 mL of 0.5 mM NADPH, and 0.1 mL of 6 mM 2-nitrobenzoic
acid. The absorbance was measured at 412 nm.

4.7. Statistical Analysis

Data were analyzed using SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). All
data were expressed as the mean ± standard error (SE) of three independent replicates.
Duncan’s analytical test (p < 0.05) was used to determine the significance of the differences
between treatments.

5. Conclusions

In summary, H2S significantly promoted the occurrence of adventitious roots in cu-
cumber explants under salt stress. Through further studies, it was found that H2S could
promote the accumulation of osmoregulatory substances (soluble sugar and soluble pro-
tein) and increase the activities of antioxidant enzymes (POD, SOD, APX, and CAT) and
the content of antioxidants (ASA and GSH) during adventitious root formation under
salt stress. Besides, H2S reduced proline and MDA content and REC during that process.
Overall, our study provides evidence that H2S could reduce the damage of salt stress on
adventitious root development by regulating the accumulation of osmoregulatory sub-
stances and antioxidants, the activity of antioxidant enzymes, as well as lipid peroxidation
and cell membrane stability in cucumber. Thus, our findings may provide new insights
into the mechanisms of H2S-induced adventitious rooting under salt stress. However, at
present, there are few reports on the signaling mechanisms of plant H2S in response to
abiotic stresses. Therefore, the deeper mechanisms of H2S-regulated rooting under salt
stress conditions need to be further investigated, including the mining of critical genes
and receptors.
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