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Dr Barton Childs’ landmark 1999 text, Genetic Medicine – A Logic of Disease, led to the 

development of a new curriculum at Johns Hopkins School of Medicine entitled “Genes 

to Society.”1 A core part of contemporary medical school and pediatric residency training 

is individualized medicine. Trainees are now being equipped for an era of personalized, 

“precision” medicine. Childs said that, in the next century, medicine will be focused on 

the treatment of individuals rather than disease. This raises the question of how different 

are individuals at the genomic level? Early after the discovery of the genetic code, it 

was recognized that some 3 million single nucleotide polymorphisms could be used to 

distinguish individuals, based on their location within our unique DNA. Other sources 

of variation in the genome range from few-base-pair insertions and deletions and short 

tandem repeats to mega-base-pair variations owing to cytogenetic deletions, insertions, or 

aneuploidy. Once the human genome was sequenced, it became clear that more than 10% 

of the genome consists of copy number variations that also generate a unique signature 

for each individual.2 The fascinating observation that progression from simple organisms to 

higher-order organisms and ultimately humans was not associated with a significant increase 

in the number of genes, but rather, an increasing amount of DNA sequences unassociated 

with genes, so-called junk DNA. We now know that a substantial portion (≥30%) of this 

junk DNA is transcribed into noncoding RNA (ncRNA)—RNA that, instead of coding for 

proteins, serves a direct or indirect regulatory function for those genes that do code for 

proteins. To date, more than 18 000 distinct ncRNAs have been identified. In many cases, 

these ncRNAs serve as precursors to generate small inhibitory RNAs, which regulate target 

gene expression. Other ncRNAs bind proteins and serve as protein translocators and/or 
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facilitate the formation of multiprotein complexes. Interestingly, the transcripts of 88% of 

single nucleotide polymorphisms that have been associated with different phenotypes are 

actually located within ncRNAs. These single nucleotide polymorphisms could result in 

different secondary structures, and are thereby likely responsible for differential functions of 

the ncRNA.

In 2012, the ENCODE project consortium revealed that as much as 80% of the human 

genome is actively transcribed.3 However, only about 2% of the genome is protein 

coding, suggesting the rest of the transcripts are ncRNA transcripts. This discovery led 

to great interest in unraveling the mechanism governing the biogenesis and function of 

ncRNAs. Although a vast majority of ncRNAs are transcribed at low levels, and may 

be transcriptional noise, without any functional role, recent advances of next-generation 

high-throughput sequencing coupled with functional analyses have yielded numerous 

discoveries of functional ncRNAs across species.4,5 The most abundant portion of ncRNAs 

are housekeeping ribosomal RNAs and transfer RNAs, which are well-known for their 

functional role in normal cellular processes for quite some time.4 Recent experiments 

have primarily focused on ncRNAs other than ribosomal RNAs and transfer RNAs. This 

minor fraction has been shown to play crucial roles in a myriad of physiologic processes, 

including genome integrity maintenance, innate immunity, neurodevelopment, and stem cell 

proliferation and differentiation, as well as diseases such as cancer. These new regulatory 

noncoding transcripts are traditionally divided into 2 major groups based on their size and an 

arbitrary cutoff: short noncoding RNAs (18–200 nucleotides) and long ncRNAs (lncRNAs) 

(>200 nucleotides). In addition, a novel class of ncRNAs was recently discovered, the 

circular RNAs (circRNAs), named because of the circular nature of the transcript generated 

from back-splicing of pre-mRNA and covalent linking of 3′ and 5′ ends.6–9 The size of 

circRNAs ranges from less than 200 to several thousand nucleotides (Figure 1).

Short ncRNAs are further categorized into several classes, including small nuclear 

RNAs, which are key components of the spliceosome and play an important role in pre-

mRNA splicing, and small nucleolar RNAs, which regulate ribosomal RNA modification. 

Additional classes of short (21–30 nt) ncRNAs include small interfering RNAs (siRNAs), 

Piwi-interacting RNAs, and microRNAs (miRNAs or miRs), which are core components 

of RNA interference (RNAi), an evolutionarily conserved process that regulates gene 

expression in a sequence-specific manner. The siRNAs are derived from long double-

stranded RNA precursors. They join and guide Argonaute protein-containing complexes 

to target mRNAs by complementary base pairing, leading to gene silencing via RNA 

degradation. Viral RNA replication intermediates (in the form of double-stranded RNAs) can 

be converted into siRNAs, which in turn can target viral RNA transcripts for degradation via 

RNAi.10–17 Thus, RNAi is a key constituent of antiviral defense mechanism in diverse host 

organisms. The miRNAs are transcribed as long stem-loop primary transcripts, which are 

processed into 22- to 24-nt segments.18–29 Similar to siRNAs, miRNAs are loaded into and 

guide Argonaute complexes to target mRNAs by imperfect base pairing between miRNAs 

and target mRNAs, and decrease protein output by mRNA destabilization and translation 

inhibition.30–32 Piwi-interacting RNAs are primarily produced in germ cells and control the 

expression of transposable elements, thereby contributing to the maintenance of germ-line 

genome integrity.33
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The lncRNAs are characterized based on location and orientation of resulting transcript into 

long intergenic ncRNAs, natural antisense transcripts, enhancer RNAs, and bidirectional 

transcripts.5,34 LncRNAs are involved in functionally diverse mechanisms. They can serve 

as transcriptional repressors (eg, XIST), enhancers by promoting activating interactions 

between promoters and distal regulatory elements (eg, LUNAR1), miRNAs sponges 

(eg, TUG1), and hubs for protein-protein and protein-nucleic acid interactions (eg, 

SPRIGHTLY).5,34–39

The circRNAs are generated by back-splicing reactions during pre-mRNA processing. 

Emerging evidence has delineated diverse modes of action of circRNAs. For example, 

the mouse circRNA CDR1as/CiRS-7 shelters miR-7 and impacts brain development.9,40,41 

In addition, the circRNA SRY plays a prominent role in male sex determination.9,40 

Furthermore, select intron-containing circRNAs can interact with U1 small nuclear 

ribonucleoprotein particle and promote host gene transcription in the nucleus.42 Moreover, 

circRNAs can modulate gene expression by competing with linear splicing.43 Lastly, 

selective circRNAs can give rise to functional polypeptides, thereby expanding the 

complexity of the proteome.44,45

Cross-regulation among various classes of RNAs has been well-documented (Figure 2). For 

example, the lncRNA TUG1 can sequester and functionally inhibit the activity of a number 

of miRNAs.38,46–49 In addition, the lncRNA H19 serves as a source of precursors for 

miR-675 biogenesis.50–53 An elegant example of ncRNA cross-regulation is the miR-671-

CDR1as-miR-7 axis: the circRNA CDR1as carries 1 near perfect binding site for miR-671 
and dozens of imperfect binding sites for miR-7. Engagement of miR-671 with CDR1as 
results in CDR1as degradation, which leads to downregulation of miR-7 owing to loss of 

protection by CDR1as.9,40,41 Lastly, ncRNAs (lncRNAs and circRNAs) and protein-coding 

mRNAs can engage with and therefore compete for the same pool of miRNAs, resulting in 

cross-regulation. In fact, cross-regulation among various mRNAs and between mRNAs and 

lncRNAs via miRNA engagement provides support for this model.54

Functionally, these ncRNAs species regulate cellular identity and function primarily via 

modulating transcriptional and post-transcriptional gene expression. Given the diverse 

physiological processes regulated by ncRNAs, it is not surprising that dysregulation of 

ncRNA expression can contribute to pathological conditions.55–57 There is now a growing 

body of evidence implicating ncRNAs in normal development, health, and dysfunctions. 

We summarize current knowledge on the role of ncRNAs in several diseases and the 

implications for therapy (Table). We note that extensive literature covering the topic of 

ncRNAs in pediatric diseases is still developing because the field of is at early stages. In 

particular, the pediatric translational research applications to date in the rapidly emerging 

basic science field of ncRNA remain fewer in number than among studies focused on 

diseases that primarily affect adults. The examples discussed herein are primarily based 

on studies involving cultured cells or animal models and focus heavily on basic science, 

and thus may not be specific to children. However, we believe that knowledge gained from 

these preclinical/early stage clinical studies discussed here will help us to better understand 

the molecular mechanisms underlying these diseases in the pediatric patient population and 

facilitate the development of novel diagnostic and therapeutic tools.
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Role of ncRNAs in Pediatric Diseases

β-Thalassemia is a recessive inherited disease affecting hundreds of thousands of individuals 

worldwide, with symptomatic onset in childhood. Before birth, the predominant hemoglobin 

is α2γ2. In the last trimester, fetal γ globin synthesis decreases and adult β globin 

synthesis increase. A hallmark of β-thalassemia is a decrease in or absence of β globin 

synthesis, necessary for the predominant adult hemoglobin (α2β2), resulting in anemia and 

ineffective erythropoiesis. Current treatments include chelation therapy, blood transfusion, 

and bone marrow transplantation. Recently, a novel strategy has been explored, which 

involves reactivation of gene encoding fetal γ globin, to compensate for the shortage of 

β globin. A suite of miRNAs that functionally inhibit the γ globin gene transcriptional 

repressors have been identified and validated: miR-486–3p and miR-210 (which target 

BCL11A mRNA), miR-23a (against KLF-2), miR-15a and miR-16–1 (against MYB), 

and miR-27a (against Sp1).58–60 Experimental approaches that enhance the activities of 

these miRNAs are expected to induce the γ globin gene, thereby harboring potential as 

a new approach to treating β-thalassemia. The lncRNAs have also been implicated in 

β-thalassemia.61,113,114 For example, the nuclear lncRNA HMI-LNCRNA generated from 

the HBS1L-MYB enhancer region displays significantly higher levels of expression in 

erythroblasts derived from cultured adult peripheral blood cells, which express more β 
globin, compared with erythroblasts from cultured cord blood cells, which express more 

γ globin. Notably, downregulation of HMI-LNCRNA in HUDEP-2 cells, which express 

mostly β globin, significantly reactivates γ globin expression and promotes erythroid 

maturation. Thus, HMI-LNCRNA might be a potential therapeutic target for γ globin 

induction treatment in β-thalassemia.

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease and is the 

most common muscular dystrophy affecting children. DMD is characterized by a rapid 

progression of muscle degeneration caused by mutations in the dystrophin gene. Several 

miRNAs have been implicated in DMD. For example, the muscle-enriched miRNA miR-486 
is markedly decreased in the muscles of dystrophin-deficient mice and in DMD patient 

samples. Mechanistically, miR-486 suppresses the expression of phosphatase and tensin 

homolog (PTEN) and Foxo1a, negative regulators of phosphoinositide-3-kinase (PI3K)/Akt 

signaling, which regulates muscle hypertrophy and growth, as well as dedicator of 

cytokinesis 3 (DOCK3), thereby playing a key role in myotube survival.62,115 In addition, 

miR-21 expression is significantly increased in DMD samples, and correlates with a 

significant reduction in the expression of miR-21 target transcripts including PTEN and 

SPRY-1 (Sprouty homolog 1), whereas miR-29a and miR-29c are significantly decreased in 

Duchenne muscle and myoblasts, accompanied by a concordant increase in miR-29 target 

transcripts, including COL3A1, FBN1, and YY1.63 Several additional muscle-enriched 

miRNAs, such as miR-1, miR-133, and miR-206 display an increase in the serum of 

DMD patients and/or in muscle tissues of mouse DMD models, suggesting that they may 

serve as biomarkers for DMD. When it comes to lncRNAs, it has been shown that the 

lncRNA linc-MD1 can operate as a miRNA sponge by sequestering miR-133 and miR-135, 

thereby modulating the expression of Maml1, Mef2c, Myog, and Mhc, which regulate 

muscle-specific gene expression. In the muscle of DMD patients the level of linc-MD1 
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is greatly reduced, whereas linc-MD1 overexpression can rescue the defective myogenic 

differentiation and restore the normal expression of the aforementioned linc-MD1-regulated 

genes.64 Last, a recent study provided evidence that the circRNA circ-ZNF609 can be 

translated into a functional protein that modulates myogenesis, thereby adding circRNAs to 

the list of regulatory RNAs in muscle development.44,45

Rett syndrome is a neurodevelopmental disorder associated with mutations in the MeCP2 
gene encoding methyl-CpG binding protein 2. It has been reported that the MeCP2 protein 

associates with the miRNA biogenesis machinery and is required for appropriate post-

translational processing of a suite of miRNAs.65 Among these MeCP2-regulated miRNAs 

is miR-199a, which suppresses the expression of inhibitory factors of mammalian target of 

rapamycin (mTOR) signaling that has been implicated in Rett syndrome. Besides miRNA 

regulation, MeCP2 can also modulate lncRNA expression. MeCP2 loss in the mouse 

brain is associated with upregulation of 2 lncRNAs, AK081227 and AK087060.116 In 

particular, elevated expression of AK087060 in MeCP2 knockout mouse brain correlates 

with an increase in the expression of its host gene Arhgef26 encoding a Rho guanine 

nucleotide exchange factor that contributes to axon patterning.66,67 Thus, it is possible that 

dysregulation of AK087060 and Arhgef26 upon MeCP2 loss in mouse brain contributes 

to Rett syndrome phenotypes. In contrast, elevated expression of AK081227 is associated 

with downregulation of gamma-aminobutyric acid (GABA) receptor subunit rho 2 (Gabrr2). 

Because dysfunction in GABAergic inhibitory neurotransmission is associated with many 

neurodevelopmental disorders, including Rett syndrome, and that the expression of another 

GABA receptor subunit member (GABRB3) is reduced in Rett syndrome, it is likely that 

AK081227 and Gabrr2 are candidates to be altered in Rett syndrome.69,70,117,118 Lastly, the 

observation that most circRNAs are enriched in the brain suggests a functional relevance 

in neurodevelopment. In fact, the circRNA CDR1as/CiRS-7 plays a key role in brain 

development, at least in part, by associating with and stabilizing miR-7.9,40,41 We envision 

that advances in circRNA study will continue to provide insights regarding the role of 

circRNAs in normal neurodevelopment and neuro-logic diseases, such as Rett syndrome.

Glioma is a cancer originating in glial cells that are primarily involved in nourishment 

and upkeep of neighboring neurons.119 Gliomas are the most common brain tumor in 

children. The most frequent form, low-grade gliomas, are generally not associated with 

poor prognosis whereas high-grade glioma are often fatal.120 Various differentially regulated 

miRNAs and lncRNAs have been identified in gliomas.

Oncogenic miRNAs that promote glioma pathogenesis include miR-9/9* that regulates 

SOX2, PTCH1, FOXP1, and CAMTA1, the miR-17–92 cluster targeting CFTG, and 

miR-17, miR-19a/b, miR-26a, and miR-221/222 that inhibit tumor suppressive PTEN 

signaling.71–79 Tumor suppressor miRNAs, such as let-7a, miR-101, miR-124, miR-138, 

miR-214, and miR-708 are involved in inhibiting glioma/glioblastoma growth, particularly 

by targeting EZH2-dependent epigenetic mechanisms.80–85 Other tumor suppressor miRNAs 

in high-grade glioma include miR-7 (targeting EGFR), miR-128 (targeting EGFR, WEE1, 

MSI1, and RPS6KB1), miR-34a (targeting CDK6 and CCND1), and miRNA-100 (targeting 

PLK1).86–93
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LncRNAs are also found to be associated with IDH1/2 mutation status and glioma grade, 

thereby highlighting their potential diagnostic and prognostic significance.121 Importantly, 

select lncRNAs have been analyzed for potential functional role in gliomas. For example, the 

lncRNA H19 is upregulated in gliomas where it acts as oncogene by sequestering miR-140 
and miR-29a, thereby relieving their inhibitory effect on key oncogenes such as CDK6, 

CASH2, MDR, and so on.94,95 Another lncRNA, HOTAIR, can activate the fibroblast 

growth factor (FGF), PI3K/AKT, and MEK pathways and promote glioma proliferation and 

metastasis by serving as a miR-326 sponge, and regulate cell cycle progression in glioma 

via interaction with EZH2.96,97 Of note, HOTAIR has also been shown to be activated 

by epigenetic regulator BRD4 in glioma genesis, a well-known oncogene across cancer 

types.122 In addition, the lncRNA MEG3 inhibits cell proliferation via p53 activation.98 

Furthermore, the lncRNA TUG1 maintains glioma stem cells through interactions with 

PRC2 components (EZH2 and SUZ12) and transcription factor YY1, thereby epigenetically 

suppressing multiple neuronal differentiation-associated genes.99 Moreover, the lncRNA 

GAS5 suppresses glioma stem cell proliferation, migration, and invasion by binding to 

the oncogenic miR-196a-5p and upregulating the downstream FOXO1.100 Lastly, XIST 
is another oncogenic lncRNA that modulates epigenetic pathways and promotes cell 

proliferation and migration in gliomas.123

Medulloblastoma represents the most common malignant pediatric brain tumor, localized 

in cerebellum. Recent genetic and epigenetic studies have characterized medulloblastoma 

into four clinical and molecular subgroups, namely, wingless (WNT), sonic hedgehog 

(SHH), group 3, and group 4 (reviewed in124). As of now, miRNAs and lncRNAs are the 

predominant ncRNA species that have been investigated in medulloblastoma pathogenesis 

(reviewed in101). Both miRNAs and lncRNAs show subgroup specific expression pattern, 

thereby highlighting subgroup-specific molecular mechanism regulated by these ncRNA 

species.

Several miRNA such as miR-17–92 cluster, miR-10b and miR-21, have been shown 

to promote medulloblastoma proliferation and/or metastasis in vitro and in vivo.101–104 

Conversely, miR-124, miR-218, miR-125b, and miR-326 are examples of tumor suppressor 

miRNAs found downregulated in medulloblastomas.105–110,125,126 Some of these candidates 

also represent potential therapeutic targets. For example, the miR-17–92 cluster, which was 

found to be associated with SHH medulloblastoma, promotes tumor development in vivo.127 

Consequently, complete knockout or locked nucleic acid (LNA) based inhibition of the 

miR-17–92 cluster reduced tumor growth and improved survival in SHH medulloblastoma 

mice.

The lncRNAs in medulloblastoma have received comparatively little attention, as of yet. 

A recent genome-wide lncRNA analysis highlighted subgroup-specific lncRNA expression 

in medulloblastoma patients and proposed a diagnostic and prognostic model based on 

lncRNAs.128 Several other in vitro studies also highlight functional role of lncRNAs in 

medulloblastoma. The lncRNA MIR100HG was found to act as oncogene in group 4 tumors 

where it sponged miR-19a-3p, miR-19b-3p, and miR-106a-5p, thereby derepressing their 

targets, including CDK6, MYCN, SNCAIP, and KDM6A, and promoting proliferation.111 

However, surprisingly, overexpression of MIR100HG in the group 3 cell line downregulated 
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their proliferation. PVT1 is another oncogenic lncRNA in medulloblastoma, particularly 

group 3 patients, where it is frequently found fused to oncogene MYC.129 One consequence 

of the resulting fusion transcript is stabilization of MYC mRNA.112

CircRNAs are also gaining interest in medulloblastoma research. It has been shown that 

various cancer types display distinct circRNA signatures and that circRNAs may serve as 

tumor biomarkers.130,131 In addition, Lv et al recently identified and validated 33 circRNAs 

that are dysregulated in medulloblastoma.132 Interestingly, 2 circRNAs (circ-SKA3 and 

circ-DTL) seem to modulate expression of corresponding host genes and impact the 

proliferation, migration, and invasion of tumor cells. Considering that circRNA research 

is still at infancy, we expect that rapid progress in this field will solidify the notion that 

circRNAs can modulate and perhaps drive the development and progression of various 

cancer types, such as medulloblastoma.

Conclusions and Future Directions

We have summarized several physiologic processes regulated by ncRNAs, and provide 

examples of a wide variety of diseases resulting from ncRNA dysregulation. Although the 

examples discussed herein may not be strictly specific to children, similar, if not identical, 

underlying molecular mechanisms operate in both adults and children. We envision that 

the exciting field of transcriptomics and ncRNA research, which encompasses both basic 

science and translational studies, will continue to benefit from rapid advances in the 

development of next generation sequencing technology and bioinformatics tools. This 

will facilitate the elucidation of the molecular mechanism underlying the function and 

regulation of ncRNAs in physiological and pathological settings, and provide insights into 

the development of ncRNA-based diagnostic and therapeutic strategies against pediatric 

diseases.
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Glossary

circRNA Circular RNA

DMD Duchenne muscular dystrophy

GABA Gamma-aminobutyric acid

lncRNA Long ncRNA

miRNA MicroRNAs

ncRNA Noncoding RNA
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SHH Sonic hedgehog

siRNA Small interfering RNA
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Figure 1. 
A schematic illustrating various ncRNAs. The biogenesis mechanisms and functions of 

various ncRNAs are shown (miRNAs, left; lncRNAs, middle; circRNAs, right). pri-miRNA, 

primary microRNA.
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Figure 2. 
A schematic depicting cross-regulation among various classes of ncRNAs. On the one 

hand, miRNAs can bind and downregulate the expression of target lncRNAs; on the other 

hand, select lncRNAs can serve as miRNA precursors or sequestrate and functionally 

inhibit miRNAs. In addition, select circRNAs can inhibit or protect miRNAs by physically 

associating with miRNAs. Conversely, miRNAs that carry perfect complementarity to 

circRNAs can lead to target circRNA degradation. Last, both lncRNAs and circRNAs can 

serve as competing endogenous RNAs by sequestrating miRNAs, thereby modulating the 

availability of miRNAs to engage with and functionally inhibit target mRNAs.
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