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Abstract

The Notch signaling pathway, which is highly conserved from sea urchins to humans, plays an 

important role in cell-differentiation, survival, proliferation, stem-cell renewal, and determining 

cell fate during development and morphogenesis. It is well established that signaling pathways 

are dysregulated in a wide-range of diseases, including human malignancies. Studies suggest 

that the dysregulation of the Notch pathway contributes to carcinogenesis, cancer stem cell 

renewal, angiogenesis, and chemo-resistance. Elevated levels of Notch receptors and ligands have 

been associated with cancer-progression and poor survival. Furthermore, the Notch signaling 

pathway regulates the transcriptional activity of key target genes through crosstalk with several 

other signaling pathways. Indeed, increasing evidence suggests that the Notch signaling pathway 

may serve as a therapeutic target for the treatment of several cancers, including breast cancer. 

Researchers have demonstrated the anti-tumor properties of Notch inhibitors in various cancer 

types. Currently, Notch inhibitors are being evaluated for anticancer efficacy in a number 

of clinical-trials. However, because there are multiple Notch receptors that can exhibit either 

oncogenic or tumor-suppressing roles in various cells, it is important that the Notch inhibitors 

are specific to particular receptors that are tumorigenic in nature. This review critically evaluates 

existing Notch inhibitory drugs and strategies and summarizes the previous discoveries, current 

understandings, and recent developments in support of Notch receptors as therapeutic targets in 

breast cancer.
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1. Introduction

Breast cancer (BC) is the second leading cause of cancer deaths among women worldwide. 

In 2019, approximately 268,600 new cases of invasive BC and 62,930 new cases of in 
situ BC are estimated to be diagnosed, along with 41,760 BC-related deaths, in the U.S. 

alone. The majority of BCs are estrogen receptor-positive (ER+ve) and can be treated using 

anti-hormonal therapy; however, recurrence is frequently observed in BC patients after 

five years of endocrine therapy. The dysregulation of several signaling pathways, including 

Notch, contributes to cancer progression and recurrence. Cross-talk between estradiol and 

Notch signaling has a major role in human breast carcinogenesis and angiogenesis [1–4]. In 

fact, recent studies have established that Notch signaling is dysregulated in multiple cancer 

types. Notch signaling contributes significantly to cell survival, proliferation, differentiation, 

apoptosis, tissue patterning, cell-fate decision, and morphogenesis [2]. Therefore, the Notch 

pathway might serve as a promising target for the treatment of BC. For example, cleavage 

of Notch receptors in the cytoplasm by γ-secretase is a major step in their activation, and 

inhibition of γ-secretase arrests the signaling pathway [3, 4]. Recent studies suggest that 

γ-secretase inhibitors (GSIs) could be promising therapeutic agents for the treatment of 

cancers [5]. However, Notch receptors can act as either tumor suppressors or oncogenes, 

depending upon the cell context. Therefore, Notch inhibitors must be context-specific. In the 

present review, we summarize the established knowledge, as well as recent advancements, 

regarding the Notch signaling pathway in BC and evaluate the potential of its inhibition as a 

therapeutic approach for BC treatment.

2. Structure of Notch Receptors

Notch genes, which are highly conserved from sea urchins to humans, encode 

transmembrane receptors. Initially, Notch receptors were identified as responsible for a 

specific “notch” shaped phenotype on the wings of Drosophila melanogaster [1, 2]. In 

mammals, there is one ortholog (Notch 1) of the single Notch receptor in Drosophila; 

however, there are three additional mammalian Notch receptors (Notch 2–4), as well. Notch 

receptors consist of three domains: an extracellular domain (NECD), a transmembrane 

domain (NTM), and an intracellular domain (NICD) [3]. The NECDs of Notch 1 and Notch 

2 consist of 36 repeats of epidermal growth factor (EGF)-like repeats, which are required for 

ligand interactions, whereas the NECDs of Notch 3 and Notch 4 contain 34 and 29 EGF-like 

repeats, respectively [4, 6–8]. The EGF- like repeats are followed by a negative regulatory 

region (NRR), which consists of cysteine-rich Lin12 (N/Lin12) repeats that modulate the 

interactions between the NECD and the membrane-bound NICD [9, 10]. The Lin12 repeats 

prevent metalloprotease-driven, ligand-independent cleavage to stabilize the interactions 

between the subunits [11, 12]. The NICD also includes an RBP-jk association molecule 

(RAM) domain, followed by seven ankyrin (ANK) repeats, two nuclear localization signals 

(NLSs), a trans-activation domain (TAD), which ends with a polyglutamine region (OPA), 
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and a PEST sequence rich in proline (P), glutamic acid (E), serine (S), and threonine (T) 

residues [13–16]. The multiple phosphorylation sites present in the C-terminal region of 

the PEST sequence are responsible for the stability of NIC and consecutively trigger its 

ubiquitination [16–18] (Fig. 1). The NTM, which consists of a short extracellular region 

with a pair of highly conserved cysteine residues, mainly participates in heterodimerization 

[13, 14].

3. Maturation of Notch Receptors

The Notch precursor protein is fucosylated through its interaction with O- fucosyltransferase 

1 (POFUT1 in mammals) in the endoplasmic reticulum [19–21]. The fucosylated protein is 

then transported and subjected to proteolytic cleavage by a Furin-like convertase at site 1 

(S1) in the Golgi complex [22]. Finally, the Notch precursor is glycosylated by the Fringe 

family of N-acetyl-glucosaminidyl transferases, which add N-acetylglucosamine to O-linked 

fucose on the EGF-like repeats [23]. This matured Notch receptor gets transported on to the 

cell surface as a heterodimer (Fig. 2).

4. Activation of Notch Receptors

4.1 Canonical Pathway

In addition to the four Notch receptors, five canonical ligands have been identified in 

mammals, including humans: Delta-like ligand 1 (Dll1), Dll3, Dll4, and Serrate-like ligands 

jagged 1 and 2 [2]. The Notch receptors and ligands are type I cell surface proteins, and 

cell-cell interactions are instrumental for the activation of the Notch signaling pathway 

[24, 25]. Activation of Notch receptor is mediated by a sequence of proteolytic events. 

A trans-interaction between a Notch receptor and the Delta/Serrate/Lag-2 (DSL) ligand of 

an adjacent cell initiates the Notch signaling pathway in the receptor-bearing cell [26]. 

Contrarily, cis-interactions between the receptors and ligands on a single cell lead to 

pathway suppression [27]. Upon the successive trans-interaction between Notch receptor 

and ligand, conformational change in the receptor occurs, allowing metalloprotease 10 

(ADAM10) or 17 (ADAM17)/ TACE (TNFα converting enzyme) mediated proteolytic 

cleavage at NECD site 2 (S2) [28]. This proteolytic cleavage produces the membrane-bound 

Notch extracellular truncation (NEXT) protein, which is further subjected to a second 

proteolytic cleavage at the NTM site 3 (S3) by γ-secretase [29, 30]. Γ-secretase consists of 

five subunits: presenilin 1, presenilin 2, nicastrin, presenilin enhancer 2 (Pen-2), and anterior 

pharynx-defective 1 (Aph1) [31–33]. Presenilin, an aspartyl protease, forms the catalytic 

subunit of the γ-secretase complex [34, 35]. Nicastrin is required to maintain the stability of 

presenilin and helps regulate the intracellular trafficking of the complex [31, 36, 37]. Aph1 

is required to support the proteolytic activities of the complex, and Pen2 is responsible for 

stabilizing the complex after proteolysis [38, 39]. γ-secretase cleaves the Notch receptor 

in the plasma membrane or in endosomal compartments of the cell and releases the NICD 

into the cytoplasm. It has been reported that NICD produced from cleavage in the plasma 

membrane is more stable than that produced in the endosomal compartments [40, 41]. The 

NICD translocates from the cytoplasm to the nucleus, where it binds to and activates the 
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transcription factor CSL (also termed CBF1 or RBP-Jk), through which it transcribes Notch 

target genes.

CSL represses the transcriptional activity of its target genes by binding to the DNA as part 

of a larger co-repressor complex consisting of HDACs, N-CoR, CSL interacting repressor 

(CIR) and SMRT/MINT/SPEN [42]. NICD interacts with CSL through its RAM domain and 

replaces the co-repressors in the CSL complex [42, 43]. The interaction between the ANK 

domain of the NICD with CSL facilitates the recruitment of the co-activator Mastermind-

like 1 (MAML1) [44]. This ternary complex then recruits other co-activators, such as p300 

[45] and PCAF/GCN5 [46], through the C-terminal region of MAML1. These co-activators, 

in turn, convert CSL from a transcriptional repressor to a transcriptional activator. The 

NICD-CSL-MAML1-P300 complex mediates the transcription of Hes 1 (hairy/enhancer-

of-split), Hey 1 (Hes-related with YRPW motif), Cyclin D1, p21, p27cip1/waf1, cMyc, 

Survivin, Slug, pre-Ta (pre-T cell receptor alpha chain), GATA3 and Nanog. The Notch 

signaling pathway also activates the nuclear factor-kappa B (NFκB) pathway [47] (Fig. 3).

4.2 Non-canonical Pathway

Notch signaling can also be activated through non-canonical, ligand-independent pathways. 

Three types of non-canonical Notch pathways have been characterized: CSL-independent 

(Type I); S3 cleavage-independent (Type II); and Notch cleavage- and NICD release-

independent (Type III) [48]. The functions of these non-canonical pathways have been 

identified predominantly in undifferentiated cell populations, such as stem/progenitor and 

embryonic/primordial cells, and they have been found to contribute to the maturation of both 

CD4+ and CD8+ single-positive thymocytes [49].

5. Role of the Notch Signaling Pathway in Breast Cancer

Cellular functions are precisely monitored and tightly controlled in normal cells but not 

in cancerous cells. The dysregulation of developmental pathways has been correlated with 

several diseases, including cancer [50, 51]. It has been established that organ development 

and tumorigenesis share similar mechanisms and that the Notch signaling pathway is crucial 

for embryonic development [52]. Studies suggest that developmental pathways such as Wnt, 

Hedgehog, and Notch were engaged in tumor cell development, progression, and survival 

[47, 53, 54]. Notch signaling plays an import role in the progression of several cancers, 

including BC [47, 51, 55]. The expression of the Notch receptors and their ligands was 

found to be highly elevated in BC tissues and correlated with poor survival of human 

BC patients [55–57]. In 1987, it was discovered that the Notch 4 locus is a common 

integration site for mouse mammary tumor virus (MMTV). This integration results in the 

constitutive ligand-independent activation of Notch 4, leading to the release of the NICD 

and thus increased activation of its target genes. These events facilitate the development of 

mammary adenocarcinoma [58]. Notch 1 was also found to be involved in the development 

of murine mammary tumors. Upon MMTV insertion, Notch 1 is truncated and can act as 

an oncogene [59]. Notch 1 is highly expressed in poorly differentiated breast tumors and it 

is associated with poor overall survival [55]. Interestingly, elevated levels of Notch 2 have 

been correlated with high rates of disease-free survival [60]. These observations suggest 
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antagonistic functions of Notch 1 and Notch 2. The tumor-suppressing function of Notch 

3 has also been suggested, as it upregulates Cyclin D1 in human BC cells and causes 

the accumulation of p27Kip, which leads to cell cycle arrest at the G0/G1 phase [61]. In 

contrast, triple-negative BC (TNBC) cells ectopically expressing Notch 4 showed increased 

proliferation and invasiveness, whereas inhibition/knockdown of Notch4 decreased the cell 

proliferation, invasion, tumor volume and tumorigenicity. Several studies have established 

that Notch signaling exhibits its oncogenic properties through its interactions with other 

signaling pathways, such as Ras, TGFβ, and Wnt in the mammary gland tumorigenesis 

[47]. Weijzen et al. demonstrated a significant correlation between the expression of Notch1 

and H-Ras (a known oncogene) in human primary breast ductal carcinoma cases [62, 63]. 

Notch signaling also regulates cellular processes, including apoptosis [51, 64], angiogenesis 

[65, 66], and the epithelial-to-mesenchymal transition (EMT) [67]. Notch prevents apoptosis 

in breast epithelial cells by inducing Akt signaling through the secretion of an autocrine 

signaling protein or the downregulation of PTEN expression [51, 64, 68].

Cancer stem-like cells/cancer-initiating cells (CSC/CIC) also play an important role in 

the initiation and metastasis of BC [69, 70]. It is well known that Notch1 influences the 

self-renewal of breast CSCs/CICs by increasing ErbB2 transcription [71, 72]. A comparison 

of activated Notch receptors in breast CSCs/CICs versus luminally differentiated CD24+ 

cells indicated that Notch4 is highly activated in breast CSC-enriched cells [73]. These 

suggest that Notch pathway has a major participation and multiple roles during breast tumor 

progression.

6. Role of Notch Receptor Ligands in Breast Cancer

Expression of the Serrate-like ligand Jagged 1 in cancer cells promotes angiogenesis in 

neighboring endothelial cells, and elevated levels of Jagged 1 have been associated with 

poor overall survival in human BCs [55]. Jagged 1-mediated Notch 1 activation inhibits 

E-cadherin expression through the induction of slug, thus promoting EMT in human breast 

epithelial cells [67]. Aberrant expression of Jagged 1 also induces bone metastasis of BC 

cells [74]. Dll1 is significantly up-regulated in ER+ve luminal breast neoplasms, and its 

expression has been associated with poor prognosis of the same subtype. Intriguingly, 

Dll1 expression has shown no such effect in other BC subtypes [75]. Joana Sales-Dias 

et al. demonstrated the oncogenic properties of Dll1 in hormone positive BC cells [76]. 

Specifically, RNA interference-mediated downregulation of Dll1 in ER+ve MCF7 BC cells 

resulted in reduced cell proliferation, migration, and colony formation. Kontomanolis et al. 
2014 observed that the expression of Dll4 is highly correlated with metastasis in BCs. The 

authors investigated Dll4 levels in the plasma and neoplastic tissues of BC patients and 

found that patients with highly metastatic BC exhibited elevated levels of Dll4 in both [56]. 

This observation suggests that Dll4 plays a pivotal role in BC metastasis. Altogether, this 

mounting evidence clearly demonstrates that activation of the Notch pathway plays a key 

role in BC and is therefore a promising potential therapeutic target.
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7. Notch Signaling as a Therapeutic Target for Cancer

7.1 γ-Secretase Inhibitors

The aberrant activation of Notch signaling is highly correlated with carcinogenesis. The 

comprehensive study of the Notch pathway and its crosstalk with other oncogenic signaling 

pathways has provided enough evidence to identify potential therapeutic targets and to 

design effective strategies for the treatment of various cancers. The binding of ligands 

to NECDs triggers transmembrane cleavage of Notch receptors, which allows the release 

of NICDs into the cytoplasm. This proteolytic cleavage is carried out by γ-secretase. 

γ-secretase, a large, multi-subunit integral membrane protein complex, is important for 

the activation of Notch receptors and the transcriptional regulation of its target genes [15, 

29, 30]. Thus, blocking transmembrane proteolytic cleavage using γ-secretase inhibitors 

(GSIs) could be a promising therapeutic approach (Table 1). GSIs prevent the generation 

of NICDs and thus inhibit Notch activity and its downstream events [77]. Most synthetic 

γ-secretase inhibitors have been developed to competitively inhibit presenilins. Z-Ile-Leu-

CHO, popularly known as GSI-I, is a dipeptide that showed anticancer properties in Ras-

transformed fibroblasts [61]. GSI-I was found to promote cell cycle arrest at the G2/M 

phase and to suppress BC cell survival, which further triggered apoptosis [78]. Recent 

reports suggest that GSI-I decreases cell proliferation by reducing the expression of Ki67 

and glucose transporter 1 (Glut1), as well as by inhibiting the Notch and mTOR/Akt 

pathways [79]. Interestingly, the effects of GSI-I are greater in HER2+ve cell lines than 

in HER2−ve BC cell lines [78, 80, 81]. Because trastuzumab, an inhibitor of HER2, 

can activate the Notch pathway, it would be interesting to investigate the combinatorial 

effects of trastuzumab and GSI-I in HER2+ve BC patients. LY411575 is a GSI that 

binds to presenilin 1 (PS1), induces apoptosis in HER2+ve BC cells, and re-sensitizes 

resistant HER2+ve cells to herceptin [82]. Several GSIs, including LY450139, MK-0752, 

PF-03084014, and RO4929097, have been or are currently being evaluated in phase I 

clinical trials [83–86]. RO4929097 has high selectivity and efficacy; however, for unknown 

reasons, it induces a “less transformed” and slower-growing tumor phenotype, rather than 

inhibiting cell proliferation or inducing apoptosis [85, 86]. Despite progress in the field, poor 

pharmacokinetics and off-target effects present major drawbacks to the widespread use of 

these peptides in the clinic.

7.2 Monoclonal Antibodies

Although GSIs have demonstrated strong potential in clinical trials, they fail to distinguish 

Notch paralogs. They inhibit all Notch receptors, which could be a disadvantage because 

some receptors may play tumor-suppressing roles that should not be inhibited. Furthermore, 

γ-secretase affects additional targets beyond the Notch pathways. For instance, γ-secretase 

cleaves β-amyloid precursor protein (APP), resulting in the accumulation of β-amyloid (Aβ) 

peptides that form plaques in the brain. GSIs might inhibit several such signaling pathways 

indiscriminately [87]. Indeed, the administration of GSIs has been found to cause intestinal 

toxicity in several other cancer types [88]. It will be important to discover new drugs with 

high specificity and affinity that can efficiently discriminate Notch receptor paralogs. In 

addition to GSIs, researchers have recently proposed a new therapeutic strategy to inhibit 

Notch signaling using monoclonal antibodies (mAbs) highly specific for Notch receptors 
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and ligands (Table 1). Anti-Dll4 mAbs have been demonstrated to dysregulate tumor 

angiogenesis and growth by inhibiting the Notch signaling pathway in endothelial cells 

[89]. The humanized anti-Dll4 mAb (OMP-21M18) inhibits Notch signaling by blocking the 

interactions of Dll4 with Notch 1 and Notch 4 and was evaluated in clinical trials in patients 

with solid tumors. OMP-21M18 also showed anti-tumorigenic activity in patient-derived 

xenografts [90]. In contrast, some mAbs induce proteolytic cleavage of Notch 3 by binding 

to overlapping epitopes and mimicking ligand-induced Notch signaling activation [91]. 

mAbs against specific Notch receptors have also been developed and are under investigation 

[92]. Notch receptor-specific antibodies bind to the NECD and prevent ADAM10-mediated 

proteolytic cleavage [91, 93, 94]. These mAbs (OMP-59R5) have also shown promising 

anti-tumorigenic activity and are being tested in clinical trials [91]. Nicastrin mAbs were 

found to be efficient in the inhibition of γ-secretase and had anti-CSC and therapeutic 

activity in BC. However, these mAbs are also not specific to an individual Notch receptor 

[95].

7.3 Natural Compounds

Natural compounds have gradually been gaining attention due to their anticancer activity. 

Consumption of citrus fruits, soybeans, and green cruciferous vegetables has been associated 

with reduced risk of cancer [96, 97]. Natural compounds have shown promising results 

as chemopreventive agents in various cancer types, and their pleiotropic effects against 

cancer are under investigation. Several natural compounds, such as flavonoids and 

polyphenols, have demonstrated anticancer properties by inducing apoptosis and reducing 

the proliferation of various cancer types. Recent studies suggest that a few flavonoids 

also target the Notch signaling pathway (Table 1). The natural compound sulforaphane, 

derived from cruciferous vegetables, inhibits BC stem cell growth by down-regulating the 

Wnt/β-catenin self-renewal pathway in vitro and in vivo. Sulforaphane also inhibits the 

Notch 1 receptor. Moreover, it has been found to increase the sensitivity of pancreatic 

cancer cells to chemotherapeutic agents such as gemcitabine, cisplatin, doxorubicin, and 

5-fluorouracil [98, 99]. The isoflavonoid genistein, derived from soy products, has exhibited 

anti-tumorigenic activity in pancreatic cancer and BC [99]. It was determined that genistein 

induced apoptosis in both ER+ve and ER−ve BC cells through caspase3 activation. In MDA-

MB231 cells, genistein induced apoptosis by inhibiting NFκB via the Notch 1 receptor. 

Genistein-treated MDA-MB231 cells accumulated at the G2/M phase in a dose-dependent 

manner [100]. The well-known natural compound curcumin, derived from the roots of 

the Zingiberaceae family plant (i.e., Curcuma long), is a constituent of turmeric and is 

widely used as a flavoring agent in food. Curcumin inactivates NFκB by down-regulating 

Notch 1, inducing apoptosis in pancreatic cancer cells [101]. Quercetin is a polyphenol 

and flavonoid widely distributed in red grapes, apples, raspberries, citrus fruits, and green 

leafy vegetables. Quercetin decreased the expression of Notch 1 in a leukemia cell line and 

targeted pancreatic CSCs. Quercetin arrests the cell cycle at the G0/G1 phase and induces 

apoptosis in BC cells [102, 103].

7.4 Notch receptors in tumor immune response

Although several studies suggested the tumorigenic properties of Notch receptors, there are 

few reports which also demonstrated the role of these receptors in the anti-tumor immune 
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response. It has been reported that Notch receptors favor the differentiation of T-cell lineage 

over B cell development from the common lymphoid progenitor cells in the bone marrow 

[104, 105]. CD4 T-helper 1 (TH1) cells and CD8 cytotoxic T-lymphocytes (CTL) play an 

important role in mediating anti-tumor immune response and Notch is found to be required 

for the activation and effector function of these cells [106]. Conditional activation of Notch 

2 in CD8 T-cells induced an anti-tumor immune response and reduced the tumor burden in 

mice [107, 108]. This suggests that, Notch signaling pathway is crucial for the activation and 

effector function of T-cells.

Tumor cells adopt several defensive mechanisms such as producing immunosuppressive 

cytokines, expressing inhibitory ligands and recruiting immunosuppressive myeloid and 

lymphoid cells into the microenvironment to evade the anti-tumor immune response [109]. 

To overcome this, researchers either isolated tumor antigen-specific T-cells from the tumor 

site or engineered using chimeric antigen receptors (CARs) specific for tumor antigens [110, 

111]. Recently, synthetic Notch receptors (synNotch) have been engineered to improve the 

generation and enhance the specificity of CAR T-cells [112–114]. These studies emphasize 

the importance of understating the role of Notch signaling pathway in T-cell-mediated anti-

tumor immune response in order to design more effective T-cell-based immunotherapies.

8. Significance

Targeted therapies have emerged over the last decade as a new strategy for cancer treatment. 

The Notch signaling pathway, is one of the most commonly activated signaling pathways in 

cancer, plays an important role in cell differentiation, proliferation, angiogenesis, survival, 

and chemo-resistance, acting as an oncogene or tumor suppressor, depending on cellular 

context. Notch receptors bind to ligands present on adjacent cells, facilitate proteolytic 

cleavage by γ-secretase, and are released into the cytoplasm as NICDs, which translocate 

into the nucleus and regulate the transcriptional activity of target genes. The expression 

of several Notch receptors and ligands has been associated with the progression of several 

cancers, including BC, and correlated with poor prognosis.

Inhibition of the Notch signaling pathway using a number of promising approaches may 

provide a significant contribution to therapeutic strategies to treat BC. A few recent agents 

targeting Notch signaling are GSIs that inhibit all Notch receptors and have delivered 

promising results. Notch antibodies (currently under clinical trials) were developed to 

improve specificity and have exhibited successful tumor suppression. Some natural products 

have also been found to inhibit the Notch signaling pathway. In addition to GSIs, mAbs, and 

natural compounds, one of the most important Notch inhibition methods involves blocking 

peptides, which were also under clinical trials for the treatment of human malignancies. 

Interestingly, Notch receptors are found to be playing an important role in anti-tumor 

immune response [106]. Over expression of Notch receptors induce anti-tumor immune 

response by activating T cells and also reduce tumor burden in mice [107, 108]. The present 

review suggests that Notch signaling pathway may be a promising therapeutic target for the 

treatment of BC.
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9. Concluding Remarks and Future Perspectives

Since recurrent BC is typically incurable, the propensity of BCs to recur following surgery, 

chemotherapy, and hormonal therapy is the most important determinant of clinical outcome. 

A role for Notch signaling in cancer progression and survival suggests that targeting this 

pathway alone or in combination with other pathways represents a promising therapeutic 

strategy. BC is a heterogeneous disease. Although 60% of BCs are hormone receptor-

positive and receive anti-hormone therapy, they often develop resistance over time. On the 

other hand, hormone receptor-negative BCs are highly aggressive with minimal treatment 

options. There is an urgent need to understand the heterogeneity and complex molecular 

biology of BC in order to discover and develop the new therapeutic drugs to treat it. It 

is well known that the Notch signaling pathway plays an important role in BC survival, 

progression, cell growth, migration, invasion, and metastasis. Accumulating evidence and 

recent advancements in our understanding of Notch signaling indicate that it is a promising 

therapeutic target for the treatment of BC. To this end, it is important to understand the 

structure, function, and regulation of the Notch pathway, as well as its complex crosstalk 

with other signaling pathways.

Individual Notch family members may have opposing roles in cancer, depending on the 

cellular context and tumor type. For instance, highly elevated levels of Notch 1 and Notch 

4 have been observed in BCs, and both have been categorized as oncogenes in several 

cancers. Surprisingly, Notch 3 was found to be a tumor suppressor. In addition to the Notch 

receptors, Notch receptor ligands Jagged 1 and Dll4 have been significantly associated with 

tumor angiogenesis. Following the successful interaction between a Notch receptor and a 

ligand on an adjacent cell, a series of proteolytic cleavages by TACE and γ-secretase are 

important for Notch pathway activation. Therefore, it would be wise to design GSIs as 

therapeutic drugs for the treatment of cancer. GSIs are novel compounds that can inhibit 

an important component of the Notch signaling pathway. The anticancer properties of GSIs 

in several cancer types are quite promising. However, GSIs fail to efficiently discriminate 

between Notch receptor, which is a major drawback. To address this specificity issue, mAbs 

have been developed to target specific Notch receptors or ligands and have been tested for 

their anti-tumorigenic effects in various cancer types. Anti-Notch1 and anti-Dll4 mAbs have 

strongly proven their efficiency and are under clinical trials. However, the Notch pathway 

interacts with several other oncogenic pathways, including PI3K/Akt, NFκB, and STAT3. 

Moreover, Notch receptors can have oncogenic or tumor-suppressing properties in various 

cancer types. Surprisingly, Notch receptors are shown to be effective in differentiation, 

activation of T cells in order to anti-tumor immune response. Synthetic Notch receptors were 

used to enhance the specificity of CAR T cells. This suggests that it will be impossible 

to achieve satisfactory therapeutic endpoints using Notch targeted monotherapy alone. 

Combinatorial treatments that include Notch inhibitors/mAbs in addition to traditional 

individual medicines may produce synergistically beneficial results in the clinical setting. 

Natural compounds, such as sulforaphane, genistein, curcumin, and quercetin, have also 

gained attention due to their anti-tumorigenic properties and bioavailability and have shown 

promising results in several cancer types, including BC. Natural compounds showed anti-

tumorigenic properties through modulating several oncogenic pathways including Notch 
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signaling pathway, whereas Notch inhibitors will be able to inhibit single pathway. The 

bio-availability and stereospecificity of natural compounds is high comparing with the 

synthetic drugs. Natural compounds tend to show lesser side-effects than the synthetic 

drugs, which is an advantage. However, we need to study the possible roles of natural 

compounds thoroughly. Cumulatively, the past and ongoing research suggests that Notch 

signaling pathway may be a promising therapeutic target for the treatment of BC. However, 

it is important to consider the following aspects to successfully design a therapeutic Notch-

targeting drug for the treatment of cancer: (i) specificity, (ii) affinity for a particular receptor 

or ligand, (iii) minimal efficacy:toxicity ratio, (iv) pharmacokinetics, (v) bioavailability, 

and (vi) inhibition of other oncogenic signaling pathways. Overall, here we summarize the 

current knowledge about the impact of the Notch signaling pathway in BC progression and 

the therapeutic role of Notch’s inhibition.
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Highlights

The salient features of this review article with potential clinical relevance include:

1. Notch receptors can behaves as either oncogene or tumor suppressor 

depending on cellular context.

2. Elevated levels of Notch1, Notch4 and Dll4 are observed in several cancers 

and are correlated with poor prognosis.

3. Inhibition of Notch signaling pathway using γ-secretase inhibitors (GSIs) can 

deliver promising tumor suppressor results.

4. Natural products are also found to be playing an important role in the 

inhibition of Notch signaling pathway.

5. This review suggests that Notch signaling pathway can be therapeutic target 

for the treatment of breast cancer.
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Figure 1: Structure of Notch receptors and ligands
Notch proteins are a highly conserved family of transmembrane receptors. Notch receptors 

and ligands contain multiple domains. The extracellular domains (NECDs) of Notch 

receptors 1–4 and their ligands (Jagged 1, Jagged 2, Dll1, Dll3, and Dll4) contain EGF-like 

repeats. Notch 1 and Notch 2 contain 36 EGF-like repeats, whereas Notch 3 and Notch 

4 contain 34 and 29, respectively. The intracellular domains (NICDs) of Notch 1 and 

2 contains a RAM (RBP-jk association molecule) domain, NLSs (Nuclear localization 

signals), an ANK (Ankyrin repeat) domain, a TAD (Trans-activation domain), and a PEST 

domain. The NICDs of Notch 3 and Notch 4 are similar, but the TAD is absent in both. 

The extracellular domain of Serrate-like ligands Jagged 1 and Jagged 2 consists of a DSL 

domain, EGF-like repeats, and a Cys-rich region. The extracellular domain of the Delta-like 

ligands (Dll1, Dll3, and Dll4) is similar, but the Cys-rich region is absent.
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Figure 2: Maturation of Notch receptors
Notch receptors mature in the endoplasmic reticulum (ER) and Golgi complex. Fucosylation 

is essential and occurs through the interaction between the Notch precursor protein and 

O-fucosyltransferase 1 (OFUT1 in Drosophila, POFUT1 in mammals) in the ER. The 

fucosylated Notch precursor is then transported to the Golgi complex, where proteolytic 

cleavage by Furin-like convertase at site 1 (S1) occurs. Finally, the matured Notch is 

transported to the cell surface.
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Figure 3: Schematic representation of Notch receptor activation
Notch receptors are activated upon binding to Serrate- and Delta-like ligands present on 

the cell membranes of adjacent cells. Following successful activation, Notch receptors 

undergo a series of proteolytic cleavages at site 2 (S2), mediated by metalloprotease 10 

(ADAM10) and TACE (TNFα converting enzyme). Additional proteolytic cleavages at the 

transmembrane domain (NTD) are carried out by a multi-subunit complex, γ-secretase, at 

site 3 (S3). The Notch intracellular domains (NICDs) are then released into the cytoplasm. 

The NICDs further translocate into the nucleus, where they displace histone deacetylase and 

co-repressors in CSL repressor complexes and recruit MAML1 and histone acetyltransferase 

p300 to form active transcriptional complexes, which regulate the transcriptional activity of 

Notch target genes.

Krishna et al. Page 21

Cancer Lett. Author manuscript; available in PMC 2022 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Krishna et al. Page 22

Table 1:

List of Notch inhibitors

Inhibitor name Cancer type Molecular target Functions Clinical Studies/
Significance

Refs.

γ-secretase inhibitors (GSIs) 

Z-Ile-Leu-CHO BC Notch1, Bcl2, Bax 
and Bcl-XL

Arrest cells at G2/M phase 
leading to apoptosis

NA 62

LY411,575 BC Notch1 Increase number of cells in 
G2/M and G0 phase

Phase I clinical trials 
for Alzheimer disease

82

LY450139 BC Notch1 Reduction of NICD and HES1 Phase I clinical trials 
for Alzheimer disease

83

MK-0752 BC and Solid 
tumors

γ-secretase Reduce BCSCs Phase Ib 84

RO4929097 BC γ-secretase Decreases NICD, HES1 
expression

Phase I 85

PF-03084014 BC and T-ALL γ-secretase Reduction of NICD, HES1 and 
cMyc

Phase I 86

Monoclonal antibodies 

Anti-Dll4 mAbs 
(OMP-21M18)

Solid tumors Dll4 Inhibits growth, antiangiogenic Phase II 89, 90

Notch mAbs T-cell leukemia 
cells

Notch 1 Reduction of NICD and HES1 NA 93, 94

Natural Compounds 

Sulforaphane BC and PC Notch1 Increases chemo-sensitivity NA 97, 98

Genistein BC Notch1, NFκB and 
Capase3

Induces apoptosis NA 99, 100

Curcumin BC and PaC Notch1, NFκB Induces apoptosis NA 101

Quercetin BC and PaC Notch1 Arrest cell cycle at G0/G1 
phase and induces apoptosis

NA 102, 103

BC, Breast cancer; PC, Prostrate cancer; PaC, pancreatic cancer; T-ALL, T-cell acute lymphoblastic leukemia;
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