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Abstract

Raman spectroscopy is a non-invasive optical technique that can be used to investigate biochemical information embedded

in cells and tissues exposed to ionizing radiation used in cancer therapy. Raman spectroscopy could potentially be

incorporated in personalized radiation treatment design as a tool to monitor radiation response in at the metabolic

level. However, tracking biochemical dynamics remains challenging for Raman spectroscopy. Here we developed a novel

analytical framework by combining group and basis restricted non-negative matrix factorization and random forest

(GBR-NMF-RF). This framework can monitor radiation response profiles in different molecular histotypes and biochemical

dynamics in irradiated breast cancer cells. Five subtypes of; human breast cancer (MCF-7, BT-474, MDA-MB-230, and

SK-BR-3) and normal cells derived from human breast tissue (MCF10A) which had been exposed to ionizing radiation

were tested in this framework. Reference Raman spectra of 20 biochemicals were collected and used as the constrained

Raman biomarkers in the GBR-NMF-RF framework. We obtained scores for individual biochemicals corresponding to the

contribution of each Raman reference spectrum to each spectrum obtained from the five cell types. A random forest

classifier was then fitted to the chemical scores for performing molecular histotype classifications (HER2, PR, ER, Ki67, and

cancer versus non-cancer) and assessing the importance of the Raman biochemical basis spectra for each classification test.

Overall, the GBR-NMF-RF framework yields classification results with high accuracy (>97%), high sensitivity (>97%), and

high specificity (>97%). Variable importance calculated in the random forest model indicated high contributions from

glycogen and lipids (cholesterol, phosphatidylserine, and stearic acid) in molecular histotype classifications.
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Introduction

Radiation therapy (RT) is a treatment prescribed to

approximately 50% of cancer patients.1 Currently, RT treat-

ment plans are often designed and evaluated based on mor-

phological information acquired by imaging modalities such

as computed tomography (CT) and magnetic resonance

imaging (MRI).2–4 RT treatment schemes do not incorpor-

ate information on biochemical dynamics in tumours as part

of the treatment design and evaluation. However, tumor

cells possess signaling pathways and metabolic processes

inherently distinct from normal cells, leading to
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non-uniform cellular radiation response.5 For example,

breast cancer as a heterogeneous disease can be classified

into molecular subtypes based on the immunochemical

molecular histotypes.6 Histopathological assessment based

on the expression of estrogen receptor (ER), progesterone

receptor (PR) and the human epidermal growth factor

receptor 2 (HER2) has been included in breast cancer clas-

sification system.7–9 A strong interest in designing persona-

lized treatments based on the molecular subtypes has been

advocated.10,11 Although molecular subtypes and histotypes

are often regarded as essential when making treatment

decisions, the biomolecular dynamics for each subtype

and histotype remain unclear and challenging to track

in response to treatment. Developing a tool to identify

and monitor biomarkers that can be used as targets in

cancer treatment (e.g., to develop radiosensitizers) is

necessary.

Raman spectroscopy (RS) is a noninvasive optical

method applicable to soft tissues and cells to monitor

and evaluate biological changes in response to stimuli on

a cellular level in the tumor microenvironment. RS provides

information on multiple biomarkers in cell samples using

the vibrational fingerprint of the biochemicals. Previous

works have demonstrated that RS can detect radiation-

induced biochemical variations in cancer cells and

tumours.12–17Performing unsupervised dimension reduc-

tion (e.g., principal component analysis (PCA) and non-

negative matrix factorization (NMF)) helps overcome the

complexity of RS data analysis. Applying unsupervised

dimension reduction techniques has helped identify

glycogen and lipids as primary biochemicals responsible

for spectral changes on cellular and tumour samples

exposed to ionizing radiation.12–18 However, the primary

difficulty encountered by the commonly used unsupervised

dimension reduction algorithms is interpreting the decom-

posed components or loading vectors. This limitation often

results in unidentifiable bases which can be related to spe-

cific chemicals.

Negative matrix factorization is an unsupervised learning

technique used for dimensionality reduction.19 Due to the

non-negativity assumption, NMF can improve the interpret-

ability of decomposed components in spectroscopic data

over other dimension reduction techniques.16,20,21 NMF,

as an unsupervised analytical method, also has its limita-

tions. For example, matching chemical bases decomposed

from unsupervised NMF to the actual biochemicals present

within a Raman spectrum is a complex task. To address this

limitation, a group and basis restricted non-negative matrix

factorization (GBR-NMF) algorithm was used in the current

study to conduct dimensionality reduction.22 GBR-NMF

constrains biochemicals during dimension reduction and

allows for better evaluation of chemicals of interest.23

In the present study, GBR-NMF is combined with a

random forest (RF) classifier to form a data analytical

framework. RF is an ensemble classifier that generates

the forest’s classification result based on the voting results

of a collection of decision tree classifiers within the

forest.24 After GBR-NMF decomposes the Raman spectra,

a random forest classifier was applied to the GBR-NMF

decomposed scores of constrained chemicals. RF can clas-

sify the chemical scores into cell lines and molecular histo-

types while providing information on the relative

contribution of individual biochemicals in the classification

via variable importance.

The current work aims to demonstrate that the GBR-

NMF and random forest combined (GBR-NMF-RF) data

analytical framework can accurately classify molecular his-

totypes of breast cell line RS data acquired from cells

exposed to clinically relevant radiation doses. This data

analytical framework also has the advantage of revealing

the high-contributing chemicals in the classification. The

combination of RS and GBR-NMF-RF provides a robust

technique to track the biochemical dynamics across

breast cancer molecular histotypes throughout treatment.

The data used to test the model are Raman spectra

acquired on one normal breast cell line, MCF10A, and

four breast cancer cell lines (MCF-7, BT-474, MDA-

MB-231, and SK-BR-3) irradiated with single doses of radi-

ation (0, 10, 30, 50 Gy). These cell lines span a range of

molecular histotypes and are presented in Table I. The

GBR-NMF was performed on RS cellular data with two

reference libraries of basis biochemicals (containing 16

and 20 biochemical bases, respectively) for comparison.

RF was applied to the decomposed biochemical scores to

classify the breast cell lines into different molecular histo-

types, yielding classification results with high accuracy

(>97%), high sensitivity (>97%), and high specificity

(>97%). The variable importance ranking reveals high con-

tributions from the Raman spectra of the biomarkers glyco-

gen and lipids (cholesterol, phosphatidylserine, and stearic

acid) in molecular histotype classifications.

Materials and Methods

Breast Cancer Cell Line Molecular Histotypes

The molecular histotypes of the breast cell lines are sum-

marized from previous studies.12,25,26 The previously estab-

lished immunohistochemical information is shown in

Table I. Immunohistochemical profiles of the breast cell lines.

Cell lines HER2 PR ER Ki67 Subtype Cancer

MCF10A – – – Low Basal No

MCF-7 – þ þ Low Luminal A Yes

MDA-MB-231 – – – High Basal-like Yes

BT-474 þ þ þ High Luminal B Yes

SK-BR-3 þ – – High HER2 Yes
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Table I. The estrogen receptor (ER), progesterone receptor

(PR), human epidermal growth factor receptor-2 (HER2),

cell proliferation marker Ki-67 histotype statuses are deter-

mined by immunohistochemistry tests.27,28

Based on the immunohistochemistry of the histotypes,

the cancer cell lines selected can be categorized into sub-

types, such as Luminal A (with ER and/or PRþ, HER2�, low

Ki67), Luminal B (HER2þ) (with ER and/or PRþ, HER2þ),

HER2 (with ER�, PR�, HER2þ) and Basal-like (with ER�,

PR�, HER2�, low Ki67).8,9

Raman Spectroscopy Reference Biochemical Library
Selection

We constructed two chemical basis libraries to cover a

range of biochemicals known to be present within the

Raman cellular spectra, which includes carbohydrates,

lipids, enzymes, amino acids, and nucleic acids.29–32 The

chemical reference libraries were built based on the bio-

logical composition of cells and biomolecular dynamics in

cancer metabolism. Building a model is a trade-off between

complexity and the ability to cover a complete set of

molecular compounds. Hence, we reported both simpler

(16-chemical) and more complex (20-chemical) libraries to

assess the trade-off in complexity and model performance.

A 16-chemical library is presented in Table S1

(Supplemental Material). Glycogen, glucose, and lipids are

included in the reference library since previous studies have

traced them as Raman biomarkers for radiation treatment

response.13–16,23,33 A wide range of lipids were selected,

including; cholesterol, glycerol, glyceryl tripalmitoleate,

oleic acid, palmitic acid, phosphatidylcholine, phosphatidyl-

serine, and stearic acid. The RS spectra of lipids are highly

alike,30–32 and previous studies could not distinguish the

contribution of individual lipids in radiation response.12,16

Citric acid and lactic acid were added to the library, given

they are downstream products of glucose metabolism in

cancer metabolic pathways. After glucose is consumed

and changes to pyruvate via glycolysis, pyruvate will feed

into the citric acid cycle, also known as the tricarboxylic

acid cycle (TCA cycle), to make energy or be converted to

lactic acid.34,35 Coenzyme A (CoA) was included in the

library as it is involved in the oxidative decarboxylation of

pyruvate into acetyl-CoA, which has a vital role in fatty acid

metabolism.36 DNA is taken into account as an essential

chemical to monitor since RT delivers ionizing radiation to

the tumor, leading to DNA damage, particularly DNA

double-strand breaks.37 This library also includes glutathi-

one and mannose. Glutathione is the most abundant anti-

oxidant and non-protein thiol present in mammalian tissues

due to cellular redox homeostasis (the maintenance of

many cellular processes including signalings, etc.), which

can implicate tumour initiation, progression, and treatment

response.38,39 Mannose is a sugar monomer carbohydrate

participating in glycosylation (the reaction in which a carbo-

hydrate is attached to a hydroxyl or other functional

group).40 Abnormal growth factor signalling in cancer devel-

opment can be attributed to specific types of

glycosylation.41

A 20-chemical extended library was also constructed to

exploit GBR-NMF’s ability to constrain chemical bases of

interest (Table S2). For example, amino acids or proteins

were difficult to trace in previous studies by unsupervised

dimension reduction methods,12–16,33 although they have

significant roles in cancer metabolism. Two amino acids of

interest (valine and leucine) were selected for inclusion in

the 20-basis library due to their importance in metabolic

pathways related to amino acids in breast cancer.42 They

are branched-chain amino acids that serve as alternative

sources of organic molecules that can also serve as indirect

substrates for the TCA cycle.43 Collagen is the major

fibrous protein in the extracellular matrix and connective

tissue.44 However, given the Raman spectral data used

in the current study are cellular, it is only included in

the 20-chemical extended library to test the effect on the

model. A triglyceride mixture was also added to the

extended library to test whether the analytical methods

could distinguish chemicals with similar spectra, such as

triglycerides and glyceryl tripalmitoleate. The triglyceride

mixture contains glyceryl tridecanoate, glyceryl tridode-

canoate, glyceryl trimyristate, glyceryl trioctanoate, and

tripalmitin, which all have similar RS spectra.32 The RS spec-

trum of glyceryl tripalmitoleate resembles the triglyceride

mixture spectrum with minor differences at 1266 and

1656 cm�1.32

All chemicals other than the triglycerides mixture were

supplied by Sigma Aldrich, USA. The triglycerides mixture

is a certified reference material of lipid  standards  purchased

from Supelco (Bellefonte, USA).

Cell Cultures

All cell samples were cultured as described previously by

Meksiarun et al.12 Four types of human epithelial breast

tumour cells (MCF-7, BT-474, MDA-MB-231, and

SK-BR-3) were cultured in DMEM medium supplemented

with 10% fetal bovine serum (FBS, Hyclone). MCF10A, the

normal breast cells were cultured in MEBM medium sup-

plemented with MEGM SingleQuots (Lonza, Basel,

Switzerland). Five percent CO2 was supplied to the cells

in an incubator, and the temperature was maintained at

37.8 �C. The cells were harvested and plated into 12 iden-

tical flasks as equivalent aliquots of cell suspension. The

flask cultures were incubated for 96 h to reach approxi-

mately 50% confluency. Fresh media were replaced in

the cultures 1 h before irradiation. All flasks were

removed from the incubator for less than 40 min before

irradiation.
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Cell Irradiation and Harvesting

For irradiation, flasks were placed between two 5 cm-thick

pieces of water equivalent plastic solid water (Gammex

RMI, USA) in order to provide electron buildup at the

layer of the cells.12 Irradiation was delivered using a 6 MV

photon beam from a Varian 21EX linear accelerator (Varian

Medical Systems Inc., USA) with a dose rate of 6 Gy min–1

at the isocenter with single fractions of 0, 10, 30, or 50 Gy.

Each dose was delivered to three flasks.

At 18, 42, and 66 h post-irradiation, one flask from each

dose was harvested for RS acquisition. The harvested cells

were washed with phosphate-buffered saline (PBS,

Hyclone) and then re-suspended in PBS plus 10% FBS.

The suspension was centrifuged into a pellet (without iso-

lating cells) and placed onto a 5 mm-thick MgF2 disk (Janos

Technology Inc., USA) based on a previously established

protocol.14

Raman Spectroscopy Acquisition (Breast Cells and
Reference Biochemicals) and Pre-Processing of
Spectra

The Raman spectra of cells were acquired based on a pre-

viously developed protocol.33,12–14 After the cell pellet was

placed onto a 5 mm-thick MgF2 disk, cells were user-iden-

tified and chosen for ease of Raman sampling (not overly

splayed out, good sampling volume). Raman spectra of cells

were acquired with an inVia Raman microscope (Renishaw

Inc., USA) with a 100� dry objective (NA¼ 0.9) (Leica

Microsystems, Germany), a 600 lines per mm diffraction

grating, a thermoelectrically cooled iDus charge-coupled

device (CCD) detector (Andor Technology, UK). The

acquisition parameters were 10 s acquisition time per cell

and a 425–1820 cm � 1 spectral window. A 785 nm laser

(Renishaw-based diode laser) was used for excitation, pro-

viding a laser power density at the sample of

�0.5 mW/mm�3. The size of the sampling volume was

� 2 � 5 � 10 mm (aligned with the centre of the selected

cell), allowing a single acquisition to represent the spectrum

of a single cell (� 10 mm diameter). The laser focal spot on

the Renishaw system is rectangular in shape due to the

nature of the laser assembly (Renishaw-based 785 nm

diode laser). Twenty spectra from single cells were col-

lected from each cell line, resulting in 240 Raman spectra

acquired over four doses (0, 10, 30, and 50 Gy) and three

harvesting times (18, 42, and 66 h), which accumulated in a

total of 1200 acquired spectra.

Spectra of chemicals presented in Tables S1 and S2

(liquid or solid forms) were acquired using a Renishaw

inVia Raman microscope (Renishaw Inc.) with a 100� dry

objective (NA¼ 0.9) (Leica Microsystems, Germany), a

1200 lines/mm diffraction grating, a 10-s exposure time,

and a 785 nm laser (Renishaw). The spectra of all 20 refer-

ence chemicals are presented in Fig. S1. The reference

chemical basis spectra were acquired at a higher spectral

resolution in order to distinguish any overlapping features.

However, all spectra were interpolated onto the same

wavenumber axis (resolution) prior to performing our ana-

lysis. No adverse effects of the interpolation or higher spec-

tral resolution of the basis spectra were observed in the

analysis.

Each cell spectrum was processed with a cosmic ray

removal program from WiRE (Renishaw Inc.). All the ref-

erence chemical and cosmic-ray-removed cellular spectra

were processed with baseline subtraction (estimate and

subtract the baseline due to the substrate and biological

fluorescence) and normalization under the curve (equal

to 1) in Matlab (The Mathworks, Inc.).

Data Analysis: GBR-NMF-RF Data Analytical
Framework

Non-Negative Matrix Factorization and Group and Basis

Restricted Non-Negative Matrix Factorization. NMF decom-

poses the non-negative data matrix X 2 R
n�p
�0 (where n is

the number of samples and p is the number of variables in

the data matrix) into two lower rank non-negative matrices

W 2 R
n�q
�0 and H 2 R

q�p
�0 such that

X � WH ð1Þ

where q is the number of underlying factors. This is general-

ized from the true decomposition of X

X ¼ WHþ e ð2Þ

with e 2 R
n�p
�0 representing the residual error.19,22

Based on the NMF, group and basis restricted non-

negative matrix factorization (GBR-NMF) variation was

proposed by Shreeves et al.22 GBR-NMF further decom-

posed the non-negative data matrix X into W, A, and S

such that

X � WAS ð3Þ

where X is decomposed into an n� q score matrix W, a

q� q auxiliary matrix A, and a q� p matrix S containing the

(partially) constrained factors. The S matrix is partially con-

strained as the Raman biochemical library. GBR-NMF then

updates sequentially the portions of each matrix of the

decomposition not assumed to be constrained; for exam-

ple, the biochemical bases in the matrix S are not updated

during the optimization.

Random Forest and Variable Importance. After conducting

the GBR-NMF decomposition on the Raman cellular data,

the decomposed chemical scores were classified by random

forest (RF) based on the molecular histotype information of

the cellular data. RF is a classification method first published

by Breiman.24 RF contains a collection of decision tree

4 Applied Spectroscopy 0(0)
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classifiers, wherein each tree generates an output of the

classification result from the input data. The forest chooses

the final classification result based on the most popular vote

over all the trees in the forest.

Variable importance is a measure used to rank the

importance of variables during the RF classification.45 The

out-of-bag (OOB) strategy is commonly used to determine

the variable importance.45–47 When building each tree, the

bootstrap observations which are not used to construct a

tree are saved as out-of-bag (OOB) observations. The pre-

diction error on the out-of-bag portion for each tree of the

data is recorded as the OOB error. Each predictor variable

(e.g., biochemical basis) will later be permuted to calculate

the importance of variables. The mean decrease in accuracy

(MDA) is calculated by averaging the total difference of

OOB errors before and after the random permutation of

a single variable over all the trees.

Workflow of GBR-NMF-RF Framework

A workflow of the GBR-NMF-RF is summarized in Fig. 1.

Before performing dimension reduction with GBR-NMF,

the RS data set was randomly split into 10 training and

testing sets to imitate the case where the model was first

trained with prior-knowledge Raman data and then was

used to classify new data. Due to the limited number of

cells in some categories (e.g., cancer versus non-cancer),

40% of all the data were randomly selected as the testing

set each time to make sure both training and testing sets

have enough samples from each classification category. A

summary of the classification tests and sizes of training and

testing sets is presented in Table S3.

After the spectra were pre-processed, GBR-NMF was

performed for dimension reduction. The matrix S in the

GBR-NMF was constrained as the reference chemical RS

libraries. One unconstrained factor is allowed in the matrix

S to represent all the other biochemical change residuals

unspecified in the Raman biochemical library. The GBR-

NMF algorithm was implemented based on Shreeves et al.

and available on Github.22,48 The group constraining option

was omitted in the current work since the underlying

groups of the data set are not investigated through GBR-

NMF. GBR-NMF was performed on the training set and

testing set individually while using the same unconstrained

basis matrix obtained from the training set decomposition.

After the dimension reduction step, RF was used to

classify the molecular histotypes, and cell line types on

the GBR-NMF decomposed biochemical scores. RF was

performed with the randomForest package in R.45,49 The

number of trees specified was 1000 as default. The bio-

marker contribution results were obtained from the MDA

variable importance function of the package. The decom-

posed biochemical scores from the training set were used

to train the RF classifier, and the decomposed scores of

chemical bases from the testing set were used to test the

performance of the classifier. Every classification test was

repeated 10 times to verify the stability of the model as the

training and testing set of the data were selected randomly.

Relevant metrics such as averaged accuracy, sensitivity, spe-

cificity, and variable importance were calculated based on

the 10 repeated trials of the randomly split training and

testing sets.

We also performed unsupervised NMF to compare with

GBR-NMF. A standard NMF function from the scikit-learn

Figure 1. GBR-NMF-RF data analytical framework workflow. After the cellular spectra were processed, the data set was split into 10

training and testing sets pairs. GBR-NMF dimension reduction was performed individually on the training set. The GBR-NMF decom-

posed chemical scores from the training set were used to random forests (RFs) based on the molecular histotype information of the

cellular data. The GBR-NMF decomposed chemical scores from the testing set were used to get the classification performance and

variable importance.
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package in Python was used to perform unsupervised NMF

for comparison.50

Results and Discussion

Comparison Between Unsupervised NMF and
GBR-NMF Chemical Scores

In the current study, Raman spectra were acquired on five

cell lines (MCF10A, MCF-7, MDA-MB-231, BT-474, and

SK-BR-3) spanning a range of immunochemical features

(Table I) over four doses of radiation (0, 10, 30, and

50 Gy) and three harvesting times (18, 42, and 66 h). The

GBR-NMF-RF is implemented to analyze the cellular spec-

tra to provide information on biomolecular dynamics while

tracking the RT response profiles of molecular histotypes

and subtypes. Two RS reference chemical libraries (Tables

S1 and S2, and Fig. S1) were used as the constrained chem-

icals in the GBR-NMF model.

The average spectrum (red spectrum) with �1 standard

deviation (shadow spectrum) for each cell line across doses

and days is presented in Fig. 2. For MCF10A, MDA-MB-231,

and SK-BR-3, the most outstanding standard deviation

occurs at 1436 cm�1, which can be attributed to lipids/pro-

teins (CH2 scissoring).30,31,51 The greatest standard devi-

ation appears at 1438 cm�1 for BT-474, which can be

attributed to the change in saturated fatty acids and trigly-

cerides.32 The greatest standard deviation of MCF-7 spec-

tra is at 482 cm�1 and attributed to glycogen.14,23,52

Only two chemicals can be identified from the unsuper-

vised NMF decomposed chemical bases, as shown in Fig. 3.

These two bases decomposed by unsupervised NMF were

similar to two previously identified biochemicals, glycogen,

and lipid.13,14,16 Other than the first two bases shown in

Fig. 3, the remaining decomposed bases were difficult to

identify.

To compare the performance of the unsupervised NMF

and GBR-NMF, the score plots of glycogen extracted from

these two methods are presented in Fig. 4. The plots are

displayed over different dose levels (0, 10, 30, and 50 Gy)

and time post-irradiation (18, 42, and 66 h). The glycogen

variation trend in the score plots was almost identical for

GBR-NMF and the unsupervised NMF.

An elevated glycogen level in Fig. 4 was observed in

MCF-7 and BT-474 cell lines, which belong to ER-positive

and PR-positive molecular histotypes. Meksiarun et al. has

Figure 2. Average Raman spectra obtained from MCF10A, MCF7, MDA-MB-231, BT474, and SKBR3 cells. Shadow spectrum rep-

resents� 1 standard deviation at each wavenumber. For MCAF10A, MDA-MB-231 and SKBR3, the greatest standard deviation occurs at

1436 cm�1, which can be attributed to lipids/proteins (CH2 scissoring).30,31,51 The greatest standard deviation appears at 1438 cm�1 for

BT474, which can be attributed to the change in saturated fatty acids and triglycerides.32 For MCF7, the greatest standard deviation of

MCF7 spectra is at 482 cm�1 and attributed to glycogen.52

6 Applied Spectroscopy 0(0)
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reported the same observation analyzed with PCA.12

Upregulated glycogen levels can be linked to impaired inhib-

ition of glycogen synthase kinase-3 (GSK-3) which regulates

glycogen synthesis.53 GSK-3 has been reported to have a

vital role in regulating the transcription factors of hormone

receptors (e.g., estrogen and progesterone).54,55

Classification Performance on Molecular Histotypes,
Cancer Versus Non-Cancer Cell Types and Cell Lines

The GBR-NMF-RF analytical framework was tested to clas-

sify molecular histotypes, cancer versus non-cancer cell

types, and cell lines based on the GBR-NMF decomposed

biomarker scores with 10 trials (Tables II to IV).

The accuracy was high (>97%) for both 16-chemical and

20-chemical libraries, although the 20-chemical library had a

slightly higher accuracy. In Table I, PR and ER histotypes

have identical distributions among the cell lines. MCF-7

and BR-474 are PR-positive and ER-positive. MCF10A,

MDA-MB-231, and SK-BR-3 are PR-negative and ER-nega-

tive. Therefore, ER and PR were combined into one classi-

fication test.

Overall, the framework had an outstanding performance

in each of the molecular histotype and cancer-or-not clas-

sification tests resulting in high accuracy (>97.0%), high

sensitivity (>97.0%), and high specificity (>97.0%) for

both the 16-chemical (Table II) and 20-chemical libraries

(Table III). The 20-chemical library strategy slightly

Figure 4. Glycogen score plots comparison between unsupervised NMF and GBR-NMF across five cell lines (MCF10A, MCF7, MDA-

MB-231, BT474, and SKBR3). The color bars in the background highlight the harvesting time of sample post-irradiation, 18 h (blue), 42 h

(orange), and 66 h (green). Error bars represent �1 standard error of the glycogen scores. (a) Unsupervised NMF glycogen scores.

(b) GBR-NMF glycogen scores (x-axis: radiation doses in 0, 10 30, and 50 Gy; y-axis: arbitrary glycogen scores generated by GBR-NMF).

Figure 3. Identifiable bases decomposed by unsupervised NMF overlaid on Raman spectra of pure biochemical. (a) Glycogen-like basis

and glycogen. (b) Lipid-like basis and lipid (stearic acid).

Jirasek et al. 7
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outperforms the 16-chemical library except forKi67 classi-

fication. When comparing the results of 16-chemical and

20-chemical reference libraries, the differences across dif-

ferent metrics were within 2% of the means.

The framework also performed well in the multi-class

classification of cell line types, yielding high accuracy

(>98.0%) for both the 16-chemical and 20-chemical

libraries (Table IV). Again, the 20-chemical library classifica-

tion average accuracy (98.5%) is slightly improved over the

result of the 16-chemical library (98.0%).

Variable Importance of Chemicals and High Lipids
Contribution to Histotype Classification

The variable importance plots (i.e., biochemical bases) of 10

trials for each classification test are presented in Fig. 5. The

y-axis is the reference chemicals tested in the GBR-NMF-RF

analysis framework, and x-axis is the averaged mean

decrease accuracy of 10 trials. The variables with larger

values of MDA are ranked higher in terms of their

importance in the classification. In Fig. 5, different types

of lipids including cholesterol, fatty acids (stearic acid,

oleic acid, and palmitic acid), phospholipids (phosphatidyl-

serine and phosphatidylcholine), and triglycerides (glyceryl

tripalmitoleate and triglycerides mix) were commonly

ranked high (top five) across all the molecular histotype clas-

sification tests. Glycogen also demonstrated high import-

ance in HER2, PR/ER, and cancer-or-not classification tests.

Valine, an amino acid, was only regarded as important to

distinguish cell lines as cancer or non-cancer.

Although various lipids were observed as high-

contributing chemicals, cholesterol, phosphatidylserine,

and stearic acid stood out as the top three chemicals in

multiple classifications (HER2, Ki67, and cell line types) in

Fig. 5. The GBR-NMF decomposed score plots of choles-

terol, phosphatidylserine, and stearic acid are displayed

in Fig. 6. The plots are displayed over different dose

levels (0, 10, 30, and 50 Gy) and time post-irradiation (18,

42, and 66 h).

Cholesterol is ranked as the most important chemical in

the PR/ER classification test in Fig. 5(2). The three PR/ER-

negative cell lines (MCF10A, MDA-MB-231, and SK-BR-3)

also exhibited high levels of cholesterol content in Fig. 6a.

Cholesterol has been directly linked to the implication of

the development of estrogen receptor-positive breast

cancer via the metabolite 27-hydroxycholesterol.56–59 27-

hydroxycholesterol may act as a modulator in the choles-

terol metabolism.60,61

High levels of phosphatidylserine were presented in

Ki67-high cell lines (MDA-MB-231, BT-474, and SK-BR-3)

in Fig. 6b. The Ki67-low cell lines (MCF10A and MCF-7)

have high stearic acid scores in Fig. 6c. Ki67 has been widely

acknowledged as a proliferation marker for human tumor

cells.62 Phosphatidylserine was found to increase signifi-

cantly on the surface of tumour cells and facilitate

tumour growth and metastasis in the tumor microenviron-

ment.63,64 Studies on stearic acid have discovered its role in

inhibiting human breast cancer cell proliferation

in vitro.65–68 Our observations of high variable importance

of phosphatidylserine and stearic acid in the Ki67 classifica-

tion test (Fig. 52), high phosphatidylserine scores in Ki67-

high cell lines, and high stearic acid scores in Ki67-low cell

lines are congruent with previous studies on phosphatidyl-

serine and stearic acid metabolism in cancer.

General Discussion

From the results presented above, RS combined with the

GBR-NMF-RF analytical framework exhibited an outstand-

ing ability to classify breast cell lines into molecular histo-

types even after treated by RT. The combination of RS and

GBR-NMF-RF provides an efficient approach to track the

biochemical profiles of different molecular histotypes

throughout radiation therapy treatment. The accuracy, sen-

sitivity, and specificity results across all the molecular

Table IV. Cell type validation results for the two reference

chemical libraries.

16-chemical library

accuracy (%)

20-chemical library

accuracy (%)

Mean (min;max) Mean (min;max)

98.0 (96.2; 99.2) 98.5 (97.5; 99.4)

Table II. Molecular histotypes and cancer versus non-cancer

classification results for the 16-chemical library.

Accuracy (%) Sensitivity (%) Specificity (%)

Types Mean (min;max) Mean (min;max) Mean (min;max)

HER2 98.3 (97.7; 98.9) 98.5 (97.2; 99.6) 98.5 (97.2; 99.6)

PR and ER 98.8 (98.1; 99.4) 98.9 (97.9; 99.7) 98.9 (97.9; 99.7)

Ki67 99.4 (98.5; 100.) 99.6 (98.9; 100.) 99.6 (98.9; 100.)

Cancer

or not

99.5 (99.2; 100.) 97.5 (95.7; 97.5) 97.5 (95.7; 97.5)

Table III. Molecular histotypes and cancer versus non-cancer

classification results for the 20-chemical library.

Accuracy (%) Sensitivity (%) Specificity (%)

Types Mean (min;max) Mean (min;max) Mean (min;max)

HER2 98.9 (97.9; 99.1) 98.8 (97.9; 99.7) 98.8 (97.9; 99.7)

PR and ER 99.4 (98.9; 99.8) 99.9 (99.6; 100.) 99.9 (99.6; 100.)

Ki67 99.7 (99.2; 100.) 98.0 (96.2; 99.2) 98.0 (96.2; 99.2)

Cancer

or not

99.7 (99.3; 100.) 98.9 (97.1; 100.) 98.9 (97.1; 100.)
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histotype classifications were high (>97%) under our novel

analytical framework. The GBR-NMF-RF analytical frame-

work produced robust molecular histotype classification

results across different radiation doses (0, 10, 30, and

50 Gy) in this breast cell data set. Using the GBR-NMF-

RF framework along with RS provides the potential to

track molecular histotypes under varied conditions in dif-

ferent radiotherapy plans and has the potential to open up

new treatment pathways which could be exploited in order

to both improve and personalize RT.

The chemicals selected in the reference library were to

cover a complete set of molecular compounds based on the

cell composition and chemicals involved in cancer

metabolism. The original motivation to include two

Raman libraries with different sizes was to examine

whether the more extensive 20-chemical library would

improve the margins of classification accuracy. Although

the 20-chemical library did yield slightly higher accuracy,

the difference was marginal (<2%) and demonstrates that

the 16-chemical library selected captured a vast majority of

biological information for the current molecular histotype

classification purpose since the differences on the metrics

were often less than 2% (in Tables II to IV).

The linkage between Raman biomarkers (e.g., glycogen

and lipids (cholesterol, phosphatidylserine, and stearic

acid)) and molecular histotypes (PR/ER and Ki67) were

Figure 5. Variable importance plots of the classification tests with Random forest. (a) Constrained with 16 chemicals plus one

unconstrained basis. (b) Constrained with 20 chemicals plus one unconstrained basis (1) HER2 (2) PR/ER (3) Ki67 (4) Cancer or not (5)

Cell line type. Glycogen and lipids (cholesterol, stearic acid, palmitic acid, oleic acid, and glyceryl triplamitoleate) are often ranked high

across different classification tests.

Jirasek et al. 9
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uncovered by GBR-NMF generated score plots and variable

importance calculated by RF (Figs. 5 and 6). The importance

of glycogen and lipids in radiation response and cancer

metabolism has been previously reported.12–16,23 The

insights on how glycogen and lipids (cholesterol, phospha-

tidylserine, and stearic acid) can be linked to PR/ER and

Ki67 molecular histotypes and how this relates to RT are

reported by RS for the first time to our knowledge,

although these metabolites have been studied intensively

in the cancer research community.56–59,63–68

The motivation to add extra chemicals such as leucine

and valine into the reference chemical library was to poten-

tially investigate whether RS and the GBR-NMF-RF frame-

work could track changes in protein or amino acids in the

breast cell lines. Proteins are difficult to trace because the

amino acid composition of proteins can vary greatly.69

Valine and leucine were selected given their emerging

importance in cancer biology.42 Understanding the

requirements for valine, leucine, and other amino acids in

the TCA may open up potential ways to target their util-

ization in combination with radiation therapy.70 In this

study, valine only showed a high contribution to cancer

or non-cancer classification. Although tracking complex

proteins with RS is currently challenging, possible improve-

ments can still be achieved with advanced data analysis

methods to extract relevant information.

Using RS with the novel GBR-NMF-RF analytical frame-

work, the interpretability of the underlying biological infor-

mation in our RS cellular data set was significantly improved

over the previous studies.33,13–16,23 Combining RS and

GBR-NMF-RF demonstrates a great potential to track the

molecular histotypes and therefore monitor biochemical

dynamics in specific tumour environments during radiation

therapy treatments. Although a range of breast cancer cell

lines were covered in the current study, future studies on

other types of breast cancer cell lines or non-breast cancer

Figure 6. Lipids score plots across five cell lines (MCF10A, MCF7, MDA-MB-231, BT474, and SKBR3). The color bars in the back-

ground highlight the harvesting time of sample post-irradiation, 18 h (blue), 42 h (orange), and 66 h (green). Error bars represent �1

standard error of the glycogen scores. (a) Cholesterol scores. (b) Phosphatidylserine scores (c) Stearic acid scores (x-axis: radiation

doses in 0, 10 30, and 50 Gy; y-axis: arbitrary lipids scores generated GBR-NMF).
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cell lines should be conducted. Validation of the current

results obtained using RS using other techniques such as

mass spectrometry is also a promising direction to pursue

for future research.

Conclusion

The GBR-NMF-RF analytical framework is capable of moni-

toring known immunohistochemical profiles of different

breast cancer cell lines using Raman spectra collected sub-

sequent to treatment with varying dose levels of ionising

radiation. The GBR-NMF-RF framework had classification

results for immunohistochemical profiles with high accuracy

(>97%), high sensitivity (>97%), and high specificity

(>97%). The variable importance function from the

random forest also provided information about the high

contributions of RS identified biomarkers (e.g., glycogen

and lipids (cholesterol, phosphatidylserine, and stearic

acid)) in molecular histotype classification tests and how

those markers relate to RT. The combination of RS and

GBR-NMF-RF gives a robust technique to track the

molecular histotypes throughout the radiation therapy

treatment.
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