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Abstract 

Background:  Epigenome analysis relies on defined sets of genomic regions output by widely used assays such as 
ChIP-seq and ATAC-seq. Statistical analysis and visualization of genomic region sets is essential to answer biological 
questions in gene regulation. As the epigenomics community continues generating data, there will be an increasing 
need for software tools that can efficiently deal with more abundant and larger genomic region sets. Here, we intro-
duce GenomicDistributions, an R package for fast and easy summarization and visualization of genomic region data.

Results:  GenomicDistributions offers a broad selection of functions to calculate properties of genomic region sets, 
such as feature distances, genomic partition overlaps, and more. GenomicDistributions functions are meticulously 
optimized for best-in-class speed and generally outperform comparable functions in existing R packages. Genom-
icDistributions also offers plotting functions that produce editable ggplot objects. All GenomicDistributions functions 
follow a uniform naming scheme and can handle either single or multiple region set inputs.

Conclusions:  GenomicDistributions offers a fast and scalable tool for exploratory genomic region set analysis and 
visualization. GenomicDistributions excels in user-friendliness, flexibility of outputs, breadth of functions, and compu-
tational performance. GenomicDistributions is available from Bioconductor (https://​bioco​nduct​or.​org/​packa​ges/​relea​
se/​bioc/​html/​Genom​icDis​tribu​tions.​html).
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Background
Sets of genomic regions are a fundamental data type for 
biological data analysis. They result from a variety of epig-
enome analysis experiments, such as ChIP-seq or ATAC-
seq. Genomic region sets consist of genomic coordinates 
that specify regions with a shared property. Unlike genes, 
whose functions are better defined, the functional impor-
tance of non-coding genomic regions has been harder to 

interpret. To address this issue, multiple tools have been 
recently developed for a variety of analyses on genomic 
region sets, such as enrichment analysis (LOLA [1], 
LOLAweb [2], GIGGLE [3], IGD [4], GREAT [5], epi-
COLOC [6]), visualization (chromPlot [7], karyoploteR 
[8]), region set comparison (BEDTools [9], Bedshift [10], 
AIList [11], regioneR [12]), or region annotation (Gold-
mine [13], annotatr [14], ChIPpeakAnno [15], ChIP-
seeker [16]). Other tools have been developed to classify 
and infer biological function of region sets (word2vec-
based embedding [17], Avocado [18]), identify regulatory 
activity of regions (MIRA [19]), or to analyze heteroge-
neity across samples (COCOA [20]). Existing R packages 
provide some region-based analytical approaches, such 
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as visualizing the distribution of genomic regions across 
chromosomes or annotations (chromPlot [7], karyop-
loteR [8], annotatr [14]), or for particular types of region 
sets, (e.g. ChIPpeakAnno [15], ChIPseeker [16] for ChIP-
seq data), However, there is no general-purpose R pack-
age for extensive visualization and statistical analysis of 
genomic region sets from any source (Additional  file  1: 
Table  S1). Furthermore, many existing packages are not 
optimized to deal with the growing scale of region data, 
which now exceeds hundreds of thousands of publicly 
available region sets and hundreds of billions of individ-
ual regions [21–23].

To this end, we introduce the GenomicDistributions R 
package. GenomicDistributions specializes in computing 
basic statistics and visualizing distributions of genomic 
region sets from any experimental source. Genom-
icDistributions functions compute a variety of statistics 
and plot results to explore genomic region data. These 
include chromosome distribution plots, feature distance 
plots, neighbor region distance plots, GC content plots, 
signal summary plots, genomic partition overlap plots, 
peak width quantile trimmed histogram plots, and dinu-
cleotide frequency plots. GenomicDistributions offers 
several key advantages over existing approaches (Fig. 1a): 
First, we carefully designed the package functions to 
have a simple, uniform, and flexible interface (Fig.  1b). 
GenomicDistributions functions all take the same input: 
a Bioconductor GenomicRanges or GenomicRangesList 
object, creating a unified interface for the user to summa-
rize one or more region sets with the same line of code. 
We also separated calculation and plotting functions, 
enabling users to run calculations for reporting statistics 

without directly summarizing these only as plots. The 
outputs for every calculation function are the inputs 
for plotting functions. Furthermore, all plotting func-
tions return ggplot2 objects, making it easier for users 
to adjust style of images. We also put considerable effort 
into optimizing performance, so GenomicDistributions 
scales better with large inputs than other R packages for 
related computations (Additional file 1: Fig. S1). Finally, 
GenomicDistributions provides a broad array of avail-
able analysis types. Its scope is more universal than many 
existing packages, targeting genomic interval data from 
any source (Additional file 1: Table S1).

Results and discussion
GenomicDistributions functions calculate and plot sum-
mary statistics for single or multiple genomic region sets. 
These include functions for calculating distribution of 
regions across chromosomes, distances between neigh-
boring regions, GC content, overlaps with genomic fea-
tures, nearest distances from genomic features, widths of 
regions, and dinucleotide frequency, as well as functions 
for summary of user-provided signal values from differ-
ent conditions.

Several functions require reference genome feature 
annotations. Users can either provide their own feature 
annotations or use wrapper functions (indicated with a 
“Ref” function name suffix), which require only a string 
specifying genome assembly as an input, and which 
automatically extract the feature annotations from the 
associated GenomicDistributionsData package. The 
wrapper functions are available for hg19, hg38, mm9, and 
mm10 reference genome assemblies; for other reference 

Fig. 1  Overview and advantages of GenomicDistributions. A List of key design principles and advantages offered by GenomicDistributions. B 
GenomicDistributions functions are designed to process one or multiple genomic region sets at once. Plotting is separated from summary statistics 
calculation. Grey indicates that users may develop their own plots of summary statistics generated by calc functions, and edit ggplot objects from 
plot functions
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genomes, users can still use GenomicDistributions func-
tions, but will need to supply the annotation data (Addi-
tional file 2: Table S2).

To demonstrate the use of GenomicDistributions, 
we put together a dataset of 5 genomic region sets of 
various types: EZH2 (Enhancer Of Zeste 2 Polycomb 
Repressive Complex 2 Subunit) regions in embryonic 
hepatocyte cells; FGF2 (Fibroblast Growth Factor 2) 
differentiation factor regions in iPSC (induced Pluri-
potent Stem Cells); and three sets of histone marks in 
B-cells, namely H3K27me3, which is associated with 
heterochromatin; H3K27ac, which is enriched in active 

enhancers; and H3K4me3, which is associated with 
active promoters. For this test set, we applied each 
GenomicDistributions calculation and plotting func-
tion. Here, we show examples of the resulting plots.

First, the signal summary function summarizes external 
signal data across query regions. This function requires 
a user-provided matrix with normalized signal values 
across a genome. GenomicDistributionsData provides a 
pre-constructed matrix of normalized chromatin acces-
sibility signal values across genomes (hg19, hg38, mm10) 
of different cell types, which can be used to infer cell-type 
specificity of chromatin accessibility in the query regions 

Fig. 2  Example plots produced by GenomicDistributions. A Signal summary used for cell-type specificity of chromatin accessibility plot. Bars 
represent median values across regions. B Distribution of regions over chromosomes. C Distances between neighbor regions. D GC content in 
query regions. The dashed line indicates medians. E Partition distribution plot. F Distances to TSS
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(Fig.  2a). The output represents a summary of chroma-
tin accessibility signal within test regions across differ-
ent cell types. Next, the chromosome distribution plot 
(Fig.  2b) helps to visualize how the regions are distrib-
uted across chromosomes. The neighbor region distance 
plot (Fig. 2c) shows the distribution of distances between 
two consecutive regions in a sorted region set. The GC 
content plot (Fig. 2d) displays the distribution of GC con-
tent percentage within genomic regions of interest. The 
genomic partition distribution plot (Fig.  2e) shows how 
regions are distributed across genome annotation classes. 
Users can either provide features of interest or use the 
calcPartitionsRef function with pre-defined elements 
including core promoters, proximal promoters, exons, 
introns, 5′ UTRs (untranslated regions), 3′ UTRs, and 
intergenic regions (Additional file  2: Table  S2). In addi-
tion to raw partition distributions plots (Fig. 2e), Genom-
icDistributions also offers expected partition distribution 
plots (Additional file  1: Fig. S2). Expected partition dis-
tribution plots correct the raw overlap counts (observed) 
by dividing those by expected overlaps, which depend on 
the size of the partition. This correction is particularly 
important, since the sizes of individual partitions such as 
exons vs. introns are considerably different, and therefore 
we expect more regions to overlap introns than exons by 
chance. The corrected overlap values are presented as the 
log10(observed/expected) overlap count for each parti-
tion. We then use the Chi-square independence test to 
calculate the p-values inferring the significance of the 
observed overlaps compared to expected (Additional 
file  1: Table  S3). GenomicDistributions also provides a 
novel plot type that further extends this concept, called 
cumulative partition distribution plots (Additional file 1: 
Fig. S3, Supplementary methods). The cumulative parti-
tion distribution plot extends this concept in two ways: 1) 
it shows not only the total counts, but how they accumu-
late in total genome coverage when regions are ordered 
by size; and 2) instead of the fraction of regions in each 
feature, it shows a combined enrichment score, which is 
the average of the fraction of regions in each feature and 
the fraction of the features covered by regions. These two 
changes make the plots more informative, as they include 
the total size of bases covered in each fraction, and a 
more balanced enrichment score that naturally accounts 
for the different total coverage of each partition (Addi-
tional file 1: Fig. S3, Supplementary methods).

Another plot produced by GenomicDistributions is the 
feature distance plot, which shows how the regions are 
distributed with respect to the nearest feature of interest. 
Due to the common use of distances to nearest transcrip-
tion start site (TSS), we provide the calcTSSDistanceRef 
function for convenience (Fig. 2f ). The width distribution 
plot (Additional file 1: Fig. S4) shows widths of genomic 

regions as a histogram with clipped top percentiles, a 
feature that allows enhanced visual comparison by elimi-
nating long tails. Finally, dinucleotide frequency plots 
(Additional file 1: Fig. S5) shows the distribution of dinu-
cleotide content within genomic regions of interest.

Our design philosophy for GenomicDistributions 
included several key concepts that provide advantages 
over other tools with similar purpose: First, we separated 
calculation functions from plotting functions (Fig.  1b). 
While many visualization-based analysis functions run 
calculations and plotting at the same time (Additional 
file 1: Table S1), by decoupling them, GenomicDistribu-
tions provides the flexibility to use the two independently 
so the intermediate results can be used for other pur-
poses in downstream tools. Each analysis is thus done in 
two steps: first, by calling a calc function, which returns 
a summarized set of computed statistics; and second, by 
passing this result to a plot function.

We also designed a consistent user interface for 
GenomicDistributions functions. Each calc function 
can accept either a GenomicRanges object representing 
a single set of intervals, or a GenomicRangesList object 
with multiple sets of intervals (Fig. 1a, b). This provides 
a single interface for either individual region set explora-
tion or to compare among region sets. The result of all 
calc functions can then be used as direct input into a 
corresponding plot function. In turn, each plot function 
returns a ggplot object which can then be further styled 
by the user. This consistency across functions makes it 
simple to learn how to use the package and to run multi-
ple analyses on a single input.

Most of the plot functions offer multiple plotting 
options. For example, the feature distance distribution 
plot offers: 1) the default histogram option (Fig. 2f ); and 
2) a heatmap option (Additional file  1: Fig. S6a). Simi-
larly, the signal summary plot can be visualized as a bar 
plot with any defined groups included (Fig.  1a), or, for 
example, as a violin plot showing a subset of predefined 
groups, such as tissues or cell types (Additional file 1: Fig. 
S6b). In addition to the carefully designed user interfaces, 
we also took considerable effort to optimize Genom-
icDistributions for speed. By leveraging the highly opti-
mized code in the R data.table package [24] and using fast 
rolling joins, GenomicDistributions calculation functions 
are much faster than alternatives in other R packages.

To showcase the speed efficiency and scalability of 
GenomicDistributions, we carried out a running time 
benchmark against relevant R packages with related 
functions (Additional file  1: Table  S1). Specifically, we 
tested the speed of four analyses: 1) distribution of 
regions across genomic partitions, 2) distance of regions 
to TSSs 3) distribution of regions across chromosomes 
and 4) distance of regions to user-defined features. 
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To perform this benchmark, we assembled a collec-
tion of six ChIP-seq region sets displaying variability in 
terms of region number (less than 10,000 to more than 
300,000 regions) and region widths. Narrow regions are 
represented by transcription factor region sets (TCF12: 
Transcription Factor 12, ATF3: Activating Transcrip-
tion Factor 3; MEF2C: Myocyte Enhancer Factor 2C), 
while broader regions originate from histone mark region 
sets (for region set details see Additional file 1: Table S4, 
Supplementary methods). The running time of Genom-
icDistributions calc/plot functions is generally lower, and 
often much lower, than competing packages (Additional 
file 1: Fig. S1). Furthermore, GenomicDistributions tends 
to scale much better with increasing number of regions.

Conclusions
GenomicDistributions is an R package with a broad set 
of functions available in one place with the purpose to 
explore genomic regions. While other currently available 
tools provide some of the summary functions, Genom-
icDistributions is the most feature-rich, in terms of the 
number and type of statistics/plots that are produced. 
GenomicDistributions also takes a step forward on 
ease-of-use through our modular, consistent program-
ming design. Multiple region sets can be analyzed as eas-
ily as a single one, and for common reference genomes, 
GenomicDistributions can make use of our pre-compiled 
genome annotations. When more flexibility is needed, 
GenomicDistributions is also adaptable enough to be 
used with any reference assembly. Not only can users 
provide their own annotations, or features of interest, 
we also give them the freedom to visualize the results in 
their own way either by using the output of calc func-
tions, or by editing ggplot objects returned by plot func-
tions. Lastly, GenomicDistributions is substantially faster 
and more scalable than other publicly available R pack-
ages. Together, these strengths make GenomicDistribu-
tions a fast, flexible, powerful, and easy-to-use package 
for analysis of genomic region set data.

Methods
The package is available from https://​bioco​nduct​or.​org/​
packa​ges/​relea​se/​bioc/​html/​Genom​icDis​tribu​tions.​html, 
or https://​github.​com/​datab​io/​Genom​icDis​tribu​tions. 
Detailed methods description is available in Additional 
file 1: Supplementary methods.
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