Skip to main content
. 2022 Apr 12;22:725. doi: 10.1186/s12889-022-13109-9

Table 1.

Participant socio-demographic and gambling characteristics (n = 363)

Frequency Percentagea
Gender
  Male 185 51.0%
  Female 178 49.0%
Geographic location
  New South Wales 217 59.8%
  Victoria 146 40.2%
Age
  18–29 99 27.3%
  30–45 89 24.5%
  46–60 90 24.8%
  60 +  85 23.4%
Country of birth
  Australia 290 79.9%
  United Kingdom 16 4.4%
  India 14 3.9%
  China 10 2.8%
  Other 33 9.1%
Education
  Secondary school education 114 31.4%
  Trades-based education 105 28.9%
  Tertiary education 144 39.7%
Employment status
  Working full-time 165 45.5%
  Working part-time / casually 67 18.5%
  Retired 60 16.5%
  Homemaker 22 6.1%
  Unemployed but looking for work 20 5.5%
  Full-time student 14 3.9%
  Other 15 4.1%
Income per week
  Over $3000 39 10.7%
  $2500—$2999 39 10.7%
  $2000—$2499 51 14.0%
  $1500—$1999 65 17.9%
  $1000—$1499 82 22.6%
  $500—$999 59 16.3%
  $499 or less 27 7.4%
  No income 1 0.3%
Gambling products used in a typical monthb
  Electronic gambling machines 268 73.8%
  Lotteries 231 63.6%
  Sports betting 185 51.0%
  Scratch cards / scratchies 166 45.6%
  Horse betting 128 35.2%
  Casino games 70 19.2%
Number of gambling products used in a typical month
  1 54 14.9%
  2 91 25.1%
  3 120 33.1%
  4 +  98 27.0%

aTotals may not add up to 100% due to rounding

bParticipants could select multiple responses