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Abstract

Objectives.—Plasmodium vivax malaria was thought to be rare in Africans who lack the Duffy 

blood group antigen expression. However, recent studies indicate that P. vivax can infect Duffy-

negative individuals and has penetrated into areas of high Duffy-negativity across Africa. This 

study compares epidemiological and genetic features of P. vivax between African regions.
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Methods.—We utilized a standardized approach to identify and quantify P. vivax from Botswana, 

Ethiopia, and Sudan, where Duffy-positive and Duffy-negative individuals coexist. We sequenced 

Duffy Binding Protein (DBP) gene and inferred genetic relationships among all Africa P. vivax.

Results.—Among 1,215 febrile patients, the proportions of Duffy negativity range from 20–36% 

in East Africa to 84% in Southern Africa. P. vivax prevalence among Duffy-negative populations 

ranging from averaged 9.2% in Sudan to 86% in Botswana. Parasite density in Duffy-negative is 

significantly lower than in Duffy-positive infections. P. vivax in Duffy-negative populations were 

not monophyletic. Duffy-negative and Duffy-positive P. vivax shared similar DBP haplotypes and 

occurred in multiple well-supported clades.

Conclusions.—Duffy-negative Africans are not resistant to P. vivax and the public health 

significance should not be neglected. This study highlights need for standardized approach and 

more resources/training to diagnosis of vivax malaria in Africa.
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Introduction

Plasmodium vivax malaria was previously thought to be rare or absent in African 

populations who lack the Duffy blood group antigen expression (Miller et al., 1976, 

Howes et al., 1995). A point mutation (c.1–67T>C; rs2814778) in the GATA-1 transcription 

factor binding site of the Duffy antigen/receptor for chemokines (DARC) gene promoter 

alters erythroid expression, eliminating Duffy antigen expression on the surface of the 

red blood cells (Tournamille et al. 1995, King et al., 2011). However, recent studies 

reported several cases of P. vivax infection in Duffy-negative people in different parts of 

Africa (Zimmerman, 2017, Gunalan et al., 2018), including countries where Duffy-negatives 

are predominant (Brazeau et al., 2018, Mendes et al., 2011, Motshoge et al., 2016, 

Niangaly et al., 2017, Russo et al., 2017) (Table 1). In addition, 29 African countries 

including six previously undocumented endemic countries (Benin, Comoros, Mozambique, 

Senegal, Zambia and Zimbabwe) have reported P. vivax clinical cases, infected vectors 

or asymptomatic parasitemia (Niang et al., 2018, Oboh et al., 2020, Poirier et al., 2016). 

These reports indicate that the endemic range of P. vivax has extended beyond East Africa 

and penetrated into areas of very high Duffy-negativity (Gunalan et al., 2018, Twohig et 

al., 2019). While P. falciparum is considered to be the deadliest malaria parasite with the 

most severe clinical outcomes, P. vivax is more widespread and often associated with high 

levels of morbidity. Compared to P. falciparum, P. vivax has a broader temperature tolerance, 

an earlier onset of gametocyte development, and can form dormant hypnozoites causing 

relapse (Livingstone, 1984), enabling P. vivax to spread through the diverse African climate 

and outcompete P. falciparum (Battle et al., 2019). Primaquine and 8-aminoquinoline 

are antimalarials effective in clearing hypnozoites and preventing relapses, but they may 

promote hemolysis in subjects with G6PD deficiency (Baird, 2019). These factors make P. 
vivax malaria difficult to control and eliminate, highlighting the concern of this ‘new’ P. 
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vivax strains that infect Duffy-negative hosts to spread through much of Africa and result in 

substantial, negative public health and economic impacts.

There is a major knowledge gap in the P. vivax invasion mechanisms in Duffy-negative 

erythrocytes. In P. falciparum, erythrocyte invasion involves multiple interactions between 

parasite ligands and host receptors, some of which have overlapping and partially redundant 

roles (Cowman et al. 2017, Kumar and Tolia, 2019). Several established invasion ligands 

from Erythrocyte Binding Antigens such as EBA-175, EBA-181/JESEBL and EBA-140/

BAEBL and Reticulocyte binding homolog proteins such as RH1, RH2a, RH2b, RH4 and 

RH5 are used by P. falciparum for invasion (Gunalan et al., 2013, Kumar and Tolia, 2019). 

In P. vivax, only a single P. vivax ligand-receptor interaction has so far been studied in any 

detail, P. vivax Duffy Binding Protein (PvDBP1). Previous study has shown that mutations 

in PvDBP1 region II unique to P. vivax in Duffy-negative people in Ethiopia did not 

lead to binding of Duffy-negative erythrocytes (Gunalan et al., 2016). Salvador (Sal) I P. 
vivax infects Squirrel monkeys without PvDBP1 binding to Squirrel monkey erythrocytes 

(Gunalan et al., 2019). Further, EBP/DBP2 region II, a paralog of PvDBP1, was shown to 

bind to Duffy-positive and Duffy-null human erythrocytes at low frequency (Gunalan et al., 

2016, Ntumngia et al., 2016), despite being deleted in Sal-I P. vivax (Hester et al., 2013). 

Recently, reticulocyte binding protein RBP2b of P. vivax was shown to bind to transferrin 

receptor in the reticulocytes (Gruszczyk et al., 2018). These findings suggested that there 

are other Duffy-independent pathways that enable erythrocyte invasion and explain the 

widespread phenomenon of P. vivax infections in Africa.

Despite the fact that several case reports from almost all countries across the African 

continent are emerging from various entomological and serological studies, community 

surveys, and clinical records (Gunalan et al., 2018, Twohig et al., 2019), the documentation 

of P. vivax infections across Africa is diverse, context-specific, and primarily driven by the 

specific objectives of isolated clinical or epidemiological activities. The varied diagnostic 

and methodological approaches used across studies have limited our ability to identify 

distinct epidemiological characteristics of P. vivax between regions (Table 1). This situation 

is concerning because there is no comprehensive genetic and epidemiological data of P. 
vivax in Africa available to National Malaria Programs or World Health Organization 

to assess impacts and confer control strategies. Therefore, in this study, we utilized a 

standardized assay to examine the epidemiological attributes of P. vivax in three African 

countries where Duffy-positive and Duffy-negative individuals coexist. Specifically, we (1) 

compared the prevalence of Duffy negativity and P. vivax infections among countries; 

(2) compared P. vivax parasitemia between Duffy-negative and Duffy-positive infections 

collected from the same area; and (3) inferred the genetic relationships among the African 

P. vivax isolates. The epidemiological and genetic features of P. vivax from different parts of 

Africa will fill critical gap in understanding how widespread this phenomenon is impacting 

malaria control and the important effect of P. vivax as a cause of anemia.
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Materials and Methods

Study sites and sample collection

A total of 1,215 febrile patients were collected from seven study sites in three countries 

including (1) Jimma and Bonga in Ethiopia; (2) Khartoum, River Nile, and New Halfa 

in Sudan; and (3) Tutume and Kweneng East in Botswana (Figure 1). Finger-prick blood 

samples were obtained from patients who visited the health facilities. Thick and thin blood 

smears were prepared for microscopic screening. Three to four blood spots were blotted on 

Whatman 3MM filter paper from each participant. Parasite DNA was extracted from dried 

blood spots by the Saponin/Chelex method (Bereczky et al., 2005). Eluted DNA was used 

for PCR diagnosis, quantification and genotyping of malaria parasites.

Molecular screening of P. vivax

Parasite gene copy number was estimated using the SYBR Green detection method (Lo 

et al., 2015) using P. vivax-specific primers that targeted the 18S rRNA genes (detail 

in Supplementary File 1). Each assay included positive controls of P. vivax Pakchong 

(MRA-342G) and Nicaragua (MRA-340G) isolates, in addition to negative controls. A 

standard curve was produced from a ten-fold dilution series of the P. vivax control plasmid 

to determine the amplification efficiency (E). Melting curve analyses were performed to 

confirm the specificity of gene amplifications. The mean threshold cycle (Ct) and standard 

error were calculated from three independent assays of each sample. The amount of parasite 

density in a sample was calculated using the follow equation: Parasite densitysample = 2 
E×(40-Ctsample). The differences in the log-transformed parasite density between samples 

among the study sites were assessed for significance by one-tailed t-tests.

Duffy blood group genotyping

For all febrile patients, we first employed qPCR-based TaqMan assay to examine the 

point mutation (c.1–67T>C; rs2814778) of the DARC gene (Supplementary File 1). A 

no-template control was used in each assay. The Fy genotypes were determined by the 

allelic discrimination plot based on the fluorescent signal emitted from the allele-specific 

probes. For P. vivax positive samples, a 1,100-bp fragment of the DARC gene was further 

amplified using published primers (Menard et al., 2010). PCR products were sequenced to 

confirm the Fy genotypes.

Phylogenetic analyses of P. vivax from Duffy negative and Duffy positive samples

We amplified and obtained PvDBP sequences of 4 Duffy-positive and 4 Duffy-negative P. 
vivax samples from Botswana, 107 Duffy-positive and 9 Duffy-negative P. vivax samples 

from Ethiopia, and 53 Duffy-positive and 16 Duffy-negative P. vivax samples from Sudan 

(Genbank accession number: MZ062224-MZ062409). These sequences were aligned with 

36 previously published P. vivax isolates from other parts of Africa including Uganda 

(n=31), Madagascar (n=4), and Mauritania (n=1; Supplementary File 2). Duffy status of 

the published sequences are unknown. The DBP sequence of Sal-1 (NC_009911.1) and 

EBP sequence of P. cynomolgi (Y11396.1) were used as outgroups. Phylogenetic trees were 

reconstructed using the maximum likelihood method implemented in RAxML v8.0 with 500 
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bootstrap replicates to assess clade support (details in Supplementary File 1). We further 

examined the nucleotide and haplotype diversity of PvDBP sequences in Duffy-negative and 

Duffy-positive samples using DnaSP v6.12.03.

Results and Discussion

Contrasting proportion of Duffy-negatives and P. vivax prevalence

Duffy genotyping shows different proportions of Duffy-negative among febrile patients in 

Botswana, Ethiopia, and Sudan (Figure 1). In Botswana, the proportion of Duffy-negative 

was 83.5% (147/176) among febrile patients (Figure 1). In Kweneng East, our qPCR 

analyses indicated that 3% (9 out of 301) of the febrile patients were P. vivax positive. 

Among them, eight were Duffy-negative (C/C) and one was Duffy-positive (T/C) (Table 

2; Supplementary File 3). In Tutume, 6.8% (12/176) of the febrile patients were detected 

with P. vivax and 10 of them were Duffy-negative. Vivax malaria was first reported in 

asymptomatic children in a survey during the 2012–2013 transmission season [10]. The 

average rate of asymptomatic P. vivax cases was 4.7%, but with large variation among 

districts. Compared to other parts of Botswana, Tutume and Kweneng East accounted for 

most of the P. vivax cases, with previously reported rates of 16.9% (54/320) and 13.6% 

(93/686), respectively (Motshoge et al., 2016).

In Ethiopia, the proportion of Duffy-negative was 35.9% (235/655) among febrile patients 

(Figure 1), similar to our earlier finding in Asendabo indicating that 35.1% (137/390) 

of the general population was Duffy-negative (Lo et al., 2015). Among the 358 febrile 

patient samples collected in Jimma, 36% (129/358) were Duffy-negatives (Figure 1) and 

37.4% (134/358) were detected with P. vivax (Table 2). About 11.9% (16/134) of the 

confirmed P. vivax infections were from Duffy-negatives. Likewise, in Bonga, 30.3% 

(125/413) of the febrile patients were detected with P. vivax and 3.2% (4/125) were from 

Duffy-negatives (Table 2). For these 20 Duffy-negatives P. vivax infections, microscopy, 

nested and quantitative PCRs indicated that 16 were single infections and four were mixed 

with P. falciparum. Vivax malaria is a significant problem in Ethiopia (Lo et al., 2015, 

Woldearegai et al., 2013). Our previous study has shown that the asymptomatic prevalence 

of P. vivax is 5.9% (23/390) in Asendabo and Duffy-negatives accounted for 8.7% (2/23) of 

the P. vivax infections (Lo et al., 2015). A lower proportion of Duffy-negativity in febrile 

patients and the general population in Ethiopia, as compared to Botswana, is consistent with 

the ethnic diversity and complex admixture history in East Africa (Hollfelder et al., 2017, 

Pickrell et al., 2014).

In Sudan, the proportion of Duffy-negative was 20% (77/384) among febrile patients (Figure 

1). Over a 6-month collection period between 2018 and 2019, 101 out of 831 febrile patients 

were confirmed as P. vivax positive by qPCR assays (Table 2). Further testing revealed 

that 4 of the 101 P. vivax samples were mixed with P. falciparum. The highest rate of 

P. vivax infection was observed in River Nile, of which 24.4% (52/213) of the febrile 

patients were confirmed with P. vivax and Duffy-negatives accounted for 3.8% (2/52) of 

these infections (Table 2). In Khartoum, 8% (42/525) of the febrile patients were P. vivax-
positive and Duffy-negatives accounted for 9.5% (4/42) of these infections. In New Halfa, 

despite a smaller sample size, 7.5% (7/93) of the febrile patients was P. vivax-positive and 
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Duffy-negatives accounted for 14.3% (1/7) of these infections (Table 2). Across the country, 

there has been an increase in P. vivax detection and reports in recent years (Albsheer et al., 

2019) and our findings indicated that the infection rate in Duffy-negative individuals varies 

among study sites.

Historical movement and genetic admixture explain distribution of Duffy-negative people 
in Africa

Historical human movement and human genetics are highly relevant to the distribution 

of Duffy-negative people and P. vivax in Africa. Recent genome-wide studies of African 

populations have refined earlier models of the continent’s history and its impact on genetic 

diversity of its inhabitants (Choudhury et al., 2020). Our data showing a Duffy negative 

rate of 83.5% among febrile patients in Botswana (Figure 1) is consistent with the Bantu 

expansion and admixture theories (Choudhury et al., 2020, Grollemunda et al., 2015). The 

Bantu expansion and population admixture are two main historical events that shape the 

present distribution and genetic make-up of ethnic groups across Africa. The Bantu and 

Khoisan are two major ethnic groups in West-Central and Southern Africa, with the Bantu 

heartland in the region between southern Nigeria and Cameroon where malaria transmission 

was and still is endemic (Grollemunda et al., 2015). A component of Bantu ancestry (likely 

Duffy-negative) was found in the Southern African Khoisan, which were originally and 

mostly Duffy-positive ancestors (Hamblin et al., 2002, Petersen et al., 2013). The Duffy-

negative allele from Bantu of West-Central Africa may have reached south of the continent 

within the last 750 years and mixed with the indigenous Khoisan, resulting in a variable 

Khoisan ancestry (Busby et al., 2016, Schuster et al., 2010).

While the direction of the Bantu expansion is still in debate, there is evidence showing 

that the Bantu migrated towards East Africa where other ethnic groups such as the Cushitic 

and Nilotic dominated, potentially around 2,000 years ago (Pickrell et al., 2014). Our data 

showing a Duffy negative rate of 20–36% in Southwestern Ethiopia and East Sudan (Figure 

1) is consistent with the complex admixture history. The Ethiopian and Sudanese population, 

with an admixture of several Eurasian ancestries and some Nilotic and Semitic-Cushitic 

components, migrated south after the Bantu expansion 2–5 thousand years (Hollfelder et 

al., 2017, Pickrell et al., 2014). Many population groups in Sudan are dominated by Nilotic 

and Eurasian admixtures with minimal West African component. One such exception is the 

Afro-Asiatic speaking Hausa population in the Middle Eastern Sudan, which have migrated 

from West Africa within the past 300 years (Hollfelder et al., 2017). These migrations could 

have spread P. vivax from West-Central to other parts of Africa.

Low parasitemia in symptomatic Duffy-negative P. vivax infections and implications on 
invasion mechanism

In Botswana, Ethiopia, and Sudan, Duffy-positive and Duffy-negative individuals coexist. P. 
vivax parasite density in Duffy-negative infected individuals is significantly lower than the 

Duffy-positive infected individuals, regardless of geographical differences (Figure 2). Duffy-

positive individuals with heterozygous C/T and homozygous T/T were not significantly 

different in parasitemia. Both genotypes showed significantly higher parasitemia than Duffy 

negative C/C. The Duffy-negative P. vivax samples in Ethiopia and Sudan showed a greater 
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range of parasitemia variation than those in Botswana. This may be due to differences 

in sample size (Figure 2; Supplementary File 3). In very few cases the asexual parasites 

were detected by microscopy in Duffy-negative individuals. For example, among the 20 

P. vivax infections identified in Duffy-negative patients from Ethiopia, only four were 

microscopic-positive and they all showed a relatively higher parasitemia compared to the 

submicroscopic infections. The Duffy-negative individuals who were infected with P. vivax 
were mostly submicrocopic and exhibited fever at the time of sample collection. Without 

highly sensitive diagnostic tools and vigorous on-site training and screening of P. vivax in 

different parts of Africa, the public health burden, economic impact, and severity associated 

with vivax malaria could have been vastly underestimated. The clinical spectrum of P. 
vivax malaria ranges from asymptomatic parasitemia and uncomplicated febrile illness to 

severe and fatal malaria (Naing et al., 2014). Moreover, P. vivax can cause anemia during 

chronic undetected infections (Niangaly et al., 2017). Other severe clinical manifestations 

include multiorgan dysfunction associated with anemia and thrombocytopenia, spontaneous 

abortions, premature and low birth weight in pregnant women (Naing et al., 2014). These 

clinical features have mostly been described for Duffy-positive populations. It is unclear if 

the spectrum of clinical symptoms is different in Duffy-negative patients in Africa.

Low parasitemia observed in Duffy-negative individuals might suggest a low invasion 

capability of P. vivax in Duffy-negative individuals. Recent study has shown that mutations 

in PvDBP1 region II unique to P. vivax in Duffy-negative people in Ethiopia did not lead to 

binding of Duffy-negative erythrocytes (Gunalana et al., 2016). Also, Sal-I P. vivax infects 

Squirrel monkeys without PvDBP1 binding to Squirrel monkey erythrocytes (Gunalana et 

al., 2019). These findings suggested that there are other Duffy-independent pathways that 

enable erythrocyte invasion. For example, EBP/DBP2 region II has shown to bind to Duffy-

positive and Duffy-negative human erythrocytes at low frequency (Gunalana et al., 2016, 

Ntumngia et al., 2016). CD71 (Transferrin Receptor 1, TfR1) has been shown to bind readily 

to the reticulocyte binding proteins (PvRBP2b) based on in vitro experiments (Chan et al., 

2020, Gruszczyk et al., 2018). Given reticulocytes constitute only a small fraction of all 

red blood cells, invasion via this RBP2b-TfR1 pathway may result in only a small number 

of infected erythrocytes and this may explain the considerably low parasitemia observed 

in Duffy-negative P. vivax infections (Figure 2). Further, recent transcriptomic study has 

also indicated that genes belonging to tryptophan-rich antigen and merozoite surface protein 

families were highly expressed in the Saimiri-infected P. vivax, of which erythrocytes did 

not bind to DBP1 from the Belem isolate of P. vivax (Gunalana et al., 2019). There is 

growing evidence that members of the tryptophan-rich antigen gene family are involved 

in erythrocyte invasion (Zeeshan et al., 2015). Various other invasion ligands may also 

mediate the recognition and invasion to reticulocytes, providing a potential mechanism for 

variations in reticulocyte preference (Baquero et al., 2017, Moreno-Pérez et al., 2017). 

Successful schizont development has been shown to be associated with increased younger 

reticulocytes in the Indian P. vivax isolates (Lim et al., 2016). The low prevalence of 

schizonts in peripheral blood has led to the hypothesis that P. vivax could be sequestering 

in reticulocyte-rich zones such as the bone marrow (Mayor and Alano, 2015), resulting 

in lower detectable parasitemia. Future studies should clarify the expression and role of 
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various P. vivax ligand proteins and their respective receptors in Duffy-negative erythrocyte 

invasion.

Genetic relationships and origin hypotheses of P. vivax in Duffy-negative Africans

Maximum likelihood analyses of the African P. vivax isolates based on PvDBP indicated 

that P. vivax from Duffy-negative individuals were not monophyletic but found in 

multiple well-supported clades (clades I-III in Figure 3). These clades did not show clear 

geographical boundary but a mixture of P. vivax from different African countries. For 

instance, Duffy-negative P. vivax from Botswana, Ethiopia, and Sudan were closely related 

to Duffy-positive P. vivax from the same area, as well as to P. vivax from neighboring 

Uganda (clade II; bootstrap 91%). The Duffy-negative P. vivax were clustered together with 

the Duffy-positive ones without genetic distinction. The present data may imply that Duffy-

negative and Duffy-positive individuals shared similar P. vivax strains possibly by the same 

ancestral origin or through recent transmission. The evolution of PvDBP region II could 

be also driven by functional selection rather than by geographical isolation. Interestingly, 

Duffy-negative P. vivax samples from Ethiopia and Sudan showed a higher nucleotide and 

haplotype diversity than the Duffy-positive ones, despite a smaller sample size (Table 3). 

Among all geographical isolates, P. vivax from Uganda and Madagascar had the highest 

level of genetic variation, though Duffy status of these samples are unclear (Table 3). These 

findings offered a hypothesis on the origin of Duffy-negative P. vivax, but PvDBP could be 

biased by selection or has limited resolution. Extensive phylogenetic analyses using whole 

genome sequences of Duffy-negative P. vivax from West-Central, Southern, and East Africa, 

together with the existing data of the P. vivax-like isolates in African apes are needed to 

adjudicate these origin hypotheses.

Previous studies indicated that P. vivax in Southeast Asia and South America evolved in 

a clade of parasites that infect African monkeys (Loy et al., 2018). Plasmodium vivax 
in African apes might present a substantial parasite reservoir from which Duffy-positive 

and Duffy-negative human infections arose from. There are two hypotheses concerning 

the origin of P. vivax in Duffy-negative Africans (Figure 4). The first hypothesis posits 

that the ancestral P. vivax infected all African primates including apes and Duffy-positive 

humans (Liu et al., 2014) (Figure 4A). One of these ancestral lineages evolved to a 

Duffy-independent pathway and subsequently spread to different parts of Africa via human 

migration (Choudhury et al., 2020, Grollemunda et al., 2015). The geographical overlap 

between apes and humans, e. g, in Cameroon and the Democratic Republic of Congo 

suggest a West-Central African origin of P. vivax in Duffy-negatives (Liu et al., 2014). The 

second hypothesis posits that the ancestral P. vivax infected only non-human primates in 

Africa until some of the lineages crossed the species barrier and gave rise to the parasite 

population currently infecting Duffy-positive humans (Prugnolle et al., 2013). It is possible 

that Duffy-negative P. vivax observed today across Africa represent separate lineages that 

were derived multiple times independently from Duffy-positive individuals (Figure 4B). 

Previous phylogenies based on nuclear genes and partial mitochondrial genomes revealed 

incongruent genetic relationships (Liu et al., 2014, Prugnolle et al., 2013), possibly due to 

incomplete lineage sorting or lack of phylogenetic signal (Maddison and Knowles, 2006). 

Moreover, no African P. vivax isolates from Duffy-positive and Duffy-negative individuals 
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were included. Future studies should employ genome-based phylogenetic approach and 

molecular dating analyses to clarify the origin of P. vivax in Africa.

Conclusions

With the increasing number of P. vivax cases reported in Duffy-negative individuals as 

well as across the continent, vivax malaria is no longer a rare but a growing and possibly 

widespread phenomenon in Africa. To the best of our knowledge, this paper is the first 

using a standardized approach to characterize and compare the epidemiological and genetic 

features of Duffy-negative P. vivax from different parts of Africa. The generally low 

parasitemia observed in the Duffy-negative infections may suggest a less efficient but 

continuously evolving invasion mechanism that allows a greater negative public health 

impact in Africa in coming years. The genetic relatedness based on PvDBP sequences 

suggested similar strains shared between Duffy-negative and Duffy-positive populations, 

though the transmission capability of P. vivax in Duffy-negative individuals is still unclear. 

Further investigations are needed to unveil the invasion and transmission mechanisms of 

these infections. These data would help predict the scale of disease spread and improve 

existing malaria control measures, beyond P. falciparum in Africa. On the public health 

front-end, there should be more resources and training allocated to diagnosis and treatment 

of vivax malaria, given its unique ability in causing relapse and other longer-term health 

problems such as anemia in asymptomatic infections. Duffy-negative Africans are not 

resistant to P. vivax infection and the public health significance of vivax malaria in Africa 

should no longer be neglected.
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Figure 1. 
Map showing the distribution of study sites and the Duffy status of febrile patients included 

in the present study.
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Figure 2. 
Comparison of P. vivax parasitemia based on quantitative PCR assays between Duffy 

negative and Duffy positive symptomatic infections among different geographical regions 

in Africa. Variations in parasitemia among samples were presented as boxplots showing the 

median and interquartile range values.
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Figure 3. 
Phylogeny based on PvDBP sequences showing multiple source/origin of Duffy negative P. 
vivax in Africa. The reference P. vivax strain PVP01 isolated from an Indonesian patient was 

used as an outgroup. The size of the symbol indicates sample size of each PvDBP haplotype. 

No clear differentiation was observed between the Duffy negative and Duffy positive P. 
vivax but nested within one another, suggestive of similar DBP haplotypes.
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Figure 4. 
Hypothetical models illustrating the genetic origin of P. vivax in Duffy-negative Africans in 

a phylogenetic context. (A) The null hypothesis posits that the ancestral P. vivax infected all 

African primates including apes and Duffy-positive humans forming a monophyletic clade. 

One of these ancestral lineages evolved to a Duffy-independent pathway (dotted line) and 

subsequently spread to different parts of Africa via human migration. (B) An alternative 

hypothesis posits that the ancestral P. vivax infected only non-human primates in Africa until 

some of the lineages crossed the species barrier and gave rise to the parasite population 

currently infecting Duffy-positive humans. It is possible that Duffy-negative P. vivax 
observed today across Africa represent separate lineages that were derived multiple times 

independently from Duffy-positive individuals (dotted line) forming separate monophyletic 

clades.
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