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Abstract

Motivation: The identification of pathways and biological processes from differential gene expression is central for
interpretation of data collected by transcriptomics assays. Gene set enrichment analysis (GSEA) is the most com-
monly used algorithm to calculate the significance of the relevancy of an annotated gene set with a differential ex-
pression signature. To compute significance, GSEA implements permutation tests which are slow and inaccurate for
comparing many differential expression signatures to thousands of annotated gene sets.

Results: Here, we present blitzGSEA, an algorithm that is based on the same running sum statistic as GSEA, but in-
stead of performing permutations, blitzGSEA approximates the enrichment score probabilities based on Gamma
distributions. blitzGSEA achieves significant improvement in performance compared with prior GSEA implementa-
tions, while approximating small P-values more accurately.

Availability and implementation: The data, a python package, together with all source code, and a detailed user

guide are available from GitHub at: https://github.com/MaayanLab/blitzgsea.

Contact: alexander.lachmann@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptomics analysis aims to unravel the molecular mecha-
nisms underlying physiological and pathological cellular pheno-
types. Identifying differential activity of pathways and biological
processes can be inferred by gene set enrichment analysis (GSEA).
GSEA is the most popular statistical test used to compare differen-
tial expression signatures with sets of annotated genes
(Subramanian et al., 2005, 2007). GSEA calculates an enrichment
score (ES) using a weighted Kolmogorov—-Smirnov (WKS) test
(Hung et al., 2012). To calculate a P-value from an observed ES,
GSEA performs permutations of either the samples or the gene
labels. In practice, gene label shuffling is used most often due to
the lack of sufficient number of replicates. By default, 1000 per-
mutations are calculated resulting in 1000 ES. The P-value is then
calculated by comparing the observed ES to the 1000 shuffled ES
values. Instead of performing permutations, an analytical back-
ground distribution can be estimated. However, it leads to less ac-
curate small P-values. Multiple hypotheses testing correction
methods are also challenging to compute for very small P-values.
For example, multiple hypotheses testing correction methods such
as Bonferroni (Dunn, 1961) or Benjamini-Hochberg (Benjamini
and Hochberg, 1995) fail when P-values become very small. Here,
we present a novel method to accurately model the ES null

distribution, improving computational performance and accuracy
of GSEA.

2 Materials and methods

blitzGSEA calculates a background distribution analytically for the
WKS statistic described in GSEA-P and fGSEA using the gene set
shuffling methodology (Korotkevich et al., 2021; Subramanian
et al., 2007). The ES distribution depends on the values/weights of
the input signature and the number of genes in the gene set. All gene
sets with equal number of genes share the same null distribution. A
signature with positive and negative values, such as fold change, typ-
ically results in a bimodal ES distribution that can be accurately
approximated by two gamma distributions, where one distribution
models the negative ES values and the other the positive ES values
(Fig. 1a). To calculate null distributions, blitzGSEA requires the gen-
eration of permutations just like GSEA-P. The sampled ES values
are then used to fit two parameters: alpha (shape) and beta (scale) of
the gamma distribution. Since accurate fitting requires a large sam-
ple randomized ES score, the process is computationally costly. To
avoid calculating permutations for each possible gene set size, only a
subset of calibration anchor gene set sizes are chosen, i.e. A={ay,
a, . ..., an}. The parameters of the estimated gamma distributions,
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Fig. 1. (a) Sampled ES distribution for gene sets of size 50 and estimated gamma dis-
tributions for negative and positive ES values. (b) Comparing the accuracy of small
P-values computed by blitzGSEA and GSEApy. (c) Comparing execution speed for
blitzGSEA, fGSEA and GSEApy on a single thread, and improvements of blitzGSEA
execution speed when implemented as a multithreaded application. (d) Example,
GSEA plot generated by blitzGSEA plotting submodule

relative to the gene set size, follow monotonous functions. Alpha
increases linearly relative to the number of genes in a gene set, while
beta decreases. This enables precise estimation calculated from the
anchor points (Supplementary Fig. S2). The missing gene set sizes
are interpolated by first applying locally estimated scatterplot
smoothing (LOESS) fit applied to the anchors. The LOESS fit
reduces small errors that may arise by the calculation of the anchors.
Following the LOESS fit, corrected parameters for missing gene set
sizes are derived from the anchors by linear interpolation.

Fitted anchor distributions are tested for goodness of fit using a
KS test. Sampled ES are compared to the theoretical distribution of
the positive and negative gamma distributions. After parameter fit-
ting for all possible gene set sizes, blitzGSEA calculates ES for each
gene set for a given gene set library. The corresponding P-value is
then calculated with the respective gamma distributions.

3 Results

To test whether the gamma distributions accurately estimate
sampled ES distributions, we performed a KS test for 10000
sampled ES for a gene set size of 50. The KS test does not find any
significant differences between the fitted gamma distributions for
negative and positive ES, with P=0.726 and P=0.213
(Supplementary Fig. S1) suggesting an appropriate choice for the
distribution function type. blitzGSEA does not suffer from P-value
saturation, in which P-values reaching a certain level of significance
become zero. The reference implementation of GSEA-P in Python,
GSEApy (Fang, 2020), reduces small P-values to 0 when no random
permutation is more extreme than the observed ES. Additionally,
GSEApy suffers from higher level of noise for low P-values (Fig. 1b
and Supplementary Fig. S3). This limits GSEApy’s ability to order
gene sets by significance and apply multiple hypotheses correction.
By modeling ES distributions more accurately, blitzGSEA is not

limited by the P-value accuracy. The randomization of permutation-
based enrichment analysis methods introduces some variation in P-
value estimation; with the same number of permutations blitzGSEA
produces higher reproducibility of P-values when repeatedly calcu-
lated on the same gene set library compared the GSEApy
(Supplementary Fig. S3). blitzGSEA achieves higher self-consistency
compared to fGSEA at >1250 permutations and uses 2000 permuta-
tions as the default setting. In addition, blitzGSEA outperforms
GSEApy and fGSEA in execution time (Fig. 1c). We tested the run-
time on an Intel Core i7-8750H machine with 32 GB. In single-
threaded mode, blitzGSEA outperforms GSEApy by a factor of 73.
To calculate enrichment for Gene Ontology Biological Processes
(The Gene Ontology Consortium, 2019), which contains 6021 gene
sets in Enrichr (Kuleshov ez al., 2016), GSEApy requires 30 min,
while blitzGSEA requires 21s. Of these 21's, about 17s is spent cal-
culating the gamma distribution from the anchors, while the rest of
the time (4.5s) is spent calculating the ES for the gene sets. Using
more than two threads, blitzGSEA outperforms fGSEA, which only
supports single threaded operation. Multithreading with blitzGSEA
can half the required compute time (Fig. 1c). To enable access to a
large repository of gene set libraries, blitzGSEA supports program-
matic access to the Enrichr libraries. The blitzGSEA Python package
includes plotting functions for standard publication-ready visualiza-
tion of GSEA results (Fig. 1d). The blitzGSEA package supports run-
ning sum plots in normal and compact modes, as well as a top table
plot showing the most significant gene sets in one table
(Supplementary Fig. S4). While maintaining the same statistical
framework of the running sum statistic of the original GSEA algo-
rithm, blitzGSEA outperforms existing implementations in accuracy
and computational speed.
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