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Abstract

Motivation: Kinase-catalyzed phosphorylation of proteins forms the backbone of signal transduction within the cell,
enabling the coordination of numerous processes such as the cell cycle, apoptosis, and differentiation. Although on
the order of 105 phosphorylation events have been described, we know the specific kinase performing these func-
tions for <5% of cases. The ability to predict which kinases initiate specific individual phosphorylation events has
the potential to greatly enhance the design of downstream experimental studies, while simultaneously creating a
preliminary map of the broader phosphorylation network that controls cellular signaling.

Results: We describe Embedding-based multi-label prediction of phosphorylation events (EMBER), a deep learning
method that integrates kinase phylogenetic information and motif-dissimilarity information into a multi-label classi-
fication model for the prediction of kinase–motif phosphorylation events. Unlike previous deep learning methods
that perform single-label classification, we restate the task of kinase–motif phosphorylation prediction as a multi-
label problem, allowing us to train a single unified model rather than a separate model for each of the 134 kinase
families. We utilize a Siamese neural network to generate novel vector representations, or an embedding, of peptide
motif sequences, and we compare our novel embedding to a previously proposed peptide embedding. Our motif
vector representations are used, along with one-hot encoded motif sequences, as input to a classification neural net-
work while also leveraging kinase phylogenetic relationships into our model via a kinase phylogeny-weighted loss
function. Results suggest that this approach holds significant promise for improving the known map of phosphoryl-
ation relationships that underlie kinome signaling.

Availability and implementation: The data and code underlying this article are available in a GitHub repository at
https://github.com/gomezlab/EMBER.

Contact: smgomez@unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phosphorylation is the most abundant post-translational modifica-
tion of protein structure, affecting from one to two-thirds of eukary-
otic proteins. In humans, the number of kinases catalyzing this
reaction hints at its importance, with kinases being one of the largest
gene families with roughly 520 members distributed among 134

families (Lee et al., 2011; Manning et al., 2002; Vlastaridis et al.,
2017). During phosphorylation, a kinase facilitates the addition of a
phosphate group at a serine, threonine, tyrosine or histidine residue;
though other sites exist. Phosphorylation of a substrate at any of
these residues occurs within the context of specific consensus phos-
phorylation sequences, which we refer to herein as ‘motifs’.

Additional substrate binding sequences within the kinase or sub-
strate, as well as protein scaffolds that facilitate structural

orientation and downstream catalysis of the reaction, modify the ef-
ficacy of motif phosphorylation. Typically, the net effect of kinase
phosphorylation is to switch the downstream target into an ‘on’ or
‘off’ state, enabling the transmission of information throughout the
cell. Kinase activity touches nearly all aspects of cellular behavior,
and the alteration of kinase behavior underlies many diseases while
simultaneously establishing the basis for therapeutic interventions
(Alunno et al., 2019; Charras et al., 2020; Collins et al., 2018; Deng
et al., 2019; Johnson and Lapadat, 2002; Perera et al., 2014;
Tegtmeyer et al., 2017; Wilson et al., 2018).

Although the importance of phosphorylation in cellular informa-
tion processing and its dysregulation as a driver of disease are well-
recognized, the map of kinase–motif phosphorylation interactions is
mostly unknown. So, while upwards of 100 000 motifs are known
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to be phosphorylated, <5% of these have an associated kinase iden-
tified as the catalyzing agent (Needham et al., 2019). This know-
ledge gap provides a considerable impetus for the development of
methods aimed at predicting kinase–motif phosphorylation events
that, at a minimum, could help focus experimental efforts.

As a result, a number of computational tools have been devel-
oped, spanning a myriad of methodological approaches including
random forests (Fan et al., 2014), support vector machines (Huang
et al., 2015), logistic regression (Li et al., 2018) and Bayesian deci-
sion theory (Xue et al., 2006). Advances in deep learning have simi-
larly spawned new approaches, with two methods recently
described. The first, MusiteDeep, utilizes a convolutional neural net-
work (CNN) with attention to generate single predictions (Wang
et al., 2017). The second deep learning method, DeepPhos, exploits
densely connected CNN blocks for its predictions (Luo et al., 2019).
Both of these approaches train individual models for each kinase
family, requiring a separate model for each of the 134 kinase fami-
lies. In addition to the practical challenge of training many individ-
ual models, a further disadvantage of these two deep learning
approaches is the potential lost opportunity gains from transfer
learning, as models trained independently do not directly incorpor-
ate knowledge of motif phosphorylation by kinases from different
kinase families.

2 Approach

Herein, we describe Embedding-based multi-label prediction of
phosphorylation events (EMBER), a deep learning approach for pre-
dicting multi-label kinase–motif phosphorylation relationships. In
our approach, we utilize a Siamese neural network, modified for our
multi-label prediction task, to generate a high-dimensional embed-
ding of motif vectors. We further utilize one-hot encoded motif
sequences. These two representations are leveraged together as a
dual input into our classifier, improving learning and prediction. We
also find that our Siamese embedding generally outperforms a previ-
ously proposed protein embedding, ProtVec, which is trained on sig-
nificantly more data (Asgari and Mofrad, 2015). We further
integrate information regarding evolutionary relationships between
kinases into our classification loss function, informing predictions in
light of the sparsity associated with the data, and we find that incor-
porating this information improves prediction accuracy. As EMBER
utilizes transfer learning across families, we expect that model ac-
curacy will improve more so than other deep learning approaches as
more data describing kinase–substrate relationships are collected.
Together, these results suggest that EMBER holds significant prom-
ise for improving the known map of phosphorylation relationships
that underlie the kinome and broader cellular signaling.

3 Materials and methods

3.1 Kinase–motif interaction data
As documented kinase–motif interactions are sparse in relation to
the total number of known phosphorylation events, we attempted to
maximize the number of examples of such interactions for training.
To do this, we integrated multiple databases describing kinase–motif
relationships across multiple vertebrate species. Our data were
sourced from PhosphoSitePlus, PhosphoNetworks, and
Phospho.ELM, all of which are collections of annotated and experi-
mentally verified kinase–motif interactions (Dinkel et al., 2011;
Hornbeck et al., 2012; Hu et al., 2014). From these data sources,
non-redundant kinase–motif interactions were extracted and inte-
grated into a single set of kinase–motif interaction pairs. We used
the standard single-letter amino acid code for representation of
amino acids, with an additional ‘X’ symbol to represent an ambigu-
ous amino acid. Here, motifs are defined as peptide sequences com-
posed of a central phosphorylatable amino acid—either serine (S),
threonine (T) or tyrosine (Y)—flanked by seven amino acids on
either side. Therefore, each motif is a 15-amino acid peptide or ‘15-
mer’. As a phosphorylatable amino acid may not have seven
flanking amino acids to either side if it is located near the end of a

substrate sequence, we used ‘�’ to represent the absence of an amino
acid in order to maintain a consistent motif length of 15 amino acids
across all instances.

The resultant collection of kinase–motif interactions, gleaned
from the three aforementioned databases, were all deemed ‘positive’
data. Here, a ‘positive’ data sample is defined as a kinase–motif
interaction instance that has been experimentally verified, and that,
accordingly, may be traced back to one of the three original data-
bases. Each motif in our dataset is associated with at least one posi-
tive label, or rather, is known to be phosphorylated by at least one
kinase in our set. Conversely, we define ‘negative’ data to be all
remaining kinase–motif pairs for which we found no experimentally
verified interactions in any of the source databases.

Deep learning models are known to generally require a large
number of examples per class in order to achieve adequate perform-
ance. Our original dataset was considerably imbalanced in that all
kinase families had a very low positive-to-negative label ratio. For
example, the TLK kinase family only has nine positive samples (veri-
fied TLK–motif interactions) and more than 10 000 negative sam-
ples (lack of evidence for a TLK–motif interaction). To maximize
our ability to learn from our data, we utilized only kinases that had
a relatively large number of experimentally validated motif interac-
tions, reducing the number of kinase–motif interactions to be used
as input for our model. This filtering also served to considerably
mitigate the label imbalances in our data. After this initial filtering,
we were left with 7531 motifs, from which we set aside 853 motifs
for the independent test set, leaving 6678 for the training set. Then,
we removed any sequences from the training set that met a 60%
similarity threshold with any sequence in the test set, based on
Hamming distance scores. This process removed 229 motifs from
the training set. Lastly, to be able to make comparisons to previous
methods (specifically, MusiteDeep and DeepPhos), it was necessary
that we remove any motifs in the test set that could not be directly
mapped back to a specific parent protein sequence. After this final
truncation, we have a test set of 703 motifs and a training set of
6678 motifs. Kinase labels were then grouped into respective kinase
families contingent on data collected from the RegPhos (Lee et al.,
2011) database, resulting in eight kinase families. Our resulting
dataset is comprised of 7381 phosphorylatable motifs and their
reaction-associated kinase families (Table 1). Furthermore, our data
are multi-label in that a single motif may be phosphorylated by mul-
tiple kinases, including those from other families, resulting in a data
point with potentially multiple positive labels.

3.2 Motif embeddings
3.2.1 Protvec embedding

We chose to investigate two methods to achieve our motif embed-
ding. First, we considered ProtVec, a learned embedding of amino
acids, originally intended for protein function classification (Asgari
and Mofrad, 2015). ProtVec is the result of a Word2Vec algorithm
trained on a corpus of 546 790 sequences obtained from Swiss-Prot,
which were broken up into three amino acid-long subsequences, or

Table 1. Summary of our kinase–motif phosphorylation dataset

Family Number of

kinases

Number of

train motifs

Number of

test motifs

Akt 3 382 44

CDK 21 752 112

CK2 2 775 88

MAPK 14 1275 138

PIKK 7 497 56

PKA 5 1235 170

PKC 10 1497 215

Src 11 869 91

Notes: We show the number of kinases per family, and we show the num-

ber of motifs phosphorylated by each kinase family in the training set and in

the test set.
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‘3-grams’. As a result of this approach, ProtVec provides a 100-di-
mensional distributed representation, analogous to a natural lan-
guage ‘word embedding’, that establishes coordinates for each
possible amino acid 3-gram. This results in a 9048�100 matrix of
coordinates, one 100-dimensional coordinate for each 3-gram. In a
preliminary investigation, we found that averaging the ProtVec
coordinates resulted in a higher-quality embedding compared with
the original ProtVec coordinates. Comparisons between the two
embeddings are provided in Supplementary Material. We averaged
the embedding coordinates, per amino acid, in the following
fashion:

We define T ¼ ½AAA;ALA;LAA; . . . ;unknown�, the vector of
9048 amino acid 3-grams provided by the authors of ProtVec. We
also define A ¼ ½A;L;S; . . . ;��, the alphabet comprising the 22
amino acid symbols. We equate ‘�’ to the ‘unknown’ character
defined by ProtVec. Then, we compute the matrix of averaged
ProtVec coordinates, CðavgÞ, which will be 22�100 dimensions:

CðavgÞ ¼

c0;0 c0;1 c0;2 . . . c0;99

c1;0 c1;1 c1;2 . . . c1;99

c2;2 c2;1 c2;2 . . . c2;99

..

. . .
. ..

.

c21;0 c21;1 c21;2 . . . c21;99

2
6666664

3
7777775

(1)

We solve for each element of CðavgÞ based on the values of CðrawÞ,
the original (9048 � 100) ProtVec matrix:

c
ðavgÞ
ij ¼ 1

jQij
X
k2Qi

c
ðrawÞ
kj (2)

where c
ðavgÞ
ij belongs to CðavgÞ; c

ðrawÞ
ij belongs to CðrawÞ, and

Qi ¼ fq : Ai 2 Tqg (3)

Note that the original ProtVec matrix was 9048�100 dimen-
sions, thus each j corresponds to the index of one of the 100 original
ProtVec dimensions along the second tensor dimension.

3.2.2 Siamese embedding

We aimed to produce a final model, composed of an embedding
technique and a classification method that was specific to our motif
dataset. To this end, we implemented a Siamese neural network to
provide a novel learned representation of our motifs (Fig. 1). The
Siamese neural network is composed of two identical ‘twin’ neural
networks, deemed as such due to their identical hyperparameters as

well as their identical learned weights and biases (Bromley et al.,
1993). During training, each twin network receives a separate motif
sequence that is represented as a one-hot encoding, denoted either as
a or b in Figure 1. Motifs are processed through the network until
reaching the final fully connected layers, ha and hb, which provide
the resultant embeddings for the original motif sequences. Next, the
layers are joined by calculating the pairwise Euclidean distance, Dw,
between ha and hb. Dw can be interpreted as the overall dissimilarity
between the original motif sequences, a and b. The loss function
operates on the final layer, striving to embed relatively more similar
data points closer to each other, and relatively more different data
points farther away from each other. In this way, the Siamese archi-
tecture amplifies the similarities and differences between motifs, and
it translates such relationships into a semantically meaningful vector
representation for each motif in the embedding space.

We utilized a contrastive loss as described in Hadsell et al.
(2006), but we sought to modify the function to account for the
multi-label aspect of our task. The canonical Siamese loss between a
pair of samples, a and b, is defined as:

qða; b;YÞ ¼ ð1� YÞ1
2
ðDwÞ2 þ ðYÞ

1

2
½maxð0;m�DwÞ�2; (4)

where Dw is the Euclidean distance between the outputs of the
embedding layer, m is the margin which is a hyperparameter defined
prior to training, and Y 2 f0;1g. The value of Y is determined by the
label of each data point in the pair. If a pair of samples has identical
labels, they are declared ‘same’ (Y¼0). Conversely, if a pair of sam-
ples has different labels, they are declared ‘different’ (Y¼1). This def-
inition relies on the assumption that each sample may only have one
true label. To adapt the original Siamese loss to account for the multi-
label aspect of our task, we replaced the discrete variable Y with a
continuous variable, namely, the Jaccard distance between kinase-
label set pairs. Thus, our modified loss function is defined as:

qJða; b;YÞ ¼ ð1� Ja;bÞ
1

2
ðDwÞ2 þ ðJa;bÞ

1

2
½maxð0;m�DwÞ�2; (5)

where Ja;b is shorthand for JðKa;KbÞ, which is the Jaccard distance be-
tween the kinase-label set Ka and the kinase-label set Kb, associated
with motif sample a and motif sample b, respectively. Formally,

JðKa;KbÞ ¼ 1� jKa \ Kbj
jKa [ Kbj

(6)

and consequently,

0 � JðKa;KbÞ � 1: (7)

In this way, we have defined a continuous metric by which to
compare a pair of motifs, rather than the usual ‘0’ or ‘1’ distinction.

The Siamese neural network was trained for 10 000 iterations on
the training set, precluding the data points in the independent test
set. When composing a mini-batch, we alternated between ‘similar’
and ‘dissimilar’ motif pairs during training. Similar pairs were
defined as motifs whose JðKa;KbÞ > 0:5, and dissimilar pairs were
defined as motifs whose JðKa;KbÞ � 0:5. After training, we must
produce the final embedding space to be used in training of our sub-
sequent classification neural network. To obtain the final embed-
ding, we input each motif into a single arbitrary twin of the original
Siamese network (because both twins learn the same weights and
biases), producing a high-dimensional (100-dimensional) vector rep-
resentation of the original motif sequence. The resultant motif
embedding effected by the single Siamese twin is further discussed in
Section 4. We used k-nearest neighbors (k-NN) classification on
each kinase family label to quantitatively compare the predictive
capabilities of ProtVec and Siamese embeddings in the coordinate-
only space. For our k-NN computation, we used a k of 85.

3.3 Predictive model
3.3.1 Ember architecture

An overview of the architecture of EMBER is shown in Figure 2.
EMBER takes as input raw motif sequences and the coordinates of

Fig. 1. Siamese neural network architecture, composed of twin CNNs. The twin net-

works are joined at the final layer. The vectors a and b represent a pair of motifs

from the training set, while ha and hb represent the respective hidden layers output

by either CNN. The difference between the hidden layers is calculated to obtain the

distance layer, Dw. Dw is input into the loss along with Y, a variable indicating the

dissimilarity, regarding kinase interactions, between a and b. After training is com-

plete, the so-called ‘twin’ architecture is no longer necessary; each motif is input

into a single twin and the output of the embedding layer gives the resultant represen-

tation of the given motif

EMBER: deep learning for multi-label phosphorylation prediction 2121

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac083#supplementary-data


each respective motif in the embedding space. We use one-hot
encoded motifs as the second type of input into our model. Each
motif sequence is represented by a 15�22 matrix. In addition, we
utilize the embedding provided by our Siamese neural network,
which creates a latent space of dimensions m� 90 where m is the
number of motifs.

The inputs into our classifier network, one-hot sequences and
embeddings, are fed through a CNN and a multilayer perceptron
(MLP), respectively. The outputs of the two networks are then con-
catenated, and the concatenated layer is fed through a series of fully
connected layers (a MLP), followed by a sigmoid activation func-
tion. We performed 5-fold cross-validation to assess the accuracy of
our model when trained on different training-validation folds. We
averaged the performance on the independent test set across the five
folds to compute our final performance on the classification task.

3.3.2 Evaluation metrics

In order to quantify the performance of our models, we computed
the area under the receiver operating characteristic curve (AUROC)
and the area under the precision-recall curve (AUPRC). These
metrics were evaluated per kinase family label. In addition to kinase
family-specific metrics, we also calculate the micro-average and
macro-average for both AUROC and AUPRC. We
define K ¼ fkj : j ¼ 0; . . . ; qg as the set of all labels. The micro-
average, Emicro, aggregates the label-wise contributions of each
class:

Emicro ¼ E
Xq

k¼0

tpk;
Xq

k¼0

tnk;
Xq

k¼0

fpk;
Xq

k¼0

fnk

 !
; (8)

where E is an evaluation metric, in our case, either AUROC or
AUPRC. Alternatively, the macro-average, Emacro, takes into ac-
count the score for each respective class and averages those scores
together, thus treating all classes equally:

Emacro ¼
1

q

Xq

k¼0

Eðtpk; tnk; fpk; fnkÞ; (9)

where E is once again an evaluation metric, in our case, either
AUROC or AUPRC. Both the Emacro and the Emicro are calculated
based on tpk; tnk; fpk and fnk, which are, respectively, the number
of true positives, the number of true negatives, the number of false
positives, and the number of false negatives of label k.

In order to provide a quantitative comparison between the
ProtVec embedding and our Siamese embedding, we calculated sil-
houette scores for each kinase family label in both embedding spaces
(Rousseeuw, 1987). We then took the average across the eight scores
for each embedding to get a single silhouette score for each of the
two embeddings. Silhouette scores can be used to evaluate the separ-
ation quality of clusters in labeled data. For our purposes, a ‘cluster’
refers simply to all motifs phosphorylated by a given kinase family.
Reasonably speaking, we would like our clusters to be somewhat
well-separated and not overlapping, given that the kinase families
we are considering are not all closely related. Calculation of the sil-
houette score of a cluster depends on two properties: the intracluster
distance (average distance between points within the cluster) and the
intercluster distance (average distance between the given cluster and
neighboring clusters). Silhouette scores range from �1 to 1, where a
value of 1 indicates that the cluster for a given class is relatively far
from the remaining clusters and is clearly distinguished, and a value
of �1 means the cluster for the given class overlaps with the remain-
ing clusters and is not clearly distinguished.

3.4 Kinase phylogenetic distances
We sought to leverage the phylogenetic relationships between kin-
ases to improve predictions of kinase–motif interactions.
Specifically, we considered the dissimilarity of a pair of kinase fami-
lies in conjunction with the dissimilarity of the two respective
groups of motifs that either kinase family phosphorylates (i.e. ‘kin-
ase-family dissimilarity’ vs. ‘motif-group dissimilarity’). Note that
the terms ‘distance’ and ‘dissimilarity’ are interchangeable. As the
phylogenetic distances given by Manning et al. (2002) do not pro-
vide distances between typical and atypical kinase families, we
established a proxy phylogenetic distance that allows us to define
distances between these two types of families. We define this proxy
phylogenetic distance through the Levenshtein edit distance,
Levðka;kbÞ, between kinase-domain sequences. Kinase-domain
sequences are the specific subsequences of kinases that are directly
involved in phosphorylation. These kinase-domain sequences were
obtained from an online source provided by Manning et al. (2002).
Distances between kinase domain sequences were calculated by per-
forming local alignment, utilizing the BLOSUM62 substitution ma-
trix to weight indels and substitutions. To calculate overall kinase-
family dissimilarity, we took the average of the Levenshtein edit dis-
tances between each kinase domain pair, per family,

Fig. 2. EMBER model architecture. Here, the previously trained Siamese neural network is colored pink, and the classifier architecture is colored orange. The 15 amino acid-

length motif, a, is converted into a one-hot encoded matrix, V. The one-hot encoded matrix is then fed into a single twin from the Siamese neural network. The 100-dimension-

al embedding, e, is output by the Siamese neural network. Here, we reduce e to a 2D space for illustrative purposes using UMAP. Then, e is fed into a MLP alongside V, which

is fed into a CNN. Then, the last layers of the separate neural networks are concatenated, followed by a series of fully connected layers. The final output is a vector, k, of length

eight, where each value corresponds to the probability that the motif a was phosphorylated by one of the kinase families indicated in k
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dðfa; fbÞ ¼
P

ka2fa

P
kb2fb

Levðka;kbÞ
jfaj � jfbj

; (10)

where dðfa; fbÞ is the dissimilarity metric (distance) between kinase
family a and kinase family b. ka is the kinase-domain sequence of a
kinase belonging to family a, kb is the kinase-domain sequence of a
kinase belonging to family b, and the Levenshtein distance between
kinase domain ka and kinase domain kb is determined by
Levðka;kbÞ. This formula was applied per kinase family pair and
stored in an a�b kinase-family dissimilarity matrix. From here on,
we will refer to this proxy metric for evolutionary dissimilarity be-
tween kinase families as the ‘phylogenetic distance’ between kinase
families.

3.4.1 Kinase-family dissimilarity versus motif-group dissimilarity

For our (kinase-family dissimilarity)–(motif-group dissimilarity) cor-
relation, we defined motif-group dissimilarity in the same manner as
kinase-family dissimilarity, finding the Levenshtein distance be-
tween motifs based on local alignment using BLOSUM62. Then, we
sought to find the correlation between kinase-family dissimilarity
and motif-group dissimilarity. Therefore, calculation of motif-group
dissimilarity, per kinase family pair, was defined identically as in
Equation (10), but based on the motifs specific to each kinase fam-
ily, resulting in an a�b motif-group dissimilarity matrix.

3.4.2 Kinase phylogenetic loss

To leverage evolutionary relationships between kinase families into
our predictions, we weighted the original binary cross entropy
(BCE) loss by a kinase phylogenetic metric. Specifically, our
weighted BCE loss per mini-batch is defined as:

PBCEðŷ; yÞ ¼ �1

n

Xn

i

PT
i yi logðŷi Þ; (11)

where n is the size of the mini-batch, yi is the ground-truth label vec-
tor for sample i, ŷi is the predicted label vector for sample i, and Pi

is the phylogenetic weight vector for sample i given by

Pi ¼ ½w0;i; . . . ;wjKj;i�T ; (12)

with wk;i being the average phylogenetic weight scalar of label k for
sample i:

wk;i ¼
1

jLij
X
j2Li

Fk;j; (13)

and Fk;j is the vector of family weights of label k. Finally, Li is the
set of indices corresponding to positive labels for sample i

Li ¼ fi 2 ½0; . . . ;m� 1� : yi ¼ 1g; (14)

where m is the length of the one-hot true label vector for sample i.

4 Results

4.1 Correlation between kinase phylogenetic

dissimilarity and phosphorylated motif dissimilarity
We sought to illuminate the relationship between kinase-family dis-
similarity and phosphorylated motif-group dissimilarity described in
Section 3. That is, we wanted to determine if ‘similar’ kinases tend
to phosphorylate ‘similar’ motifs based on some quantitative metric.
To this end, we calculated the correlation between average kinase-
family dissimilarities and motif-group dissimilarities based on nor-
malized pairwise alignment scores. From this, we found a Pearson
correlation of 0.667, indicating a moderate positive relationship be-
tween kinase dissimilarity and that of their respective phosphory-
lated motifs. Although moderate, this correlation between kinase
dissimilarity and motif dissimilarity suggests a potential signal in the
phylogenetic relationships that could be leveraged to improve pre-
dictions of phosphorylation events.

Using our normalized distances as a proxy for phylogenetic dis-
tance (see Section 3), the dissimilarity between kinases is displayed
as a heatmap in Figure 3. The Akt and PKC families have the great-
est similarity (lowest dissimilarity) of all pairwise comparisons, with
PKA-Akt and MAPK-CDK following as the next most similar family
pairs. Together, these results provide motivation to incorporate
both motif dissimilarity and kinase relatedness into the predictive
model, as achieved through our custom phylogenetic loss function
described in Section 3. The effects of this approach are described in
Section 4.

4.2 Motif embedding via Siamese network
We sought to develop a novel learned representation of motifs using
a Siamese neural network. Siamese neural networks were first intro-
duced in the early 1990s as a method to solve signature verification,
posed as an image-to-image matching problem (Bromley et al.,
1993). Siamese neural networks perform metric learning by exploit-
ing the dissimilarity between a pair of data points. Training a
Siamese neural network effects a function with the goal of producing
a meaningful embedding, capturing semantic similarity in the form
of a distance metric. We hypothesized that incorporating high-
dimensional vector representations of motifs (i.e. an embedding)
into the input of a classification network would provide more pre-
dictive power than methods that do not utilize such information. In
our Siamese architecture, we opted to use convolutional layers as
described in Section 3. We performed k-NN on both the ProtVec
and Siamese embeddings of motifs and found that the Siamese
embedding produced better predictions, on average, than the
ProtVec embedding (see Table 2). More specifically, the Siamese

Fig. 3. Heatmap matrix depicting pairwise kinase-domain distances. Levenshtein

distances were normalized, with the yellow end of the color bar representing far dis-

tances (less similar) and the pink end representing close distances (more similar)

Table 2. AUROC and AUPRC scores on independent test set predic-

tion, given by k-NN performed on the ProtVec and Siamese

embeddings

AUROC AUPRC

Family ProtVec Siamese ProtVec Siamese

Akt 0.908 0.897 0.462 0.513

CDK 0.889 0.892 0.511 0.538

CK2 0.906 0.893 0.665 0.714

MAPK 0.907 0.908 0.739 0.720

PIKK 0.845 0.900 0.579 0.663

PKA 0.865 0.852 0.716 0.659

PKC 0.865 0.885 0.697 0.741

Src 0.998 0.995 0.993 0.991

Macro-average 0.898 0.903 0.670 0.692

Micro-average 0.902 0.924 0.643 0.747

EMBER: deep learning for multi-label phosphorylation prediction 2123



embedding resulted in a macro-average AUROC of 0.903 compared
with ProtVec’s 0.898 and a micro-average AUROC of 0.924 com-
pared with ProtVec’s 0.902. Likewise, the Siamese embedding had
better AUPRC, with a macro-average AUPRC of 0.692 compared
with ProtVec’s 0.670 and a micro-average AUPRC of 0.747 com-
pared with ProtVec’s 0.643. Furthermore, we calculated the silhou-
ette scores of both embeddings and found our Siamese embedding to
have a significantly better mean silhouette score of 0.114 compared
with ProtVec’s 0.005.

We performed dimensionality reduction for visualization of the
Siamese embeddings using uniform manifold approximation and
projection (UMAP) (McInnes et al., 2018). For our UMAP imple-
mentation, we used 200 neighbors, a minimum distance of 0.1 and
Euclidean distance for our metric. The resulting 2D UMAP motif
embeddings derived from the Siamese neural network are shown in
Figure 4. We observe that the motifs phosphorylated by a given

kinase family have a distinctive distribution in the embedding space,
with some distributions being highly unique and with some signifi-
cant overlap between certain families. More specifically, our
Siamese embedding shows that motifs phosphorylated by either
PKC, PKA, or Akt appear to occupy a similar latent space. In the
same vein, motifs phosphorylated by either CDK or MAPK also oc-
cupy a similar space. These observations mirror the phylogenetic
relationships shown in Figure 3, where the MAPK and CDK families
have a relatively short mean evolutionary distance between them,
and the PKC–PKA distance, even shorter still.

In addition to these overlapping families, we also observe that
Src-phosphorylated motifs form a distinct cluster. This is likely
driven by the fact that Src is the only tyrosine kinase family among
the eight kinase families we investigated, with its targeted motifs in-
variably having a tyrosine (Y) at the eighth position in the 15-amino
acid sequence, compared with the other 7 families whose motifs
have either a serine (S) or a threonine (T) in this position. This
effects a significant sequence discrepancy between Src-
phosphorylated motifs and remaining motifs. The fact that Src-
phosphorylated motifs cluster so precisely serves as a sanity check
that our Siamese embedding is capturing sequence (dis)similarity in-
formation despite being trained through comparison of kinase–motif
phosphorylation events in lieu of explicit motif sequence compari-
sons. We note that the embedding produced by our Siamese neural
network is quite qualitatively similar to the ProtVec embedding in
terms of these kinase-label clusters indicated in the UMAP projec-
tions. The UMAP projections of the ProtVec embeddings are
included in Supplementary Material.

4.3 Prediction of phosphorylation events
Following training of EMBER on both motif sequences and motif
vector representations as input, we conducted an ablation test in
which we removed the motif vector representation (or coordinate)
input along with its respective MLP; this was achieved by applying a
dropout rate of 1.00 on the final layer of the coordinate-associated
MLP. This ablation test allowed us to observe how our novel motif
sequence-coordinate model compares to a canonical deep learning
model whose input consists solely of one-hot encoded motif sequen-
ces (such as in the methods utilized by Luo et al., 2019; Wang et al.,
2017). We also compared EMBER trained with the standard BCE
loss to EMBER trained with our kinase phylogenetic loss. All pre-
dictive models, as described in Table 3, were trained on identical
training-validation splits and evaluated on the same independent
test set.

Comparisons between the predictive capability of the models
described here are quantified by AUROC and AUPRC, and these
metrics are presented for each of the three models in Table 3. As
indicated by Table 3, EMBER, utilizing both sequence and coordin-
ate information, outperforms the canonical sequence model in both
AUROC and AUPRC. In addition, integration of phylogenetic infor-
mation into the loss provides a generally small but consistent add-
itional boost in performance, showing the best overall results out of
the three models for AUROC and AUPRC. Individual performance
metric curves for each kinase label, produced by EMBER trained via
the phylogenetic loss, are shown in a subplot of Figure 5.

A confusion matrix providing greater detail and illustrating the
relative effectiveness of our model for prediction of different kinase
families is shown in Figure 6. In order to compute the confusion ma-
trix, we set a prediction threshold of 0.5, declaring any prediction
above 0.5 as ‘positive’ and any prediction equal to or <0.5 as ‘nega-
tive’. As indicated by the confusion matrix, the model often con-
founds motifs that are phosphorylated by closely related kinase
families, for example, MAPK and CDK. This is presumably due to
the close phylogenetic relationship between MAPK and CDK, as
indicated by their relatively low phylogenetic distance of 0.75
(Fig. 3). Furthermore, our Siamese neural network embeds motifs of
these respective families into the same relative space, as shown in
Figure 4, further illustrating the confounding nature of these motifs.
A similar trend is found for motifs phosphorylated by PKC, PKA
and Akt. This trio is also shown to be closely related as indicated by
the correlations in Figure 3 and the embeddings in Figure 4.

Fig. 4. UMAP projection of the Siamese motif embedding, labeled per kinase family.

Each point represents one of the 7302 motifs, and each of the eight panels displays

kinase family-specific phosphorylation patterns. Each colored point corresponds to

a motif in the test set phosphorylated by a member of the specified kinase family.

The axes are the arbitrary x- and y-UMAP dimensions, which are consistent across

panels, and are thus not indicated. Furthermore, highlighted points are slightly

enlarged to enhance readability
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4.3.1 Comparison to existing methods

We sought to compare EMBER’s performance to the two existing
deep learning methods, MusiteDeep and DeepPhos, which adopt
single-label models. However, this is not a straight-forward com-
parison because EMBER was trained on sequences 15 amino acids
in length while MusiteDeep and DeepPhos require sequences of 33
and 51 amino acids in length, respectively. Therefore, in order
to make our test set suitable for MusiteDeep and DeepPhos, it is
necessary that we unambiguously map each 15-mer subsequence
to a complete substrate sequence, from which we can obtain both a

33-mer and a 51-mer. This was accomplished by simply referencing
the source databases, which either directly provided a complete sub-
strate sequence or provided a 15-mer subsequence and an accession
number (via which the associated substrate sequence can be easily
retrieved). After obtaining the set of complete substrate sequences
associated with our test set, we were able to elongate each motif to
33 and 51 amino acids in length for evaluation through MusiteDeep
and DeepPhos, respectively.

We note that of the eight kinase families for which our model
produces predictions, DeepPhos has functioning models for only
four of the families (CDK, CK2, MAPK and PKC), and MusiteDeep
has models for only five of the families (CDK, CK2, MAPK, PKA
and PKC). We show AUROC and AUPRC results per kinase label
from each of the three methods in Figure 5. EMBER outperforms
MusiteDeep and DeepPhos on all four averaged metrics, indicating
that our multi-label approach may be better equipped to solve the
problem of kinase–motif prediction compared with the single-label
approaches.

5 Discussion

Illuminating the map of kinase-substrate interactions has the poten-
tial to enhance our understanding of basic cellular signaling as well

Table 3. AUROC and AUPRC results achieved on the independent test set across deep learning classification models

AUROC AUPRC

Family Seq-CNN EMBER (BCE) EMBER (PBCE) Seq-CNN EMBER (BCE) EMBER (PBCE)

Akt 0.828 0.858 0.881 0.327 0.323 0.423

CDK 0.906 0.917 0.925 0.648 0.696 0.698

CK2 0.900 0.914 0.923 0.722 0.780 0.788

MAPK 0.887 0.899 0.896 0.665 0.694 0.697

PIKK 0.871 0.886 0.913 0.586 0.611 0.670

PKA 0.846 0.868 0.877 0.636 0.680 0.705

PKC 0.873 0.895 0.902 0.735 0.774 0.798

Src 0.997 0.994 0.996 0.992 0.992 0.994

Macro-average 0.889 0.904 0.914 0.664 0.694 0.722

Micro-average 0.913 0.926 0.932 0.731 0.763 0.784

Notes: The AUROC and AUPRC are presented per kinase family for each model. From left to right, we include results for the ablated sequence-only CNN,

EMBER trained using a canonical BCE loss, and EMBER trained using the kinase phylogeny-weighted loss as described in Section 3.

Fig. 5. AUROC and AUPRC results achieved on the independent test set by

DeepPhos, MusiteDeep and EMBER. The AUROC and AUPRC of each kinase fam-

ily label are shown in the respective legends. Note that color-coding is consistent

across subplots.

Fig. 6. Confusion matrix for EMBER predictions on the test set. The numbers inside

each box represent the raw number of predictions per box. The color scale is based

on the ratio of predictions (in the corresponding box) to total predictions, per label.

A lighter color corresponds to a larger ratio of predictions to total predictions

EMBER: deep learning for multi-label phosphorylation prediction 2125



as drive health applications, e.g. by facilitating the development of
novel kinase inhibitor-based therapies that disrupt kinase signaling
pathways. In this work, we have presented a deep learning-based ap-
proach that aims to predict which substrates are likely to be phos-
phorylated by a specific kinase family. In particular, our multi-label
approach establishes a unified model that utilizes all available kin-
ase–motif data to learn broader structures within the data and im-
prove predictions across all kinase families in tandem. This
approach avoids challenges in hyperparameter tuning inherent in
the development of an individual model for each kinase. We believe
that this approach will enable continuing improvement in predic-
tions, as newly generated data describing any kinase–motif phos-
phorylation event can assist in improving predictions for all kinases.
That is, a kinase–motif interaction discovered for PKA will improve
the predictions not just for PKA, but also for Akt, PKC, MAPK etc.
through the transfer learning capabilities inherent in our multi-label
model.

We showed that incorporation of a learned vector representation
of motifs, namely the motifs’ coordinates in the Siamese embedding
space, serves to improve performance over a model that utilizes only
one-hot encoded motif sequences as input. Not only did the Siamese
embedding improve prediction of phosphorylation events through a
neural network architecture, but it also outperformed ProtVec, a
previously developed embedding, in a coordinate-based k-NN task.
This improvement over ProtVec was in spite of the fact that our
Siamese neural network utilized <7000 training sequences of 15
amino acids in length compared with ProtVec’s 500 000 sequences
of �300 amino acids in average length. The Siamese embedding was
further generated through direct comparison of kinase–motif phos-
phorylation events rather than simply the sequence-derived data
used by ProtVec. Furthermore, ProtVec is a generalized protein
embedding while the Siamese embedding described here has the po-
tential to be customized. For example, the use of the Jaccard dis-
tance in the Siamese loss allows the neural network to be trained on
any number of multi-label datasets such acetylation, methylation or
carbonylation reactions. We also found that there is a small though
meaningful relationship between the evolutionary distance between
kinases and the motifs they phosphorylate, supporting the concept
that closely related kinases will tend to phosphorylate similar motifs.
When encoded in the form of our phylogenetic loss function, this re-
lationship was able to slightly improve prediction accuracies.
Together, these results suggest that EMBER holds significant prom-
ise towards the task of illuminating the currently unknown relation-
ships between kinases and the substrates they act on.
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