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Abstract

Synucleinopathies are a subset of debilitating neurodegenerative disorders for which clinically 

approved therapeutic options to either halt or retard disease progression are currently unavailable. 

Multiple synergistic pathological mechanisms in combination with the characteristic misfolding 

of proteins are attributable to disease pathogenesis and progression. This complex interplay, as 

well as the difficult and multiscale nature of therapeutic delivery into the central nervous system, 

make finding effective treatments difficult. Nanocarriers (NCs) are a class of materials that can 

significantly improve therapeutic brain delivery and enable multifunctional therapies. In this 

review, an update on the known pathology of synucleinopathies is presented. Then, NC-enabled 

therapeutics designed to target the multiple mechanisms by combination therapies and multiscale 

targeting methods is reviewed. The implications of these strategies are synthesized and evaluated 

to suggest opportunities for the rational design of anti-neurodegenerative NC therapeutics.
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1. Introduction

Synucleinopathies are a subset of neurodegenerative diseases involving the pathogenic 

misfolding of alpha-synuclein (αSyn) that leads to a progressive loss of cognitive and motor 

functions. As the most prevalent example, over one million individuals in the U.S. have 

Parkinson’s Disease (PD) alone, which is associated with $26 billion in indirect and non-

medical costs [1]. Synucleinopathies are difficult to diagnose early due to pathologic and 

symptomatic similarities between diseases and the lack of a clinically approved diagnostic 

tool, leading to a lower quality of life of afflicted individuals. There are also no approved 

treatments that slow disease progression, and supportive patient management measures only 

alleviate symptoms.

The hallmark pathology of synucleinopathies involves the buildup of misfolded protein 

aggregates like αSyn in and around affected neurons, which are known as Lewy Bodies 

(LBs) [2]. Disease-slowing therapeutics in development are designed to slow or prevent the 

buildup of aggregated αSyn (αSynagg) in the brain. However, due to the blood-brain barrier 

(BBB) protecting the brain from systemic circulation [3], effective delivery of therapeutics is 

also challenging.

A significant thrust in the field is dedicated towards developing nanoscale delivery platforms 

(e.g. nanocarriers, NCs) that can be targeted to specific areas of the brain to optimize 

therapeutic delivery. But the brain is highly susceptible to invasion of foreign substances, 

which can lead to toxic side-effects. Rational NC design strategies can enable both effective 

and safe delivery of new and novel therapeutics for synucleinopathies by minimizing dose 

and enhancing the ability to slow disease progression. This review evaluates underlying 

mechanisms and synucleinopathy-related pathology to provide insight into recent NC-based 

therapeutic strategies designed to address one or more of these mechanisms.
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2. Synucleinopathy Pathology

2.1 Parkinsonian syndrome

Parkinsonian syndrome (PS) is a clinical syndrome that refers to a group of neurological 

disorders encompassing a spectrum of movement disabilities, including PD, Dementia with 

Lewy Bodies (DLB), Progressive Supranuclear Palsy (PSP) and Multiple System Atrophy 

(MSA) [4]. PSP and MSA belong to a class referred to as atypical parkinsonism [4]. 

Currently it is difficult to clinically diagnose the different PS due to overlapping motor 

symptoms, but studies are underway to determine misfolded αSyn and Tau aggregates as 

early stage biomarker(s) to differentiate PS [5–7].

2.2 CNS pathology

The characteristic pathology of PD is the loss of dopaminergic (DA) neurons in the 

substantia nigra of the basal ganglia (BG) and the presence of intraneuronal αSynagg 

LB inclusions [8]. MSA has glial αSyn cytoplasmic inclusions and PSP has glial and 

neuronal tau inclusions with loss of neurons in the BG, pons, cerebellum, and other similar 

components in the brain [8]. These intrinsically disordered proteins are correlated with 

disease state, with microscopically visible components appearing later in the disease process 

[9].

The appearance of LB and LB-like inclusions is initiated and propagated by a seeding 

process. This process involves the interaction between internalized exogenous αSyn 

aggregates with endogenous, intracellular αSyn via direct membrane penetration by fibrils 

or by encapsulation into endocytic vesicles or exosomal pathway [10**,11]. Microglia and 

neuron-secreted exosomes are integral to αSyn propagation [12]. In the case of endocytic 

encapsulation, Galectin-3 accumulation ruptures the endosome and allows fibrils to interact 

with cytoplasmic αSyn to seed aggregation [11].

The propagation of LBs throughout the central nervous system (CNS) leads to dysfunction 

of numerous important cellular functions. The ubiquitin-proteasome system (UPS) catabolic 

pathway and the autophagy-lysosome pathway (ALP) are both disrupted [13]. These 

pathways are important mediators for breaking down debris such as fibrils, but deregulation 

occurs when LB formation via the αSyn seeding process outpaces UPS and ALP function 

[13]. In PD, mutation of the gene LRRK2 additionally contributes to the disruption of 

normal endosomal function to allow for this buildup of debris [14]. The pro-inflammatory 

signaling cascade associated with LRRK2 mutations also involves activation of glial cells 

[14].

An excellent review explains how αSyn fibrillation is associated with the activation 

and brain-infiltration of T-effector (Teff) cells in the neurodegenerative pro-inflammatory 

cascade [15]. Microglia, which are analogous to macrophages of the peripheral immune 

system, interact with Teffs and are then activated to a pro-inflammatory M1 phenotype 

[15]. In response, they release TNF-α, IL-6 and IL-1β among other pro-inflammatory 

markers and contribute to the buildup of reactive oxygen species (ROS) [16]. Astroglia, 

which normally provide structural support for neurons and the BBB, filter toxins and 

fulfill other neuroprotective roles to address imbalances in homeostasis [17], also enter 
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a pro-inflammatory state in response to LB formation, releasing more pro-inflammatory 

cytokines and contributing to mitochondrial dysfunction and oxidative stress through 

the release of excess glutamate [18]. T-regulatory (Treg) cells can indirectly counteract 

this pro-inflammatory response due to their anti-inflammatory phenotype, but Tregs are 

overwhelmed in disease due to low numbers and dysfunction [15].

Oligodendrocytes, which form protective sheaths around neuronal axons and enhance signal 

transmission, are also affected by LB-induced inflammation. Progressive degeneration of 

the oligodendrocyte-composed myelin sheaths and subsequent neurodegeneration results in 

a slow and inevitable loss of motor function within the body in MSA [19]. Additionally, in 

PD it was found that oligodendrocytes show varied genetic expression at even earlier stages 

of disease than DA neurons [19].

2.3 Gut-Brain Axis

The GI environment can widely influence and regulate CNS activity. The bidirectional 

signaling between the gut and the brain mediated through immune and/or nervous system 

regulates the homeostasis with reference to satiety and hunger and CNS inflammation. GI 

dysfunction in PD is manifested as mucosal inflammation of gut, constipation, decreased 

absorption of the nutrients, and delayed gastric emptying, enteric neuronal loss and enteric 

LB pathology [20]. GI dysfunction, a major non-motor symptom of PD could play a role 

as a potential early biomarker [21]. Braak’s hypothesis proposes misfolded αSyn aggregates 

from the enteric nervous system (ENS) propagate in a prion like manner to the CNS through 

the dorsal motor nucleus of the vagus leading to PD pathogenesis of DA degeneration and 

the loss of dopamine in the striatum [22]. Studies published this year have detailed that gut 

microbial metabolites produced by gut dysbiosis in animal models and in PD patients can 

promote αSyn aggregation, non-motor and motor impairment, which can be overcome by 

dietary intervention, truncal vagotomy or fecal microbiota transplantation [23,24].

3. Therapeutics and Nanomedicines strategies

3.1 NCs as a solution to therapeutic challenges

The multifaceted nature and complex interplay of these pathological mechanisms provide 

a broad range of therapeutic targets. Recent reviews detail treatments that differentially 

alleviate some of these mechanisms [15,25]. Having so many targets makes developing 

an all-encompassing, effective treatment difficult. In addition, poor pharmacokinetics and 

pharmacodynamics due to the stringent nature of the astroglia-supported BBB and the 

susceptibility of therapeutics in systemic circulation or other degradative environments in 

the body after administration limit the extent of therapeutic efficacy provided by any of these 

methods.

To improve therapeutic efficacy, NCs can encapsulate and protect the therapeutics from 

systemic degradation and improve local bioavailability. By releasing therapeutics over a 

longer time, the dosing frequency can be minimized. The versatility of NCs can help to 

optimize pharmacokinetic and pharmacodynamic profiles (Figure 1). NCs targeted towards 
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attenuating αSyn fibril formation to alleviate pathology consist of a broad range of materials 

(Table 1).

3.2 Gene-silencing treatments

Several studies have used NCs to improve delivery of αSyn gene-silencing therapeutics to 

indirectly reduce the propensity for fibrillation (Figure 1A). Small interfering ribonucleic 

acids (siRNA) can interfere with αSyn fibrillation but exhibit poor brain and neuron-specific 

internalization. Acharya et al [26] encapsulated siRNA into layered double hydroxide NCs 

in vitro study to address this issue and effectively silence the αSyn gene in DA-like SH-

SY5Y cells. Schlich et al [27] also saw an in vitro reduction in αSyn expression after 

treating mouse primary neurons with siRNA-encapsulated anionic liposomes. Helmschrodt 

et al [28] encapsulated siRNA in polyethylenimine NCs and administered via the 

intracerebroventricular (ICV) route to reduce αSyn gene expression in vivo. This was 

correlated with a reduced pro-inflammatory immune response [28].

3.3 Host and non-host derived antibodies against αSynagg

Anti-αSynagg antibodies can also be used to combat αSynagg-induced neuroinflammation 

(Figure 1B) [29–32]. Training the immune system towards an anti-inflammatory immune 

response, thereby generating host-derived anti-αSynagg antibodies, is one way to 

do this [15]. Rockenstein et al [29] immunized αSyn-transgenic mice with glucan 

microparticles with rapamycin and αSyn. They observed a reduction in αSyn-associated 

neuroinflammation, which was associated with induction of anti-αSynagg antibodies and a 

transition to CD4- (T-helper) and CD25-positive (Treg) cells for a more anti-inflammatory 

phenotype in the brain [29]. Such vaccine strategies may be beneficial for providing longer 

term protection against disease progression.

There are two non-host-derived anti-αSynagg therapeutic monoclonal antibodies (mAb) that 

have shown promising results in Phase I clinical trials [30,31]. Recent results with BIIB054, 

developed by Biogen [30], as well as Prasinezumab, developed by Hoffmann-La Roche and 

Prothena [31], have shown good pharmacokinetic and safety profiles in the brain after IV 

administration in patients. Both studies have progressed into ongoing Phase II clinical trials. 

Given the overall lack of effective and FDA-approved therapeutics for synucleinopathies, 

these are promising developments for PD treatment. FDA-approved NCs, a list of which are 

detailed in a recent review [33], could be used in mAb treatments to further optimize mAb 

bioavailability and therapeutic efficacy.

3.4 Targeting ligands for improved pharmacokinetics

Many treatment strategies for brain delivery have incorporated targeting ligands on, or 

integrated targeting strategies with, NCs to further improve therapeutic pharmacokinetics 

(Figure 1C) [34**–39]. Zhang et al [37] used ultrasound sonication to disrupt the BBB 

and found improved brain bioavailability in mice after intravenous (IV) administration 

of curcumin-encapsulated liposomes, which was correlated with an improvement of motor-

function and restoration of an important DA-homestotatic molecule tyrosine hydroxylase 

(TH) after PS-inducing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) challenge 

[37]. Recent research has shown that cationic ligands can improve both BBB-crossing 
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and local mitochondrial delivery [35,36]. Some NCs can also intrinsically demonstrate 

brain-targeting characteristics, as shown by the chitosan NCs in the study by Bhattamisra et 

al [40].

Multiscale targeting techniques are growing in popularity due to the multiscale nature 

of brain delivery, as discussed in a recent review [41]. Tang et al [34**] encapsulated 

dopamine Printopoly(lactic-co-glycolic acid) (PLGA) NCs coated with borneol and 

lactoferrin to improve BBB-crossing and striatum-specific delivery, respectively. This 

promising multiscale NC-based treatment protected against the DA toxin oxidopamine 

(6-OHDA) in vivo [34**]. Additionally, Li et al [38**] incorporated the peptide B6 on 

polymeric-superparamagnetic iron oxide self-assembled NCs conjugated to the therapeutic 

epigallocatechin gallate (EGCG). The B6 ligand improved transport across an in vitro BBB 

model by targeting the transferrin receptor (TfR), and the mazindol modification on the 

NCs allowed for dopamine transporter targeting on neurons [38**]. The synergistic effects 

provided by this multicomponent NC improved efficacy in the treatment interfering with 

αSynagg fibrillation in vivo [38**].

3.5 Multifunctional and combination therapeutic treatments

Some neuroprotective drugs that suffer from poor pharmacokinetic profiles have multiple 

therapeutic effects. Taebnia et al [42] addressed poor pharmacokinetic properties of 

curcumin by encapsulating it in a mesoporous silica NC formulation to improve αSyn 

fibrillation-inhibiting, antioxidant and TH restoring properties in PC-12 cells. Kundu et 

al [39] co-encapsulated curcumin and piperine in a liposomal formulation coated with 

glycerol monooleate to improve brain delivery. Both curcumin and piperine have antioxidant 

properties, and the combination therapy significantly improved efficacy in protecting against 

αSynagg-driven PS in vitro and in vivo by restoring mitochondrial and ALP function 

and improving motor coordination [39]. Improving multifunctional drugs and enabling 

combination treatments is a significant benefit that NCs can provide for treatment regimen 

(Figure 1D).

3.6 Non-antibody based anti-αSynagg NCs

The most direct method to combat αSynagg pathology is by targeting αSyn fibrils for 

breakdown. Some NCs exhibit intrinsic targeting or therapeutic effects. For example, 

Bhattamisra et al [40] encapsulated Rotigotine into intrinsically brain-targeted chitosan 

NCs to protect rats against the PS-inducing agent Haloperidol [40]. Alternatively, some 

NCs intrinsically attenuate αSyn fibrillation (Figure 1E). Gao et al [43*] found that 

gold nanoclusters interact with and reduce αSyn in vitro and additionally protect against 

MPTP in vivo. Cerium oxide nanoclusters can also provide therapeutic effects ranging 

from reducing αSyn fibrillation via interaction kinetics to ameliorating oxidative stress 

and mitochondrial dysfunction, as demonstrated in vitro in SH-SY5Y cells after αSynagg 

challenge [44] and in vivo in αSyn-transgenic (e.g., αSyn-overexpressing) yeast cells [45]. 

Aliakbari et al [46*] found that zwitterionic, cholesterol-loaded liposomes interfered with 

fibrillation in vitro, and provided similar therapeutic effects in both SH-SY5Y and PC12 

cells.
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Most of the above therapeutics target αSynagg directly, but it is also crucial to evaluate 

therapeutic efficacy in specifically restoring ALP function (Figure 1F). Bourdenx et al [47] 

used a non-loaded, acidic PLGA formulation to restore lysosome function after testing 

against toxin- and genetic-based PS models by co-localizing with lysosomes and restoring 

lysosomal pH in vitro. This led to protection against MPTP-induced toxicity in vivo [47]. 

The multifunctional treatment by Kundu et al [39] described above also showed promising 

indications in the ability of their treatment to repair ALP function.

3.7 Gut-targeted treatment strategies

Due to evidence of the gut-brain connection in neurodegenerative disease, gut-targeted 

treatment is also necessary to slow disease progression. Since an unhealthy gut microbiota 

plays a key role in CNS pathology, repairing microbiota health is a primary focus 

in this thrust [48,49]. Many probiotics and prebiotics are being investigated to treat 

neurodegenerative disease in this way [49]. However, because probiotic treatments are 

usually delivered orally, there is often a potential for gastric degradation of these 

therapeutics, reducing therapeutic efficacy.

4. Perspectives

It’s possible that ENS and CNS pathology occur simultaneously [50]. The separate and 

significant pathology in both systems suggests the need for discovering synergistic CNS 

and ENS treatment paradigms. To appropriately screen for such treatment strategies, 

the screening process must include a variety of pathogenic models, including lysosomal 

impairment, MPTP/rotenone/6-OHDA challenge, and CNS and ENS-associated αSyn 

transgenic models, since each exacerbates different underlying mechanisms leading to 

disease. Additionally, the use of multiscale in vitro models like a transwell BBB model 

can be performed prior to in vivo experimentation to allow for more rapid screening of 

multiscale nanocarrier-based CNS treatments. Table 1 lists relevant studies covering these 

and other concepts.

There is an increased risk of steric hindrance that reduces functionality of the components 

in multifunctional schemes. NCs with intrinsic targeting or therapeutic properties could 

enable more facile multifunctional strategies because of the need for fewer components. 

Polymeric and liposomal NCs are typically larger in size than metallic NCs and are therefore 

more easily able to encapsulate therapeutics. They often also have many functional groups 

for facile incorporation of targeting ligands. Therefore, polymeric and liposomal NCs that 

intrinsically slow αSyn fibrillation have significant multifunctional potential.

The administration route will dictate many decisions about the NC chemistry. For example, 

ICV delivery may be a more direct route to the CNS but is highly invasive. Intranasal 

(IN) delivery will lead therapeutics to the nose-brain barrier, so IN-administered NCs 

would benefit from different targeting ligands than the BBB. Care must be taken with 

IV-administered NCs to avoid thrombosis after administration, reducing the applicability of 

flocculation-prone NCs. Orally administered probiotics or prebiotics pass through the highly 

acidic stomach and will degrade before reaching the target site, so encapsulation by low pH 

stable NCs can protect these therapeutics from this environment.
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5. Conclusions

The complex nature of synucleinopathic disease progression necessitates the complex 

design of new and novel treatment strategies. By incorporating combination therapies in 

CNS-targeted NCs, the ability to alleviate or prevent αSyn fibrillation, oxidative stress, 

ALP and UPS impairment, and excessive brain inflammation could be significantly 

improved. Multiscale targeting can enable better bioavailability of such combination 

therapies. Additionally, due to the significance of the gut-brain axis in neurodegenerative 

disease, administration of such a CNS platform with an ENS-targeted NC treatment 

must be considered in all-encompassing treatment strategies. Multiscale, multifunctional, 

combination treatment paradigms like the ideas proposed herein have the potential to 

provide the road to a cure to diseases like PD, DLB and MSA.
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Abbreviations

αSyn Alpha-synuclein

PD Parkinson’s Disease

LB Lewy Bodies

BBB blood-brain barrier

NCs nanocarriers

αSynagg aggregated alpha-synuclein

PS Parkinsonian syndrome

DLB Dementia with Lewy Bodies

PSP Progressive Supranuclear Palsy

MSA Multiple System Atrophy

DA dopaminergic

BG basal ganglia

UPS ubiquitin-proteasome system

ALP autophagy-lysosome pathway

Teff T-effector

ROS reactive oxygen species
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Treg T-regulatory

siRNA small interfering ribonucleic acids

ICV intracerebroventricular

TfR transferrin receptor

TH tyrosine hydroxylase

IV intravenous

PLGA poly(lactic-co-glycolic acid)

6-OHDA oxidopamine

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

IN intranasal
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Figure 1. 
NC-based treatments for Synucleinopathies. A) Metal NCs are used as a carrier for 

therapeutic agents like siRNA to prevent overexpression and subsequent fibrillation B) 

Antibody strategies, both host and non-host derived, directly combating fibrillation C) 

Targeted NCs can further enhance delivery of therapeutics D) Lipid-based delivery of 

therapeutic compounds, including the ability to incoporate multiple therapeutics in the 

same formulation, e.g. multifunctional E) Metal NCs intrinsically act as therapeutics by 

directly interfering with fibril formation F) Polymeric NCs intrinsically act as therapeutics 

by restoring lysosome function
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Table 1.

NCs for targeting different aspects of αSynagg-associated neuropathology.

Class Nanocarrier Therapeutic Therapeutic 
Purpose

Modifications Model Challenge Admin Ref

Synthetic

Silica NCs Curcumin Antioxidant, 
Antiamyloid - in vitro 

(PC-12) αSyn - [42]

PLGA NCs

Dopamine Neuro-
protective

borneol (BBB) 
Lactoferrin 
(striatum)

in vivo 
(rats) 6-OHDA IN [34**]

-
restore 
lysosome 
acidification

-

in vitro 
(various)

Toxin and 
genetic 
models

-

[47]

in vivo 
(mice) MPTP Intra-

cerebral

Polyethylenimine 
NCs

siRNA aSyn gene 
silencing

- in vivo 
(mice)

αSyn 
transgenic ICV [28]

Lipid Liposomes

-

in vitro 
(mouse 
primary 
neurons)

αSyn - [27]

Curcumin Antioxidant, 
Antiamyloid

Ultrasound 
(BBB) 
Polysorbate 80

in vivo 
(mice) MPTP IV [37]

Curcumin, 
Piperine

Antioxidant, 
Antiamyloid, 
ALP repair

Glycerol 
monooleate 
(BBB)

in vitro 
(PC-12)

rotenone

-

[39]
in vivo 
(mice) oral

-

αSyn 
fibrillation-
inhibiting

Cholesterol, 
PEG

in vitro 
(PC-12) 
in vitro 
(SH-
SY5Y)

αSyn 
transgenic - [46*]

Metal, 
metal 
oxide

DSPE-PEG-iron 
oxide NCs EGCG B6 (TfR 

-BBB)

in vitro 
(SH-
SY5Y) αSyn 

transgenic

-

[38**]

in vivo 
(mice) IV

Gold nanoclusters - N-isobutyryl-
L-cysteine

in vitro MPP+ -

[43*]in vivo 
(mice) MPTP Intra-

peritoneal

Cerium Oxide 
nanoclusters - -

in vitro 
(SH-
SY5Y)

αSynagg - [44]

in vivo 
(yeast 
cells)

αSyn 
transgenic - [45]

Layered double 
hydroxide metal 
NCs

siRNA αSyn gene 
silencing -

in vitro 
(SH-
SY5Y)

αSyn 
overexpressed - [26]

Poly-
saccharide

Glucan αSyn 
(antigen) Vaccine rapamycin in vivo 

(mice)
αSyn 
transgenic

Intra-
peritoneal [29]

Chitosan

Rotigotine Dopamine 
agonist -

in vitro 
(SH-
SY5Y) in 
vivo (rats)

6-OHDA N/A

[40]
haloperidol IN
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Class Nanocarrier Therapeutic Therapeutic 
Purpose

Modifications Model Challenge Admin Ref

- - mAbs anti-αSynagg - clinical 
trial PD IV [30,31]
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