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Abstract

Aging promotes structural and functional remodeling of the heart, even in the absence of 

external factors. There is growing clinical and experimental evidence supporting the existence 

of sex-specific patterns of cardiac aging, and in some cases, these sex differences emerge early 

in life. Despite efforts to identify sex-specific differences in cardiac aging, understanding how 

these differences are established and regulated remains limited. In addition to contributing to 

sex differences in age-related heart disease, sex differences also appear to underlie differential 

responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of 

sex-specific differences may facilitate the characterization of underlying heart disease phenotypes, 

with the ultimate goal of utilizing sex-specific therapeutic approaches for cardiac disease. The 

purpose of this review is to discuss the mechanisms and implications of sex-specific cardiac aging, 

how these changes render the heart more susceptible to disease, and how we can target age- and 

sex-specific differences to advance therapies for both male and female patients.
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INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of death worldwide[1], with millions 

of individuals affected by CVD each year, making it a burdensome and costly public health 

problem. While aging impairs the cardiovascular system and is the dominant risk factor for 

CVD, CVD is not only a disease of the elderly. Rather, CVD is emerging in younger adults 

more often[2]. However, most of the research efforts on prevention and treatment of CVD 

ignore age and have focused on the development of interventions that target “traditional” 

CVD risk factors such as obesity, hypertension, and diabetes. While these risk factors 

are undoubtedly important and research efforts to understand them are critical to advance 

knowledge, more work is needed to understand the impact of age on the development of 

CVD, given the robust correlation between the development of disease and advanced age.

Aging is a complex biological process characterized by epigenetic alterations, genomic 

instability, cellular senescence, and mitochondrial dysfunction, amongst other cellular 

changes. Although there is substantial inter-individual variability in the aging process, it 

is clear that sex differences are present in aging. For example, women live longer than men, 

consistent with lower biological ages as assessed by molecular biomarkers[3]. Nonetheless, 

women are frailer and have worse health at the end of life[3–5]. Substantial clinical 

data demonstrates widespread sex differences with respect to cardiovascular structure 

and function. However, at present, there is relatively limited information on molecular 

mechanisms of sex-specific differences in cardiac aging and how sex-specific differences 

in the heart interact with the aging process. The reason for this lack of knowledge may 

be rooted in the long tradition of male-biased research[6] and some of the complications 

in including women and female animals due to hormonal fluctuations. Here we attempt to 

summarize what is known of cardiac aging and sex differences that contribute to distinct 

cardiac aging in men and women.

CARDIAC AGING IN MEN AND WOMEN

The aging heart

Aging leads to deterioration of cardiac structure and function in both men and women[7]. 

Although the mechanisms are not fully clear and are multifactorial, an important 

contribution to increased risk of CVD with advanced age lies in greater time for exposure 

to injurious stimuli, such as hypertension, metabolic stress, or ischemia, over the life course. 

Additionally, the heart loses its capacity for repair, meaning that with repeated injury, the 

cumulative burden of stress is elevated, increasing the risk of disease[8]. Thus, it makes sense 

that older patients would have greater impairment of cardiac reserves and elevated risk of 

disease.

With advanced age, the heart becomes hypertrophic, defined as abnormal enlargement, or 

thickening, of the heart muscle[9], largely because of an increase in ventricular myocyte 

size[10]. Elevated collagen levels and non-enzymatic cross-linking render collagen stiffer 

and also contribute to the ventricular thickness and tension[11,12]. This fibrotic process 

impairs ventricular function and reserve[13,14], resulting in impaired diastolic function[15]. 

Systolic function is typically preserved in healthy aging; however, systolic reserve is often 
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diminished, resulting in a heart unable to increase contraction to meet metabolic demand. 

The mechanisms which underlie these changes in age-related cardiac function will be 

discussed in more detail below, with attention to the sex differences that underlie these 

changes in structure and function.

Sex differences in the aging heart and age-related cardiac disease

Sex-related differences in cardiac structure and function have been reported in several 

clinical studies[16–18]. Healthy women and men have different chamber dimensions and 

functions, even after indexing for body size. On average, females have a smaller left 

ventricular (LV) chamber with approximately 10% less LV mass than males, even after 

indexing for body size by body surface area[19]. Since women have smaller LV chambers 

and accordingly lower stroke volumes, a higher resting heart rate maintains a similar 

cardiac output to men. Women also have higher systolic and diastolic LV stiffness than 

men at a given age, and these differences are more prominent with aging, where steeper 

increases in LV stiffness are seen in women compared to men[20]. Cardiac contractility 

is well preserved in women but declined in men after age 50[21]. These sex differences 

in function with age are also demonstrated pre-clinically, where animal studies show that 

systolic function declines with age in males but not in females[22,23]. Sex differences in 

the aged heart are also evident in cellular studies. Male cells contract more strongly and 

rapidly than female cells[24,25], driven likely both by differences in sarcomeric protein 

and calcium-handling function[24]. Even though the number of cardiomyocytes is similar 

between sexes at birth[26], female cardiac myocytes are less likely to undergo apoptotic cell 

death compared to male myocytes, resulting in an elevated risk for cardiac myocyte loss 

in male hearts[27]. Indeed, this observation is supported by a recent single-cell sequencing 

study which reported that human female hearts contain a significantly higher percentage 

of ventricular cardiomyocytes than male hearts at middle to early older age[28]. Together, 

current evidence clearly shows sex-specific differences in cardiac aging at the cellular, 

anatomical, and functional levels [Figure 1].

Sex differences in cardiac aging likely contribute to different age-related cardiac 

pathogenesis observed in clinical populations [Table 1]. Older men are more likely than 

older women to develop heart failure with reduced ejection fraction[29]. Women, on the 

other hand, are more likely to develop heart failure with preserved ejection fraction (HFpEF)
[30,31], characterized by increased wall thickness and diastolic dysfunction with little or no 

reduction in ejection fraction. Men are more prone to ventricular arrhythmias[32,33]. Men 

are also at higher risk for coronary heart disease at younger ages[34], but women surpass 

men with age, and experience worse outcomes with myocardial ischemia, resulting in higher 

mortality and poorer quality of life[35–37]. In valvular heart disease, degenerative mitral 

regurgitation impacts a significant proportion of elderly women, particularly those with 

comorbidities[38]. While sex differences in cardiac physiology likely contribute to these 

clinical differences (discussed below), risk factors also vary between aged men and women, 

which contribute to different disease pathogenesis. For example, obesity, hypertension, and 

diabetes are highly prevalent in women with HFpEF, while the underlying cause of heart 

failure in men tends to be ischemia and coronary artery disease[39]. The contributions of 

these risk factors to the sex-specific development of cardiac aging are still being elucidated.
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Sex differences in cardiac fibrosis in the aging heart

Both aging and diastolic dysfunction are characterized by elevated ventricular stiffness and 

deposition of extracellular matrix (ECM) proteins, thus cardiac fibrosis has been pursued 

by several research groups[40] as a mechanism of age-related heart disease. Indeed, fibrosis 

is associated with ventricular compliance and impaired passive filling of the LV[41,42]. 

Age-related alterations in cardiac ECM are sex-dependent, with aged male rat hearts more 

fibrotic than female hearts[43]. In human imaging-based studies, myocardial fibrosis is more 

pronounced in the aging male heart than the female heart[44,45]. While the expression of 

collagen in human hearts did not differ between sexes, regulators of collagen metabolism 

differed between sexes[46]. Collagen types I and III were lower in young women than 

young men, but with age, the trend reversed, and women expressed higher collagen I 

and III compared to men[47]. Recently, it was reported that collagen I is the predominant 

type in the aged male heart, whereas collagen III was the main component in the aged 

female mouse heart[48]. Moreover, the authors correlated these sex-specific differences 

to sex-specific regional deposition of fibrosis, with males being more likely to undergo 

apoptosis and concomitant reactive interstitial fibrosis compared to females. In line with 

these studies, unpublished data from our lab suggests that the development of fibrosis with 

aging occurs in a temporally distinct manner in male versus female mice. We assessed 

collagen accumulation by Picro-Sirius red staining in the LV in mice from 4 distinct age 

groups: juvenile (4 weeks), adult (4-6 months), middle-aged (12 months), and aged (18 

months) [Figure 2].

Quantification of fibrosis showed that fibrotic content increases earlier in life for males, 

while this process was temporally delayed in females. When we analyzed the expression 

of key pro- and anti-fibrosis genes, we found that pro-fibrosis genes are upregulated in 

younger hearts of both sexes, and gradually decline with aging. Specifically, the expression 

of collagen I was higher in juvenile and adulthood and decreased in the aged female heart. 

In contrast, male hearts showed a decline in collagen I expression after juvenile-hood in 

mice[49]. On the other hand, the expression of anti-fibrotic genes gradually decreased with 

age, supporting the notion that accumulation of fibrous connective tissue in cardiac ECM 

is caused by slower removal of ECM components rather than due to increased deposition 

of fibrotic proteins into the matrix. These data suggest that reduced collagen degradation 

may be more important than increased de novo collagen synthesis in the pathogenesis of 

aging-associated fibrosis in a sex-specific manner. While activation of pro-fibrotic genes is 

considered to be a primary pathway for the development of fibrosis, newly emerging data 

consider disruption of anti-fibrotic pathways as also essential in this process. It appears 

that the fibrotic process occurs via different temporal trajectories by sex. Future studies 

which utilize life-course approaches, and/or aim to understand the differences in animals of 

juvenile and middle ages will yield insight into the temporal nature of these sex-specific 

differences in cardiac aging. Understanding the mechanisms by which male and female 

hearts become fibrotic with advanced age is important for the identification of anti-fibrotic 

therapies- a large unmet clinical need.
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Sex differences in aging at the cardiac myofilament

Even though whole cell contraction and relaxation are reliant on coordination from a 

myriad of regulatory processes in cardiomyocytes, the most basic contractile unit of the 

cardiomyocyte is the sarcomere. Sarcomeric protein interactions underlie contraction and 

relaxation, and thereby different protein isoforms or post-translational modifications on 

specific residues of sarcomeric proteins lead to significant differences in duration, rates, and 

intensity of contraction and relaxation. Simplistically, identifying key differences that occur 

at the level of the sarcomere between males and females as they age will provide the basis 

to understand larger, whole organ nuances and thereby provide therapeutic targets to modify 

aging-induced alterations.

It is clear that myofilament function is altered with age both in humans and animal 

models[50–58] but much like other cellular systems in aging, there is high heterogeneity 

in aging myofilament proteins. While conclusive functional changes are complicated by 

differences in animal models, age of the models, as well as differences in techniques, aging 

seems to modify passive stiffness, force generation, and calcium sensitivity, as well as 

prolong relaxation of the myofilament. However, it is clear that nuances in experimental 

design as well as, importantly, sex and health of the models warrant careful investigation 

and comparison. With this in mind, a study by Kane et al.[54,59] demonstrates the importance 

of incorporating a frailty assay or some assessment of whole-body aging as heterogeneity 

in biological aging clearly exists and likely confounds conclusions about myofilament 

modifications due to age. Moreover, this particular study makes it clear that the markers 

providing important information about aging may differ by sex since male animals had 

a significant correlation in their frailty scores to key modifications in their myofilament 

proteins, whereas female animals did not.

Of note, aging can induce altered myofilament function through either expression of 

different isoforms or through differential post-translational modifications. Nance et al.[60] 

reported that sarcomere lengthening is impaired in aged cardiomyocytes, which alters the 

length-dependent activation. One sarcomeric protein that regulates sarcomere length and 

contributes, in part, to the dynamics of sarcomeric lengthening is titin. Interestingly, a 

recent study determined that in male mice or humans, titin isoforms were not altered with 

age. However, phosphorylation at specific sites on titin were differentially modified in 

male mice[61]. Similarly, phosphorylation of serine 44 of cardiac troponin I is elevated, 

and contractile function decreased in aging rats[57]. Moreover, numerous reports suggest 

that myofilament proteins are differentially modified in males and females with age[54]. 

It is clear that sex hormones differentially impact myofilament function[62–69]. However, 

reports are conflicting with the overall effect of estradiol itself on myofilament function 

and modifications. Most notably, several studies demonstrate increased calcium sensitivity in 

response to acute loss of estradiol or low estradiol levels. However, chronic loss of estradiol 

leads to decreased myofilament calcium sensitivity. These contrasting reports suggest that 

changing estrogen levels at pivotal aging events such as perimenopause represent a different 

regulatory milieu than pre-menopause or even menopause. Decreased testosterone also has 

been shown to modify myofilament function, inducing prolonged relaxation and diastolic 

dysfunction in aged animals[62]. In line with this, orchiectomized male rats demonstrate 
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decreased active force and slower cross-bridge cycling with higher expression of beta-

myosin heavy chain and lower phosphorylation of key sarcomeric proteins[69]. However, an 

important consideration is that the majority of the sex hormone studies have been completed 

in adult or young animals and not in old animals. Therefore, while it is clear that estrogen 

and testosterone impact myofilament post-translational modifications, determining how age 

itself impacts myofilament along with hormonal changes is critical.

MECHANISMS OF SEX DIFFERENCES IN CARDIAC AGING

Sex differences in cardiac disease have long been attributed to estrogen, a hypothesis which 

largely stems from the loss of cardioprotection in women following menopause. While 

estrogen undoubtedly plays a significant role in the cardiac disease phenotype between men 

and women, the contribution of other sex hormones as well as non-hormonal mechanisms 

have emerged as critical regulators of cardiac disease and will be the focus of this section.

First, to help guide our discussion, we begin with a conceptual framework for understanding 

the basis of sex differences. This model was put forth by Arnold[70] to guide the study of 

sex-based differences in physiology and disease. This framework suggests that there are 

three causes of sex differences. First are the effects that are due to activation of gonadal 

steroid hormones, such that shortly after removing them, [i.e., by Ovariectomy (OVX) and 

orchiectomy] the effects are attenuated. Several effects of gonadal steroid hormones persist 

following gonadectomy, and these are referred to as long-term organizational effects of 

hormones- i.e., the persistence of internal and external genitalia. Lastly, even following 

gonadectomy, there remain differences that cannot be explained due to steroidal hormones, 

but are rather due to the effects of sex chromosome genes acting outside the gonads. This 

framework leads to a relatively standard strategy for understanding sex-based differences 

and identifying sex-based factors-1) remove the gonads and quantify phenotypic changes. If 

they are present, identify which hormone (estrogens, testosterone, progesterone) drives the 

phenotype. If sex differences persist following gonadectomy, then organizational effects and 

non-hormonal effects should be studied. While this paradigm is simple and straightforward 

and certainly provides mechanistic insight, to date, the bulk of what is known about sex 

differences has focused predominantly on estrogen, with sex chromosome effects rarely 

investigated. We propose that a comprehensive analysis of sex hormone and chromosome-

regulated mechanisms will yield a greater understanding of sex differences in cardiac aging 

and disease.

Sex hormone-mediated differences in cardiac aging

In premenopausal women, 17β-estradiol (E2) produced by the ovaries is the primary 

circulating estrogen. High concentrations of E2 act primarily as an endocrine factor on distal 

tissues. Serum estradiol concentrations are low in adolescence and increase at menarche. 

In adult women, estradiol fluctuates with the menstrual cycle, ranging from 100 pg/mL in 

the follicular phase to about 600 pg/mL at ovulation. Estradiol is high during pregnancy, 

and then after menopause, concentrations fall to similar values or lower to those in age-

matched men (5 to 20 pg/mL). Following menopause and in men, extragonadal sources 

are responsible for the low levels of E2 production, largely acting in paracrine roles. 
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While aging female rodents do not undergo true menopause, they do become reproductively 

incompetent or senescent with advanced age, a state referred to as estropause. Estropause 

is characterized by persistently lower estrogen, varying length of the estrous cycle, with 

eventual cessation of cyclicity around 12-14 months of age[71]. Ovariectomy of aged animals 

supports the loss of estrogen with aging, as animals do not undergo changes in metabolic 

function with ovarian estrogen removal, nor do significant changes in cardiac phenotype 

occur with removal of the ovaries[72]. However, OVX and aging are not synonymous. While 

they both are characterized by loss of ovarian estrogen, as discussed above, the aged heart 

is phenotypically distinct from the adult-both in the basal as well as the stressed state. Thus, 

we propose that future work dissect the impact of estrogen from aging on cardiac function 

using approaches which uncouple biological age from ovarian estrogen status.

Most data regarding estrogen signaling refers to E2. E2 is inversely associated with 

cardiovascular disease events in postmenopausal women, with women maintaining 

high estrogen levels having lower heart disease risk[73]. A wealth of data has 

demonstrated beneficial effects of E2 treatment on the heart, including reduced fibrosis, 

attenuated oxidative stress, improved mitochondrial function, and attenuation of cardiac 

hypertrophy[74]. Estrogenic effects in the heart are due to signaling through estrogen 

receptors α and β (ERα and ERβ) as well as G-protein-coupled ER (GPER). It is well-

accepted that the myocardium is responsive to circulating androgens and estrogens, due to 

the expression of ERα and ERβ in the myocardium, likely in multiple cell types including 

myocytes and cardiac fibroblasts[75]. E2 binds ER, the complex internalizes, translocates 

to the nucleus, and activates transcription of estrogen-responsive genes. In addition to 

the protection afforded by E2 in vitro and in pre-clinical models of cardiac disease, the 

beneficial role of E2 is also supported by studies that show depletion of ovarian estrogen 

by OVX reverses the protective effects of E2[76]. These gain and loss of E2 studies, along 

with the epidemiology data showing clear loss of cardiovascular disease protection with 

menopause, led to the early hypothesis that restoration of E2 with aging would reduce 

heart disease morbidity and mortality. However, early studies to give back E2 to the aged 

heart were not successful[77]. Aging has been suggested to diminish the ability of estrogen 

to be protective, and a “timing” hypothesis for estrogen therapy has emerged[78]. In aged 

spontaneously hypertensive rats, E2 delivery did not attenuate hypertrophy or molecular 

signatures of the failing heart, such as myosin heavy chain expression[78]. The authors 

suggested that this was in part due to not only reduced E2 synthesis but also impaired 

estrogen metabolism, given differences in expression of 17β-HSD, which catalyzes the 

reduction of weak estrogens into potent estrogens like E2. Indeed, estrogen metabolites 

(2-hydroxyestradiol and 2-methoxyestradiol) are also emerging as regulators of cardiac 

function, likely through some similar mechanisms as E2. Age-related changes in estrogen 

receptor and GPER expression have also been studied as a mechanism to explain the loss of 

cardioprotection with age. While cardiac GPER expression appears to increase with age in 

mice of both sexes, cardiac ERα decreases with age in females but remains unchanged in 

males[79]. Together, while it is clear that E2 is cardioprotective and loss of E2 occurs with 

advanced age, the mechanisms by which E2 protects the heart, how this protection declines 

with age, and effective therapeutic strategies for interventions against age-related declines 

have yet to be fully elucidated.
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Testosterone decreases with advanced age, not only in men[80], but also in women[81]. Age-

dependent reductions in testosterone are also evident in aged male rodents[82]. Considerable 

evidence has emerged that low testosterone may therefore also contribute to increased risk 

for heart disease with aging[73,83,84]. The link between testosterone and heart disease is 

particularly strong for diseases of impaired contractility such as heart failure. The biological 

effects of testosterone occur through androgen receptors expressed in the heart, at least 

in cardiac myocytes[85]. Binding of androgens causes transcriptional regulation of androgen-

responsive genes. However, similar to estrogen, non-genomic actions of testosterone have 

also been described.

Mechanistic understanding of androgens on cardiac function comes from studies of 

gonadectomy. In young mice, bilateral orchiectomy attenuates contractile function[86]. 

Long-term withdrawal of testosterone slows relaxation[62]. On the other hand, 

epidemiological studies of anabolic steroid users indicate that high levels of exogenous 

testosterone negatively impact the heart[87]. The long-term effects of modest or 

physiological levels of testosterone on the heart remain unsettled, as evidenced by the recent 

initiation of a clinical trial to determine the effects of long-term testosterone treatment on 

cardiovascular outcomes[88]. The impact of gonadectomy in the aging heart is not clear but 

likely differs from those in the young, given that gonadectomy in aged mice did not change 

testosterone or measures of muscle mass - findings contrary to those reported in younger 

male mice[89].

In addition to direct androgen effects, testosterone also impacts cardiac function due to the 

fact that estrogen biosynthesis is dependent on testosterone availability. Testosterone can 

be converted to E2 by aromatase, expressed in non-gonadal tissue. While the expression 

of aromatase in the heart is contentious[79,90], even low expression may meaningfully 

contribute to E2 synthesis in a setting of low systemic concentrations. E2 produced 

by aromatase has been speculated to act locally in a paracrine or autocrine manner, 

rather than as a hormone as when gonadal E2 synthesis is intact. While the cellular 

location of aromatase expression has not been fully described, there is some evidence 

that it is predominantly expressed in the coronary vasculature, with lower expression in 

cardiac myocytes[91]. To date, the expression of aromatase in cardiac fibroblasts is not 

known. Cardiac localized aromatase likely controls the balance between testosterone and 

estrogen, permitting sex steroid regulation of cardiac function. In support of this hypothesis, 

deletion of aromatase profoundly alters the cardiac stress response[90]. Understanding the 

contribution of aromatase to E2 synthesis in the postmenopausal and aging heart is an area 

ripe for future research.

As alluded to above, dissection of aging from loss of gonadal hormones with advanced age 

is not yet clear. That is- are age-related changes in cardiac function due to natural aging, 

due to age-related declines in estrogen, or both? Clinical studies of women in different 

phases of the menstrual cycle as well as peri-, menopausal, and postmenopausal women, 

suggest that while sex hormones (especially E2 and FSH) regulate arterial stiffness, the 

effects are largely driven by age[92]. In support of this hypothesis, OVX did not cause 

independently cause cardiac remodeling and dysfunction in rats, but rather aging resulted in 

diastolic dysfunction and mild systolic impairment[93]. Together, these findings suggest that 
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associations between hormones and cardiovascular function are likely different at different 

ages or reproductive stages. These types of studies should be investigated by removal of 

gonads in aged mice and quantifying cardiac function in aged animals.

Sex chromosome mediated mechanisms of cardiac aging

We recently reported significant differences in the cardiac transcriptome that are apparent 

before the onset of major sex hormones and sexual maturity, as well as in the hearts 

of reproductively incompetent aged females[49]. The cardiac proteome also appears to 

develop differently between males and females, independent of sex hormones[94], given the 

robust differences in proteomics in mice at embryonic day E9.5, with gonadal development 

occurring at day Ell. When sex hormones cannot explain sex differences, either due to 

the persistence of sex differences post removal of gonads, it is logical to conclude that 

non-hormone mediated mechanisms must be contributing.

Clinical genomics studies suggest that age-related cardiac disease develops in conjunction 

with sex chromosomes. Polysomy of the Y chromosome is associated with elevated CVD 

mortality due to atherogenic lipid profiles[95]. In addition, women with monosomy X 

(Turner Syndrome) also have an elevated risk for coronary artery disease[96]. However, 

in humans, sex chromosome aneuploidy conditions (XO and XXY) are also associated with 

aberrant hormonal levels, making it difficult to separate chromosomal effects. To circumvent 

this problem, several mouse models have been generated which permit the dissection of sex 

chromosome differences from gonadal hormones. For the purposes of this review, we will 

discuss two of such models, though we refer the reader to reviews on sex hormones and 

chromosomes in CVD for more details[97]. To dissect the contributions of sex hormones 

from chromosomes, mice have been generated in which sex chromosomes are separate 

from gonadal hormones. In the case of the four core genotype (FCG) mouse, two separate 

mutations delete the testis-determining gene (Sry) from the Y chromosome or insert it 

into an autosome. This results in an XX female mouse, an XY- mouse which develops 

ovaries and subsequently ovarian hormones, as well as XY-Sry and XXSry transgenic mice 

that are gonadal males. If XX and XY mice differ despite similar hormone levels, then 

sex chromosomes are likely responsible for the phenotype. The XY* mouse is the other 

common model, where XY* mice possess the Y* chromosome, which has an aberrant 

pseudoautosomal region with permits crossing over with X chromosome during meiosis. 

This produces abnormal recombination of X and Y. Mating XY* males to XX females 

produces progeny that are gonadal males or females, each with one vs. two X chromosomes.

Given the relatively recent emergence of these models, cardiac and certainly aging studies 

utilizing them are sparse. In the FCG mouse model, XX mice, compared to XY mice, 

had more beneficial lipid profile in the form of elevated high-density lipoprotein[98]. The 

magnitude of hypertension induced by angiotensin II is greater in gonadectomized XX mice 

compared to XY[99]. In the XY* mouse model, at baseline at two months of age, all mice 

had a similar cardiac function, but X mice have higher vulnerability to I/R injury compared 

with XY* mice, due to the number of X chromosomes rather than the absence of the Y 

chromosome[100].
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Collectively, it is clear that neither hormones nor chromosomes alone are responsible for 

sex differences in cardiac disease and aging. Rather, the two mechanisms likely work 

separately as well as through overlapping or intersecting mechanisms to regulate cell 

and organ-level physiological and molecular differences. A recent publication using the 

FCG model quantified the cardiac proteins under the regulation of hormones (proteins 

that segregated with ovaries and testes) versus those that were chromosomally controlled 

(segregated with chromosomes). While the authors identified 519 under hormonal control 

and 159 proteins under chromosomal control, they also identified a subset that involved a 

combination of chromosome and hormonal control[94]. They speculated that these genes 

are regulated by both mechanisms or, could be driven by chromosomes but opposed 

by hormones. In the latter interpretation, male and female disease phenotypes would be 

similar in presentation, but the mechanism of development would vary by sex. In this case, 

treatment of the disease could also vary between males and females. With respect to aging, 

as briefly discussed above, dissecting chromosomes and age-related changes in hormones is 

necessary to fully elucidate sex differences in the heart. In a series of experiments aimed 

at understanding how gonadal hormones and chromosomes influence hypertension, adverse 

sex chromosome effects which contributed to hypertension were exacerbated by the removal 

of gonadal estrogen by OVX. That is, the interaction between the X chromosome and 

estrogen could contribute to hypertension in postmenopausal women[99]. To date, these types 

of investigations are incredibly limited and warranted to dissect the mechanisms of cardiac 

aging in male and female hearts.

SEX DIFFERENCES IN THE CARDIAC STRESS RESPONSE VIA THE 

ADRENERGIC CASCADE

While sex differences in healthy aging are important, as discussed above, so are sex 

differences in the aged heart response to stress and/or ability to tolerate stress. The aging 

heart is well-characterized by a diminished stress response, resulting in elevated morbidity 

and mortality compared to younger animals. In young models, the female advantage is 

also well-characterized, with young females being at less risk of developing heart disease 

compared to males of similar age[101]. The female advantage declines with advanced age, 

as evidenced by a steeper rate of heart disease risk increase in women older than 50 

compared to men[102]. However, given the assumption that sex differences disappear with 

estro/menopause, differences in the aged male and female heart to cardiac stress have been 

sparsely studied. These studies are also complicated by the diminished ability of aged 

cohorts to survive cardiac insult, further contributing to a lack of sex difference studies in the 

aging heart.

In response to cardiac stress, compensatory mechanisms are engaged in an effort to maintain 

cardiac function[103]. One of these major compensatory mechanisms is the activation of 

neuro-hormonal system, largely mediated by the stimulation of adrenergic receptors (AR) 

by catecholamines[104,105]. Activation of AR and downstream signaling increases calcium 

sensitivity and phosphorylates myofilament contractile proteins, shifting calcium affinity 

and contractile dynamics, in an effort to increase cardiac work. The human heart expresses 

two broad classes of adrenergic receptors, the α-adrenergic and the β-adrenergic families. 
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Each of these families can be further subdivided into subclasses, but since the β-adrenergic 

receptor (β-AR) cascade has been the focus of active research in the context of cardiac 

function, we will focus on sex differences in the β-AR and changes in this cascade with 

advanced age.

β-AR are members of the G protein-coupled receptor (GPCR) superfamily of receptors. 

There are three major subtypes of β-ARs identified in the human heart, α1-, β2-, and 

β3-AR[106–108], and of these, β1-AR and β 2-AR have earned the greatest interest due 

to their role in myocardial contraction. In brief, activation of the cascade starts with the 

binding of β-AR agonist, which causes a conformational change in the receptor. A primary 

effect of the β-AR is stimulation of adenylyl cyclases, multiple subtypes of which are 

expressed in human cardiac tissues. Adenylyl cyclases catalyze the conversion of ATP to 

the second messenger cAMP, which in turn binds to the regulatory subunits of protein 

kinase A (PKA). PKA phosphorylates serine and threonine residues on a number of 

proteins, thereby affecting a spectrum of cellular processes ranging from contractility to 

global gene expression patterns. Important PKA targets that acutely modulate myocardial 

contractility are β-ARs, L-type Ca2+ channels, the sarcoplasmic reticular Ca2+ ATPase 

inhibitory protein, phospholamban, and troponin I (TnI)[109]. Once the incoming signal is 

transduced, termination of the signal is accomplished to balance activation and deactivation. 

β-ARs deactivation is mainly accomplished through the actions of GPCR kinases (GRKs)
[110]. GRK recruits β-arrestins, which uncouple the receptor from G-proteins and promote 

internalization and down-regulation of the receptor[110].

Adrenergic regulation of cardiac function with aging

Age-related declines in the responsiveness of adrenergic activation are well-established[111]. 

Decline in sensitivity to catecholamine stimulation has been attributed to high levels of 

circulating catecholamines, which lead to downregulation of β-adrenergic receptor and 

pathway activation[105,112,113]. Diminished β-adrenergic receptor sensitivity is called “β-

adrenergic desensitization” and is characterized by altered ventricular inotropic reserve and 

exercise intolerance[111,114]. The underlying mechanisms have not been fully elucidated, 

but evidence suggests that fewer β-adrenergic receptors, other components of the β-

adrenergic signaling pathway, or a combination play a role[111,112,114,115]. In addition to 

adrenergic desensitization, aging also influences the cardiac response to adrenergic-mediated 

therapeutics. Stimulation of AR with receptor agonists has been reported to have a 

deleterious effect on cardiac function in patients over the age of 65[116]. Although to date, 

no large clinical trial has specifically set out to examine β-blockade in older patients, a small 

uncontrolled observational study with patients with a mean age of 78 noted twice the rate 

of withdrawal and no improvements in symptoms of chronic heart failure[117] compared 

to younger patients. Given the strong association of advanced age with heart disease risk, 

understanding the impact of age on adrenergic therapeutics such as β-blockade is warranted.

Sex differences in the cardiac adrenergic cascade

In addition to differences with age, sex differences also exist in cardiac function in 

response to AR stimulation. Female patients maintain cardiac output through changes in 

heart rate[118], while male hearts tend to utilize changes in Frank-Starling mechanisms to 
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increase cardiac output. Animal studies also reveal sex differences in AR stimulation and 

cardiac performance. Data from our group in a model of isoproterenol-mediated adrenergic 

activation support this observation, with a significant increase in cardiac output in adult 

females, driven by higher heart rate alongside unchanged stroke volume. Isoproterenol also 

resulted in sex-specific changes in cardiac structure, function, and gene expression across 

age and sex[119], sex differences which were differentially changed with age. Previous 

reports of catecholamine stimulation in humans demonstrated that adrenaline infusion in 

young (average age 30) and older (average age 60) adults caused similar increases in 

heart rate, but larger increases in stroke volume and ejection fraction in younger compared 

to older subjects[120]. Additionally, young males demonstrated a greater increase in heart 

rate than young females in response to adrenergic receptor stimulation. Together, these 

data suggest that with age, males demonstrate exacerbated decline in adrenergic-mediated 

function.

Despite the well-established observation that declines in adrenergic activity occur with 

aging and disease and that β-ARs are key pharmaceutical targets, only a few studies 

have investigated mechanistic sex differences, and the results of these studies have been 

inconsistent[121–123]. Gonadal hormones influence the response to the β-blockers in animal 

models. In a rat study, β-blocker treatment was effective only in males, but not in 

gondally intact females[124,125]. When it comes to the comprehensive assessment of the 

adrenergic cascade, the majority of the studies investigating sex differences have assessed 

the contractile response[121,126] with a smaller number of studies aimed at understanding 

calcium handling[127,128]. For instance, when the expression and abundance of calcium 

handling proteins are compared between sexes, female rats showed significantly higher 

levels of these proteins[129]. We recently reported that β1-AR and β2-AR expression and 

several downstream AR targets were altered in a sex-dependent manner in response to 

isoproterenol. While expression of β2-AR was several fold increased in aged male hearts in 

response to AR stimulation, it remained unchanged in the aged female[119]. Sex differences 

have been reported in the activity of adenylyl cyclases and cAMP production[126,127], as 

well as the activity of phosphodiesterases in cAMP breakdown[130]. These studies report that 

female myocytes have lower levels of basal cAMP. If basal cAMP is lower in females, this 

would be expected to cause less PKA activation. Indeed, downstream measurements of PKA 

activity show sex differences, in such that stimulation of β-AR increased Ca2+ currents, 

Ca2+ transients and contraction in myocytes from females in comparison to males[130]. 

Testosterone inhibits phosphodiesterase activity in the rat heart[131]. The inhibition of 

phosphodiesterase can potentially explain higher levels of basal cAMP in male hearts 

compared to females. While these previous findings clearly demonstrate that sex differences 

exist in the activation of the adrenergic cascade, and that these differences change with 

age, it is clear that more work is necessary to investigate mechanistic differences in the AR 

cascade. Given the widespread use of pharmacological agents which target the adrenergic 

cascade, studies utilizing sex and age as biological variables are needed.

CONCLUSIONS

Sex differences underlie many facets of cardiac aging, including prevalence, severity 

and manifestation and susceptibility to a variety of heart diseases. However, despite 
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the observation that men and women age differently (as typified by premenopausal 

cardioprotection), the mechanisms of sex-specific cardiac aging still remain unclear. 

Understanding the contributions of sex and age, as well as their complex interplay in 

the context of cardiac health, represents a fundamental step toward sex-and age-specific 

medicine and the development of more effective options to prevent and treat heart disease 

for both male and female patients.
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Figure 1. 
Sex-specific cardiac aging in male and female with respect to changes in major 

sex hormones testosterone and estrogen. While aging is characterized by ventricular 

hypertrophy, fibrosis, and changes in ventricular function, several mechanisms are more 

pronounced in the male heart compared to female. For example, the aged male heart 

demonstrates eccentric remodeling, systolic dysfunction, and lower adrenergic sensitivity 

as opposed to aged female heart, which demonstrates diastolic dysfunction and concentric 

remodeling. While some of these changes likely coincide with temporal changes in sex 

hormones, others are likely regulated by non-hormonal changes, or occur via different 

temporal patterns in the male and female heart.
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Figure 2. 
Fibrosis in the male and female heart across the life course. Collagen accumulation was 

assessed by picro-sirius red in LV in mice from 4 distinct age groups: juvenile (Juv; 4 

weeks), adult (4-6 months), middle-aged (12 months), and aged (18 months) mice of both 

sexes. Quantification of fibrosis demonstrates that fibrotic content increases earlier in life 

for males, while females show relatively delayed fibrosis later in life. (A) Representative 

images; (B) quantification of fibrosis content in male and female samples. In male 

LV, fibrotic content was significantly higher in adult, while in female, fibrosis was not 

significantly elevated until middle age. n = 3/group; (C) expression of pro- and anti-fibrosis 

genes occurs in a sex-dependent manner with aging. Blue: male; pink/red: female.
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Table 1.

Common age-related cardiac diseases that exhibit sex-specific differences

Sex differences Ref.

Heart failure HFrEF more prevalent in men
HFpEF more prevalent in women
Women have more comorbidities, more likely to die with HFpEF

[29,30,31]

Ventricular arrhythmias More prevalent in men [32,33]

Ischemic heart disease Higher risk for development of disease in men at younger age
Worse outcomes and higher mortality for women following Ml at older age

[29,35–37]

Valvular disease Aortic regurgitation more prevalent in men
Degenerative mitral valve disease more prevalent in elderly women (> 80 years)

[38]

HFrEF: Heart failure with reduced ejection fraction.
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