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Propensity score weighting and outcome regression are popular ways to adjust for observed confounders in
epidemiologic research. Here, we provide an introduction to matching methods, which serve the same purpose
but can offer advantages in robustness and performance. A key difference between matching and weighting
methods is that matching methods do not directly rely on the propensity score and so are less sensitive to its
misspecification or to the presence of extreme values. Matching methods offer many options for customization,
which allow a researcher to incorporate substantive knowledge and carefully manage bias/variance trade-offs
in estimating the effects of nonrandomized exposures. We review these options and their implications, provide
guidance for their use, and compare matching methods with weighting methods. Because of their potential
advantages over other methods, matching methods should have their place in an epidemiologist’s methodological
toolbox.

epidemiologic methods; propensity score

INTRODUCTION

In epidemiology, the frequent inability to randomly assign
participants to various exposure statuses makes establish-
ing the causal effects of those exposures challenging. For
example, Samples et al. (1) sought to characterize the effect
of opioid misuse on suicidal behaviors, but it would be
implausible to randomly assign exposure to opioid misuse.
One of these challenges is that of confounding, the cir-
cumstance in which the exposure and outcome of interest
share common causes. Statistical methods exist to adjust for
confounding when the relevant variables have been mea-
sured; these methods include some that involve modeling the
outcome (analysis-based methods), such as regression and
g-computation; others that involve mimicking the balancing
qualities of randomized trials (design-based methods), such
as inverse probability weighting; and combinations of the 2
approaches.

A set of methods in the second class are matching meth-
ods, which involve the reorganization or selection of units in
the sample so the exposure is independent of the measured
covariates in the matched sample (2). The most typical use
of matching involves finding a subset of the unexposed
sample with a covariate distribution similar to that of the

exposed sample and discarding the rest, leaving a matched
sample from which a causal effect can be estimated (ideally)
without confounding. As a design-based method, matching
is conceptually similar to inverse probability weighting in
that it operates on the sample without reference to the out-
come, which offers it some advantages in terms of robustness
and transparency over analysis-based methods like outcome
regression (3, 4). Design-based methods have the advan-
tage of allowing extensive diagnostics without invalidating
inferences because the potential effectiveness of a method
in a specific data set can be assessed before estimating the
exposure effect (5). When used effectively, design-based
methods can reduce the dependence of results on specific
modeling choices made by the analyst (6).

Although matching is popular in several research disci-
plines, including medicine, education, political science, and
economics, it is used less in epidemiology, where inverse
probability weighting is more common. An exception is in
pharmacoepidemiology, where matching has been used to
examine the effects of medical products on health outcomes
(7–9). Matching can have some advantages over weighting,
including robustness to model misspecification and methods
of customization that can increase precision and robustness
to violations of certain assumptions (5). The purpose of this
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Figure 1. A directed acyclic graph demonstrating classic confound-
ing of the exposure (A)–outcome (Y) relationship by covariates (X).

article is to provide an introduction to matching methods
for epidemiologists, highlighting several of the ways to cus-
tomize a matching analysis and their statistical implications.
Our goal is not to be comprehensive but rather to present
contemporary perspectives on matching and orient readers
to the large literature on matching methods.

MATCHING PRELIMINARIES

Assumptions for causal inference

Matching is used primarily when examining the effect of
a point exposure (i.e., at a single time point) that has 2 expo-
sure levels (e.g., exposed and unexposed). (Extensions to
multicategory exposures exist but are not discussed here; see
Lopez and Gutman (10) for a review.) The problem matching
is used to solve is confounding by measured covariates,
represented by the directed acyclic graph in Figure 1, with A
being the exposure, Y the outcome, and X the confounding
covariates (i.e., confounders). Confounders are variables
that cause selection into exposure status and the outcome
(see VanderWeele and Shpitser (11) for a more formal def-
inition); this manifests as covariate imbalance: differences
in the covariate distributions between the exposed and unex-
posed. The bias in an exposure effect estimate is a function
of the imbalance in covariates that cause the outcome. The
goal of matching is to reduce this bias by reducing imbalance
in the matched sample.

A critical assumption for matching to produce estimates of
the exposure effect that can be interpreted validly as causal
is no unmeasured confounding, known variously as condi-
tional exchangeability (12), ignorability (13, 14), or sat-
isfaction of the backdoor criterion (15). This assumption
requires that all relevant confounders have been measured,
which, in practice, may be hard to satisfy, though sensitivity
analyses exist for when this assumption is in doubt (16, 17).
Other necessary assumptions include positivity—that the
probability of being either exposed or unexposed is nonzero
for all individual in the analysis (12, 18)—and the stable unit
treatment value assumption, which requires that outcomes
for individuals not depend on the exposure status of other
individuals (19, 20). These assumptions, along with the as-
sumption of no unmeasured confounding, are not unique to
matching and are common to most methods that rely on con-
trolling for confounding using observed variables, including
regression adjustment and inverse probability weighting.

Although causal assumptions are often invoked when
using matching, matching is simply an adjustment method
that can be used regardless of whether these assumptions
are met; it is the interpretation of the estimated effect after
matching as causal that requires these assumptions (21). In
this sense, the methods described here can also be used to

form “balanced comparisons” where the goal is to compare
outcomes between 2 groups that have been “equated” on
a set of covariates, without a causal interpretation, such as
when analyzing disparities between groups (22).

Performing a matching analysis

Here we describe the basic steps of a standard matching
analysis, with more details in the sections that follow. Match-
ing can involve subset selection (i.e., selecting units from the
sample to retain and dropping the rest) or stratification (i.e.,
assigning units to pairs or strata containing both exposed and
unexposed units); some methods, like pair matching, involve
both. The outputs of a matching specification are a set of
matching weights and stratum identifiers, which are used
in estimating the exposure effect. In 1:1 pair matching, in
which each exposed unit is paired with an unexposed unit
and any unpaired units are discarded, the matching weights
are 1 for those paired and 0 for those dropped, and the
pairs form the strata. Over time, the matching literature has
expanded to include a much broader set of methods with
different characteristics, strengths, and limitations. In the
section Matching Methods, we describe the specifics of a
broad variety of these approaches to help readers understand
the spectrum of options and what may be most appropriate
for a particular analysis.

After matching, one must assess the quality of the match-
ing specification, which includes assessing covariate balance
and other properties of the resulting matched sample. If the
matched sample is of unacceptable quality or if its quality
can be improved (as we discuss in the section Evaluating
Matches), elements of the matching specification should
be changed and the matching performed again. This pro-
cess continues until a high-quality matching specification is
found. This process, though, should maintain the separation
of design and analysis by not estimating the exposure effect
until the final matching specification is selected (4). We
describe how to assess the quality of the matches in the
section Evaluating Matches.

Once a high-quality matching specification has been found,
the exposure effect can be estimated in the matched sample.
This typically involves fitting a regression model of the
outcome on the exposure (and, optionally, the covariates),
incorporating the matching weights and strata into the esti-
mation of the model coefficients and standard errors. We
describe this process in the section Estimation and Inference
After Matching.

Quantity estimated

The quantity matching is most often used to estimate (i.e.,
the estimand) is the average exposure effect among those
who were exposed, also known as the average treatment
effect on the treated, which is the average difference between
the observed outcomes for those exposed and their counter-
factual outcomes had they not been exposed. This is the
same quantity estimated using weighting by the odds. Some
matching methods allow estimation of the average exposure
effect in the population, the same quantity estimated with
inverse probability weights. The choice of estimand depends
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Table 1. Matching Methods Corresponding to Estimands

Estimand Matching Method

Average exposure effect in the exposed Pair matching without a caliper

Full matching

Propensity score stratification
Average exposure effect in the population Full matching

Propensity score stratification
Average exposure effect in the matched sample Pair matching with a caliper

(Coarsened) exact matching

Cardinality matching

on the desired target population of interest, which should
be specified before the analysis, and matching methods
appropriate for that estimand should be used (Table 1).
Desai and Franklin (23) present considerations for making
this choice. Some matching methods, described in more
detail in the section Matching Methods, can change the
estimand by discarding exposed units; these methods should
be used with caution if one has a specific target population in
mind (24).

Measuring the similarity between units

Matching requires a notion of the similarity between units
to determine how strata or pairs should be formed and
how close units are to each other. Given that the goal of
matching is to attain balance on the covariates, the covariates
themselves can be used directly to determine the similarity
between units. When many covariates need to be controlled
for, however, such as in the analysis of large health-care
databases containing many potential proxies for confounders
(25), it may be impossible to use covariates directly because
of the curse of dimensionality (5): the more covariates there
are, the harder it is to find units similar on all covariates
(26, 27). Instead, one can use methods that summarize the
covariates into a lower-dimensional measure, such as the
propensity score, the predicted probability of exposure given
the covariates (13). Propensity scores are often estimated
as the predicted values resulting from a logistic regression
of exposure status on the covariates, though more sophis-
ticated and flexible optimization- and machine learning–
based methods increasingly are being used (28–30).

Within strata defined by the true propensity score, exposure
status is independent of the covariates; in this sense, the
propensity score is a balancing score, making it ideal as a
measure of similarity (13). Although this property does not
imply that units with the same propensity score will have
identical covariate values, it does allow matching on the pro-
pensity score to yield groups of exposed and unexposed units
balanced on the measured covariates. However, because
propensity scores must be estimated, their theoretical prop-
erties may not hold in a given specification, and the quality
of the resulting matched sample must be evaluated (5).

Overlap and common support

There are sometimes regions of the covariate space where
the distributions of the exposed and unexposed do not over-
lap; in these scenarios, restricting the analysis sample to a
region of common support can prevent extrapolation. Com-
mon support can be assessed by examining the overlap
between the distributions of covariates and the propensity
score before matching (5). Methods of restricting the sample
to a region of common support include trimming on the
basis of a set values or quantiles of the propensity score
(24, 31, 32), discarding units outside the convex hull of
the covariates (33), and using covariate cutoffs to mimic
the selection criteria of a clinical trial (34). In some cases,
common support restrictions can reduce unmeasured con-
founding that occurs in the extremes of the propensity score
distribution (31). However, restricting the sample can change
the estimand by shifting the distribution of the covariates
in the remaining sample toward a population with clinical
equipoise (i.e., where either exposure status is somewhat
likely for all included units), and this should be indicated
in the interpretation of the resulting effect (24).

MATCHING METHODS

Broadly, matching methods involve grouping units that
are similar to each other but differ in their exposure status,
which is accomplished by subset selection and/or stratifi-
cation. In this section, we describe these methods in more
detail, providing examples of how to customize a matching
specification to achieve good statistical performance and
fully take advantage of the robustness properties matching
has to offer. We then discuss how to assess the quality of
matches to decide which options should be used for the
final matching specification in which the exposure effect is
estimated. A schematic of matching methods is displayed in
Figure 2.

Subset selection and pairing

Subset selection can be thought of as extracting from the
original sample a subsample that looks like it could have
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Original Sample

A)

1:1 Pair Matching with Caliper

B)

Stratification

C)

Full Matching

D)

Weighting by the Odds

E)

Figure 2. A visual demonstration of matching and weighting for
the average exposure effect in the exposed on a toy data set.
Exposed units (filled circles) and unexposed units (unfilled circles)
are aligned horizontally by their propensity score. The size of the
dots corresponds to the value of the resulting matching weights for
the matching methods and propensity score weights for weighting by
the odds. Links between units represent pairs, and long vertical lines
represent stratum boundaries. Notice that only 8 of the original 10
exposed units remain after 1:1 pair matching with a caliper, changing
the estimand. In this example, the best balance and effective sam-
ple size were found with full matching and stratification; the worst
balance and effective sample size were found with weighting by the
odds, due to the extreme weight for the rightmost unexposed unit.

been obtained through random exposure assignment, at least
with respect to the observed covariates (5). This feature
makes subset selection methods transparent, easy to explain
to nontechnical audiences, and compatible with any analysis
that could be used with data from a randomized trial. The
most common method of subset selection is pairing, which
involves finding pairs of similar units that differ in their
exposure status and are otherwise close, where closeness
is measured using a quantifiable distance metric. Exposed

units are paired with unexposed units on the basis of this
distance, and any unpaired units are discarded. The output
of a subset selection method includes a matching weight
for each unit, typically 1 if remaining in the sample and
0 if dropped, though some matching methods can yield
matching weights taking on other values. If pairing is used,
pair membership is also included.

There are many ways to customize a pair-matching spec-
ification to increase the precision of the estimated effect,
improve balance, and improve its robustness to potential
misspecification of any explicit or implied models. In the
following subsections, we describe these options and their
implications, which are summarized in Table 2.

Distance measure used. With pairing, a distance measure
must be defined for each potential pair of units. This distance
can be constructed directly from the covariates (e.g., as the
Mahalanobis distance (35) or its rank-based robust variant
(36)). Pairing on these distance measures can often allow
imbalance to remain, due to the curse of dimensionality, so
an alternative is to use the difference between values of a
covariate summary measure, like the propensity score, to
pair. Pairing on the propensity score tends to yield well-
balanced samples, due to its status as a balancing score (13),
though, as previously mentioned, a given pair of units may
not be close on any specific covariates. Matching methods
that combine propensity scores with covariate-based mea-
sures, such as Mahalanobis distance matching with restric-
tions on the propensity score distance between pairs, often
perform better than each alone (35).

Matching with or without replacement. When matching
without replacement, once an unexposed unit has been
paired with an exposed unit, it cannot be paired with any
other exposed unit. This can sometimes yield low-quality
matched samples if few unexposed units are close to the
exposed units or if the pool of unexposed units is small.
Instead, matching can be done with replacement, where each
unexposed unit can be paired with multiple exposed units.
This may yield improved balancing performance because
exposed units are no longer competing for unexposed units.
Reusing the same unexposed units can, however, decrease
the precision of the effect estimate and cause it to rely
heavily on a few frequently reused units (4, 37), akin
to the problem of extreme weights in inverse probability
weighting. Estimating the exposure effect after matching
with replacement requires special methods to account for
the fact that some unexposed units are selected multiple
times and are members of multiple pairs (38, 39).

Order of matches. Greedy pair matching involves finding
an unexposed unit to pair with each exposed unit, 1 exposed
unit at a time. The order in which the units are matched can
affect the properties of the matched sample, and evidence
is mixed on the preferred order (2, 37). Optimal matching
eschews this problem by choosing the matches in such a
way that the total distance between paired units is minimized
(40). In practice, however, the difference in performance
between optimal and greedy matching tends to be slight
(37, 41).
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Table 2. Methods of Customizing a Pair-Matching Specification and Their Implications

Option Benefits Cautions

Matching on the covariates directly (e.g.,
Mahalanobis distance matching)

Can better balance the joint distribution of
covariates; does not require an exposure
model

May not perform well with many covariates,
due to curse of dimensionality

Matching on the propensity score Requires matching only on a single
dimension; has theoretical balancing
properties; tends to perform well empirically

Relies on specification of exposure model,
pairs may not be close on covariates

Restrictions on closeness of matches Can improve balance; yields close pairs;
improves robustness to assumptions about
outcome model

Dropping units decreases precision and can
change the target population/estimand

Matching with replacement Better balance than without replacement;
good with small unexposed samples or
when ratio of exposed to unexposed is high

Reusing units decreases precision;
increases reliance on a few units

k:1 matching Retains more units, thereby increasing
precision

Balance can be worse

k:1 matching. When there are many more unexposed units
than exposed units, it can be beneficial to pair more than 1
(i.e., k) unexposed units to the same exposed unit. Increasing
the ratio of unexposed to exposed units in the matched
sample can improve the precision of an estimate by retaining
a greater number of units, though the marginal benefits in
precision decrease with higher k (42), and some evidence
suggests a preference for using k = 2 (43). In addition,
there is a bias-variance trade-off in choosing k: with k > 1,
balance may degrade (and thus bias may increase) because
the second (and third, and so on) closest unexposed units
to each exposed unit will necessarily be farther away (44).
In practice, researchers may want to attempt 2:1 and 3:1
matching and examine how much the balance degrades; if
the differences in balance are not substantial, then the higher
ratios may be preferred. One can also perform variable ratio
matching, in which different numbers of unexposed units are
paired with each exposed unit; doing so can improve balance
relative to fixed ratio matching at the cost of some preci-
sion (45).

Restricting the closeness of matches. To control how far
apart members of a pair can be, one can use a caliper or
exactly match on a subset of covariates. A caliper defines
the maximum distance 2 units can be from each other for
them to be allowed to be paired with each other (46). Any
exposed units with no remaining unexposed units within
its caliper are dropped from the matched sample. One can
also require that paired units are exactly matched (i.e., have
identical values) on certain covariates. It can be beneficial
to set a caliper or exact matching restriction on a subset of
covariates believed to be most prognostic of the outcome
or that are challenging to balance otherwise. Calipers are
often applied to the propensity score, which can (some-
times dramatically) improve the balancing performance of
a matching specification (35, 37). A common caliper size
is 0.2 standard deviations of the logit of the propensity
score (47). Restrictions on the closeness of matches should
be used with caution, however: matching within propensity

score calipers can actually worsen balance in some cases (6)
(though there is doubt about the relevance of this finding for
epidemiologic research (48)), and when matching restric-
tions cause exposed units to be dropped from the sample
(i.e., because they were unable to be matched), the estimand
will no longer correspond to the original target popula-
tion, which can affect the generalizability of the effect esti-
mate (49).

Improving matching through optimization. Given that the
goal of matching is to produce a well-balanced matched
sample, optimization methods can help achieve those goals
without the repeated manual respecification of certain
matching options. Genetic matching finds a specification
of the distance measure for pairing that optimizes balance
in the resulting matched sample (50). Cardinality matching
maximizes the size of a matched sample satisfying user-
specified balance requirements and does so by selecting
the matched sample directly without first finding pairs of
units (51, 52). Other methods optimize a measure of balance
subject to constraints on the remaining sample size (53–55).
Although optimization-based methods often perform better
than standard methods in simulation studies (56, 57), they
are used less frequently than traditional matching methods
and require specification of some particular balance metric
to optimize.

Stratification

Stratification methods involve the creation of strata (i.e.,
bins) to which exposed and unexposed units are assigned.
An early example of stratification was the creation of age
strata to examine the link between smoking and lung cancer
(58). The idea of stratification is to create strata such that,
within strata, the distribution of covariates is independent
of exposure, eliminating imbalance. Exact matching, the
most robust way of forming the strata, involves assigning
units to strata on the basis of the unique combinations of
all covariate values so that all units within a stratum are
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identical with respect to all of the covariates. Units within
strata that do not contain both exposed and unexposed units
are dropped from the matched sample. Forming strata in this
way can be thought of as a generalization of the method of
standardization long used in epidemiologic research (12).
The benefit of exact matching is that the resulting full joint
distribution of covariates is identical in the matched expo-
sure groups, eliminating imbalance without any assumptions
on the exposure or outcome models.

Coarsened exact matching. When there are continuous
covariates or categorical covariates with many values, exact
matching can be challenging, given the number of potential
strata. In that case, coarsened exact matching (59), which
involves splitting continuous covariates into categories and
possibly combining levels of categorical variables before
exact matching, can be used as an alternative and has seen
some recent use in epidemiology (60). With many covari-
ates, however, the curse of dimensionality may still be
present; it is often the case that there are few or no matches,
even after heavy coarsening of the covariates, leading to
imprecise inferences based solely on the few units that
remain, if any (35). In addition, discarding units that do not
have matches, even if some matches remain, can change the
target population (61). These features can cause coarsened
exact matching to yield erratic and spurious results when
used improperly (62).

Propensity score stratification. An alternative to (coars-
ened) exact matching on the covariates is propensity score
stratification (27, 63), in which units are assigned to strata on
the basis of their propensity score values, often defined by
user-specified quantiles of the propensity score. This avoids
the curse of dimensionality, because stratification occurs
only on a single variable that acts as a summary of the
covariates (13).

Full matching. Full matching (64, 65) combines the fea-
tures of stratification and pair matching. As with stratifica-
tion, all units are retained and assigned into strata and, as
with pair matching, units are assigned to strata on the basis
of the distances between units. Stratum size and membership
are automatically selected to minimize the total within-
stratum distance between exposed and unexposed units such
that each stratum contains exactly 1 exposed or exactly 1
unexposed unit. A full-matching specification can be cus-
tomized by adding restrictions on the closeness of matches
(as with pair matching) or by changing the allowed number
of units within each stratum (which controls the variability
of the resulting matching weights) (34, 65, 66).

Stratification outputs. The primary output of stratification
and full matching is a vector of stratum membership for
each retained unit. In some cases, these can be used to esti-
mate exposure effects directly (e.g., by estimating stratum-
specific effects and optionally combining them to form
a single average marginal effect). This is often equiva-
lently accomplished by using stratum membership to gen-
erate matching weights, which, just like inverse probability
weights, can then be applied to the sample to estimate the
marginal exposure effect. This method is known alternately

as marginal mean weighting through stratification (67) or
fine stratification weighting (68). The weights are computed
by first assigning a new propensity score to each unit, equal
to the proportion of exposed units in its stratum, and then
using the standard formulas for computing weights from
propensity scores corresponding to the desired estimand.
In this way, stratification and full matching can be seen
as nonparametric alternatives to propensity score weighting
that are less sensitive to model misspecification (67, 69).
Although subset selection methods are typically only able to
be used to estimate the exposure affect among the exposed,
stratification and full matching can be used to estimate that
or the exposure effect in the population, depending on the
formula used to compute the matching weights (4).

EVALUATING MATCHES

After arriving at a matched sample, the matching specifi-
cation must be evaluated to ensure it is effective at reducing
the bias due to confounding. The key qualities of a matched
sample to be evaluated are the resulting covariate balance
and the remaining (effective) sample size.

Covariate balance

Because the goal of matching is to achieve covariate bal-
ance, assessing balance is critical not only to find the best
matching specification but also to demonstrate to readers
that they can trust the results of the matching analysis (i.e.,
that the matching has successfully reduced the bias due to
the observed confounders). Balance can be assessed numer-
ically and graphically (5, 70), and is often assessed both
before and after matching, with the postmatching balance
measures computed incorporating the matching weights.
Commonly used balance statistics include those that com-
pare the similarity of distributions on a scale-free metric,
such as standardized mean differences and Kolmogorov–
Smirnov statistics (71). Ideally these should be as small as
possible. Although statistical tests, such as t tests and χ2

tests for independence, may seem appropriate for assessing
balance, current methodological recommendations suggest
against using them because they conflate sample size and
balance (71, 72). In addition to numeric statistics, graphical
displays of balance can be used to enable visual comparison
of the distributions of a covariate in the 2 groups, such as
kernel density or empirical cumulative density function plots
(70).

Remaining (effective) sample size

Subset selection methods involve discarding units from
the sample; if too many units are discarded, the resulting
exposure effect estimates will lack precision. For this reason,
it is important to ensure sample sizes are adequate in the
matched sample. This is especially important when impos-
ing restrictions on the closeness of matches, because doing
so can involve discarding exposed as well as unexposed
units. When using methods that produce variable matching
weights, including stratification methods, matching with
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replacement, and full matching, a measure known as the
effective sample size can be used, computed within each

exposure group a as
( na∑

i=1
wi

)2

/
na∑

i=1
w2

i , where wi denotes

the matching weight for unit i and na is the size of group
a. The effective sample size represents the size of a hypo-
thetical unweighted sample that carries the same amount of
information as the weighted sample; it is used to measure
the loss in precision due to the matching weights (73, 74).
Even though some matching methods retain all units, the
resulting effective sample size may be quite small, in fact;
this same problem can arise when using inverse probability
weighting (75), though it is often less pronounced with
matching methods (66, 69).

ESTIMATION AND INFERENCE AFTER MATCHING

If an adequate matching solution (i.e., with good covariate
balance and a reasonable effective sample size) is not found
after repeated specification and assessment of the quality of
the resulting matched samples, it may be that the exposure
groups are so fundamentally different that no effect can be
robustly estimated without using models to extrapolate. In
these cases, causal inference may not be possible without
strict assumptions (5, 33). Otherwise, if a satisfactory match-
ing solution is found, it comes time to estimate the exposure
effect and its uncertainty (i.e., its standard error, confidence
interval, and P value).

Several approaches exist to estimate exposure effects, in-
cluding randomization-based inference (34, 76), imputation-
based approaches (77, 78), and model-based methods (5,
79). We focus on the latter because they are the most appli-
cable to epidemiologic research in that they are appropriate
to use with various outcome types and population-based
inference, whereas the other approaches are more restricted.

Estimating effects

The most straightforward way to estimate exposure ef-
fects after matching is to fit a regression model of the
outcome on the exposure, including the matching weights in
the estimation, and using the coefficient on exposure as the
exposure effect estimate (5); this is equivalent to computing
a (weighted) difference in means (80). The specific outcome
model can be tailored to the effect measure of interest; for
example, with a binary outcome, a binary regression model
with a log link can be used to estimate the risk ratio. It is
often beneficial to adjust for covariates used in matching
in the outcome model, because doing so can improve pre-
cision and reduce any slight remaining imbalance (81–84);
this is conceptually similar to using doubly robust estima-
tors that involve both an exposure model and a covariate-
adjusted outcome model (85, 86). Methods recommended
for estimating covariate-adjusted effects in randomized tri-
als, including g-computation and targeted minimum loss-
based estimation, can be used after matching to achieve the
same benefits (87, 88). These methods ensure the result-
ing effect estimate is interpretable as marginal rather than
conditional when the effect measure is noncollapsible. Note
that the coefficient on exposure in stratified, conditional, and

covariate-adjusted models for odds or hazard ratios corre-
sponds to a conditional effect; thus, these models should be
avoided after matching, which is best suited for estimating
marginal effects (89).

Estimating uncertainty of estimated effects

Though the statistics of uncertainty estimation after match-
ing are not straightforward (77, 79, 90), a wealth of simu-
lation evidence and theoretical guidance exists to provide
recommendations that are straightforward to implement.
The most well-studied and best performing methods involve
using robust standard errors, including cluster-robust stan-
dard errors, and bootstrapping.

Robust and cluster-robust standard errors. Robust stan-
dard errors are an adjustment to the usual model-based
standard errors resulting from ordinary least squares or max-
imum likelihood estimation of the exposure effect model
(91–93) and should be used with matching methods that
involve few or no strata, such as propensity score stratifica-
tion or methods of subset selection without pairing. Despite
early disagreement about the importance of accounting for
pair membership after pair matching (94, 95), simulation
evidence and analytic derivations indicate that accounting
for pair membership (e.g., by using cluster-robust standard
errors that adjust for the correlation between outcomes for
units within the same pair or stratum (96)) is necessary
for valid inference (79, 95, 97). After pair matching with
replacement, in which some units are assigned to multiple
pairs, special adjustments may be required to account for
pair membership (e.g., see Austin and Cafri (39)), though
additional research in this area is needed.

Bootstrapping. Another possibility is to use bootstrapping
to estimate standard errors and confidence intervals (98).
Bootstrapping typically involves randomly drawing units
from the original sample with replacement and performing
the analysis—the propensity score estimation, matching,
and effect estimation—within each bootstrap sample (38,
97). The distribution of the resulting effect estimates across
the replications can then be used to compute standard errors
and confidence intervals. Bootstrapping can be particularly
useful when the assumptions required for analytic standard
errors are not met due, for example, to small sample sizes.
The cluster bootstrap (96), which involves resampling pairs
after matching, can also be effective with pairing meth-
ods and avoids the computational burden of the standard
bootstrap (79, 97). Though there has been doubt about the
theoretical validity of bootstrap methods after pair matching
with replacement (99), some studies have provided support
for its use (38, 100).

DISCUSSION

Comparing matching and weighting

Many epidemiologists will be more familiar with weight-
ing approaches than matching, so we end with a discussion
of some of the differences and similarities between them.
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Table 3. Situations in Which One Might Prefer Weighting or Matching

Weighting Matching

The form of the exposure model is (approximately) known The form of the exposure model is not known.

No units have extreme covariate values or propensity scores Exact matching is possible on several important covariates.

There are few covariates to adjust for.

Outcome analysis is complex and challenging to incorporate
variable weights.

Simplicity of explanation to a broad audience is desired.

Matching and weighting methods serve the same purpose:
to reduce the bias due to confounding in an observational
study by balancing the distribution of covariates between
the exposed and unexposed groups (4). They operate under
the same causal assumptions—conditional exchangeability,
positivity, and the stable unit treatment value assumption—
and involve adjusting the sample in a way that does not
involve reference to the outcome, akin to the design process
of a randomized trial. However, they differ in a few impor-
tant ways; in particular, matching can offer advantages over
weighting with respect to robustness to assumptions about
the exposure and outcome models and increased opportu-
nities for customization. We also discuss how to choose
between matching and weighting when conducting an anal-
ysis of observational data.

Robustness to assumptions about the exposure model.
Weighting methods that rely on the propensity score can be
sensitive to its correct specification. Because the weights
are a direct function of the propensity score, extreme
propensity scores can yield extreme weights, which can
fail to balance the covariates and cause the effect estimate to
have high variance and be dependent on a few units with
high weights (101). Matching methods offer a potential
solution to this problem because they are less sensitive
to correct specification of the propensity score (57, 102).
Some matching methods do not even require a propensity
score, including coarsened exact matching (59), cardinality
matching (52), Mahalanobis distance matching (35), and
genetic matching (50). Even with methods that do use a
propensity score, the actual value of the propensity score
is not used directly to compute the matching weights;
rather, the order of scores and the order of the differences
between scores are used, which are often similar across
small perturbations of the propensity score model (102).

Robustness to assumptions about the outcome model.
Although one of the benefits of design-based methods
like matching and weighting is that the form of the true
outcome model does not need to be known or specified, in
choosing the terms on which to assess balance, one makes
implicit assumptions about the outcome model (103). For
example, not checking balance on a 3-way interaction of
covariates implicitly assumes that such an interaction is
not relevant to the outcome (104). When assessing balance
after weighting, one generally cannot check balance on
all possible transformations of and interactions between

covariates, and thus cannot guarantee that the specified
weighting method balances those terms. Unless it can be
guaranteed a priori that the theoretical balancing properties
of the propensity score are in effect, the full joint distribution
of covariates may not be adequately balanced. In contrast,
exact matching on the covariates guarantees adequate
balance regardless of the outcome model (46). Though
exact matching on all covariates is often impossible, some
methods, such as coarsened exact matching or matching
with restrictions on the closeness of paired units, retain some
of the balancing properties exact matching affords that are
otherwise inaccessible with weighting methods (61).

Opportunities for customization. Matching methods in-
volve many ways to customize a matching specification to
adapt it to the specific properties of the data set and re-
search problem. For example, the tradeoff between bias
and precision can be carefully managed by adjusting the
number of unexposed units matched to each exposed unit
and choosing whether matching is done with or without
replacement (37, 43). Similarly, with stratification methods,
the number and size of the strata can be constrained to
prioritize balance or effective sample size. Although all these
options can make finding the optimal matching specification
more burdensome, they allow for manipulation of the sample
to yield the optimal matched sample in ways that do not
depend directly on the exposure or outcome models. There
are fewer ways to customize a weighting specification to
have such control over the properties of the weighted sample.

Choosing between matching and weighting

Some researchers may be hesitant to use matching meth-
ods (especially subset selection methods) because dropping
unmatched units can seem like wasting data. We are sym-
pathetic to this hesitance, especially when data may have
been expensive and time-consuming to collect, but we wish
to assuage this perception of matching methods for several
reasons, described in more detail by Ho et al. (5). First,
though dropping units through matching may increase the
variance of an effect estimate, it can dramatically reduce
bias, which is paramount in the absence of randomization,
because there is little use in a precise estimate of a biased
quantity. Second, dropping unmatched units can actually
decrease the variance of an effect estimate by reducing vari-
ability in the outcome, especially when paired units are close
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to each other on covariates prognostic of the outcome (13).
Third, some matching methods, such as full matching and
propensity score stratification, preserve all units and may
provide better bias reduction than weighting while retaining
precision (69).

In any given data set, however, there is no guarantee that
any 1 method will always dominate. Researchers should try
several methods to find the 1 that works best in their data set
(i.e., provides the best covariate balance while maintaining
a large effective sample size). In some scenarios, the sub-
stantive considerations of the research problem may favor 1
method over another; for example, if the exposure process is
well understood, it may be worth it to rely on the direct use
of the propensity score involved in weighting. We describe
in Table 3 some circumstances that might preferentially
motivate matching or weighting.

Software

Matching methods are available in several software pack-
ages, including R (R Foundation for Statistical Computing,
Vienna, Austria), SAS (SAS Institute Inc., Cary, North Car-
olina), and Stata (StataCorp LP, College Station, Texas). We
recommend the R package MatchIt (105), which can per-
form all of the stratification and pair matching methods and
their customizations discussed in this review and contains
extensive documentation for estimating effects and standard
errors after matching. In SAS, the PSMATCH procedure
offers similar functionality. In Stata, the teffects procedure
implements some matching methods, but it relies on the
imputation-based estimation framework that may be less
suitable for epidemiologic research.

Conclusion

Matching methods provide an alternative to weighting
methods for the estimation of exposure effects in the pres-
ence of confounding by observed variables. They offer many
options for customization to enhance their robustness prop-
erties and allow them to be fine tuned to optimize their
performance. Substantive information about the research
problem at hand can be easily incorporated through the
prioritization of certain covariates and careful management
of bias-variance tradeoffs. We hope epidemiologists will
feel empowered to consider matching as an option in their
analyses to enhance the robustness of their conclusions.
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