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The opioid overdose crisis is driven by an intersecting set of social, structural, and economic forces. Simulation
models are a tool to help us understand and address thiscomplex, dynamic, and nonlinear social phenomenon.We
conducted a systematic review of the literature on simulation models of opioid use and overdose up to September
2019. We extracted modeling types, target populations, interventions, and findings; created a database of model
parameters used for model calibration; and evaluated study transparency and reproducibility. Of the 1,398 articles
screened, we identified 88 eligible articles.The most frequent types of models were compartmental (36%), Markov
(20%), system dynamics (16%), and agent-based models (16%). Intervention cost-effectiveness was evaluated
in 40% of the studies, and 39% focused on services for people with opioid use disorder (OUD). In 61% of the
eligible articles, authors discussed calibrating their models to empirical data, and in 31%, validation approaches
used in the modeling process were discussed. From the 63 studies that provided model parameters, we extracted
the data sources on opioid use, OUD, OUD treatment, cessation or relapse, emergency medical services, and
death parameters. From this database, potential model inputs can be identified and models can be compared with
prior work. Simulation models should be used to tackle key methodological challenges, including the potential for
bias in the choice of parameter inputs, investment in model calibration and validation, and transparency in the
assumptions and mechanics of simulation models to facilitate reproducibility.

calibration; opioid use disorder; overdose; parameterization; simulation models

Abbreviations: ABM, agent-based model; IDU, injection drug use/users; MOUD, medications for opioid use disorder; NSDUH,
National Survey on Drug Use and Health; OUD, opioid use disorder; SD, system dynamics.

INTRODUCTION

Opioid use is one of the leading public health concerns in
countries across the world. In 2017, opioid use accounted
for almost 80% of the 42 million years of life lost to
disability and premature death, and 66% of the estimated
167,000 deaths attributed to drug use disorders (1). The
problem is particularly acute in the United States, where
more than 50,000 people died of an opioid overdose in
2019 (2). This represented a 4.9% increase in the overdose
death rate from 2018, and it was 3.6 times higher than in
1999 (2, 3). Provisional data suggest that the problem has
only worsened since the start of the COVID-19 pandemic:
syndromic surveillance by the Overdose Detection Mapping
Application Program, including data provided by agencies in

47 states, indicated an 18% increase in suspected overdose
submissions from March 19 to May 19, 2020, in the United
States, after the beginning of stay-at-home orders, compared
with January 1 to March 18, 2020 (4).

The opioid overdose crisis is driven by a complex system
of social, structural, and economic forces and individual
behaviors (5). Supply forces include the increase in prescrip-
tions of opioids for acute and chronic pain, increase in the
supply and decline in the price of heroin, and introduction
of illegally manufactured synthetics to the drug market,
which are cheaper and 30–40 times stronger than heroin (6,
7). Demand forces include, among others, regional decline
in industry activity and weakened institutional protections
for worker rights, safety, and benefits, which have led to
increasingly precarious employment and wage stagnation;
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demoralization among people facing unemployment or high-
risk, poorly paid work; and increased rates of job-related
injury and disability (8, 9). After the start of the COVID-19
pandemic, the stress of lives lost to COVID-19, economic
hardship, social isolation resulting from pandemic mitiga-
tion measures, and potential reduced access to medication
for opioid use disorder (MOUD) may have further con-
tributed to the increase in opioid misuse and overdose risk
(10, 11). Such a complex set of factors interacts in nonlinear
ways to shape the different phases of the epidemic (6, 7, 9,
12, 13). The opioid overdose epidemic is dynamic in space
and time. The epidemic was once characterized by overdoses
involving prescription opioids; it now has shifted to one
characterized by heroin and illegally manufactured synthetic
opioid overdoses (14, 15). In the United States, for example,
opioid overdose deaths were first concentrated in states
with large rural areas such as Kentucky, West Virginia, and
Ohio; in more recent years, however, the number of opioid
overdose deaths increased exponentially in the Northeast
and Western regions (16). These complex, dynamic, and
nonlinear features of the opioid overdose crisis make it more
difficult to predict and explain the epidemic.

Simulation models are a critical tool to identify and under-
stand a complex, dynamic, nonlinear, social phenomenon
such as the opioid overdose crisis (17). The process of
building systems-level simulation models forces us to be
clear about our assumptions regarding the way systems
interact, the availability and quality of data, the way
interventions work, and their potential barriers. Simulation
approaches can efficiently combine a wide variety of data
sources to deliver quantitative results to inform policy. The
types of simulation models range widely. They include
statistical simulation approaches such as Markov models,
which are stochastic models used to model transitions
across states, assuming that future states only depend on
the current state (18). They also include computational
simulation approaches such as system dynamics (SD)
models (19) and agent-based models (ABM) (20, 21), which
use computer-based algorithms to model nonlinear relations
and feedback processes between units, within and across
levels, so small changes in the system can produce emergent
properties that are not predicted by individual elements of
the model. A classic example of emergence was proposed
by Schelling (22, 23), who used a checkerboard model that
assigned households preference for a certain fraction of
their neighbors be the same race to illustrate that population
patterns of racial residential segregation emerge that are
more extreme than would be predicted from individual
preferences. Simulation models have been used to predict
and forecast, model potential impacts of intervention and
prevention, and assess the risks and benefits of different
intervention strategies (24–26).

In the case of the opioid overdose crisis, simulation mod-
els can be used to answer a range of questions. First, sim-
ulation models can capture nonlinear interactions between
multiple potential predictors of overdose risk, screen out
factors that are not predictive of overdose risk, and poten-
tially provide more accurate predictions of the types of
drug products, population groups, and geographic areas that
can be anticipated to experience an increase in overdoses.

Second, they can be used to test assumptions about the
underlying mechanisms that give rise to the population dis-
tribution of opioid misuse and its consequences, including
the roles that availability, accessibility, physical properties
of the drug product, and societal sources of demand play
in shaping opioid misuse trajectories. Such insights can
be critical information to inform the design of prevention
programs and policies. Third, simulation models can help
predict the types of intervention and policy approaches with
the greatest potential to reduce overdoses, in the future, or in
new locations, and conduct economic evaluation (e.g., cost-
effectiveness analysis) of different types of approaches.

As simulation models to answer questions about opioid
misuse proliferate, it is important to assess the scope of
research in this area and to investigate the quality and
reproducibility of simulation model–based studies of opioid
misuse. To this end, we conducted a systematic review of the
literature on studies in which researchers developed or used
simulation models of opioid misuse. We aimed to provide an
overview of the types of questions, simulation models, data
sources, and calibration and validation approaches that have
been used to address questions related to opioid misuse. We
also created a database of model parameters that have been
used for model calibration to aid comparative assessment
of model findings. Finally, we evaluated study transparency
and reproducibility, using a set of previously validated crite-
ria (27, 28). Although a scoping review has been published
in which authors mapped the literature that used simula-
tion models to evaluate or propose policies to address the
opioid epidemic (29), and authors or 2 systematic reviews
synthesized cost-based analyses of interventions (30, 31),
no studies have been conducted yet, to our knowledge, that
included the broader range of simulation studies of opioid
misuse or provided a critical evaluation of the transparency
and reproducibility of reviewed studies.

METHODS

Search strategy

We first searched PubMed for articles that fit our criteria
for simulation models. Starting on September 25, 2019,
we searched for nonanimal research published (in print or
electronically) in English before September 1, 2019. The
following Medical Subject Heading terms were used in
the PubMed search: (analgesics, opioid, heroin, naloxone,
methadone, opioid-related disorders, prescription drug mis-
use, OR fentanyl) AND (computer simulation/(education;
economics; methods; statistics and numerical data; supply
and distribution), Markov Chains, OR systems analysis).
The 5 Medical Subject Heading term categories of “com-
puter simulation/[]” ensured the inclusion of a wide range of
simulation modeling approaches (e.g., ABM, SD, compart-
mental, microsimulation).

Study inclusion criteria included: 1) use of a simulation
modeling approach; and 2) a stage on the pathway from
opioid use to overdose (i.e., opioid use, misuse, disorder,
medication for opioid use disorder (OUD), or overdose)
is either a) directly being modeled or b) an integral part
of a model describing a nonopioid-related health outcome.
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No geographic exclusion criteria were applied to the review.
Decision tree and regression analyses were excluded be-
cause these approaches do not explicitly include recursive
events and data simulation, respectively.

To ensure all relevant journal articles were included, these
same terms were then used to search for literature in the
Embase and EBSCOhost databases. Conference proceed-
ings and reports are not indexed in these databases; there-
fore, we also included models we found through citations or
via supplementary search in Google Scholar, using the same
inclusion criteria.

Data extraction

Each study that met the criteria was read in full by 2
of 4 researchers (A.H., C.D., N.K., C.W.). The reviewers
extracted study information including model type, target
population the model is simulating, research question, data
sources used to model the simulated populations and inter-
ventions, validation and calibration approaches, and findings.
For the purpose of data extraction, we defined calibration
as an iterative process that entails adjusting model inputs
to ensure model outputs match empirical results or expert
opinion for a given setting, and we defined validation to
mean that the model is acceptable for its intended use based
on specified requirements.

If studies included model parameters, then those values
were extracted as well. We included model parameters that
referred to opioid use, OUD, opioid use treatment, emer-
gency medical services, fatal and nonfatal opioid overdose,
relapse, and death. We recorded the source, value, and unit
for each parameter.

Calibrated model parameters

Calibrated model parameters were extracted from each
article that reported them in the main text or in the appendix.
Model parameters were considered calibrated if they were
used as inputs to the main model but were derived either via
optimization or hand-calibration techniques using data col-
lected by the authors or expert opinion. After the extraction,
the model parameters were aggregated, and similar parame-
ters were grouped to draw comparisons between values from
different models with different underlying assumptions. In
cases where model parameters measured the same phe-
nomena across 2 separate models but were presented using
different units, the parameters were standardized against 1
common unit, and the most interpretable and commonly
used unit was chosen where possible.

Assessment of model transparency and reproducibility

Twenty-five criteria were preselected that comprise the
minimum elements needed to evaluate the transparency and
reproducibility of simulation models (27). To qualify articles
on the basis of whether they met these criteria, 2 researchers
(C.D. and C.W.) conducted an initial pilot test on a sample
of articles, each evaluating each criterion for each report and
then resolving differences in criteria evaluation; resolution
was mediated by a third researcher (A.D.H.). After the pilot

test, 2 researchers (C.D. and C.W.) each evaluated half of
the articles independently. Criteria were marked as “met” or
“not met” in a data-extraction sheet on the basis of whether
the article fulfilled each assessment criterion.

The assessment criteria were divided into 3 categories:
development, testing, and analysis. Development criteria
included the following: problem clearly defined; model-
ing method specified; software used reported; modeling
objective explicit; modeling scope and boundary clear; con-
ceptualization of the model clear; high-level visualization
available; model assumptions disclosed; input parameter
values and data sources disclosed; model equations pro-
vided; stakeholder engagement described; explicit instruc-
tions for replication; and modeling codes provided. Testing
criteria included the following: model calibration and pa-
rameter estimation performed and described; model evalua-
tion other than calibration and sensitivity analysis performed
and described; and quantitative quality-fit calibration to
external data reported. Finally, analysis criteria included
the following: quantitative results of analysis reported; sen-
sitivity analysis performed and described; policies and in-
tervention strategies discussed; analysis results connected
to structural characteristics; research limitations discussed;
generalizability of findings discussed; and comparison made
with other results. Disclosed sources of funding and conflicts
of interest were also assigned point values outside of the
predefined categories.

Each article’s cumulative score was determined by sum-
ming the binary values for the 25 criteria, for a final score
ranging from 0 to 25. Two researchers (C.W. and C.D.)
conducted an initial pilot test to ascertain agreement percent-
age of assigned score values. After conflict resolution, each
researcher assessed half of the articles independently.

RESULTS

Study selection

Our search results yielded 1,360 articles, which were
imported into the Covidence platform (Covidence.org) along
with 38 papers added after supplementary search. After
duplicates were removed, 2 reviewers (A.D.H. and J.S.-T.)
screened 798 studies. The reviewers discussed any stud-
ies that did not reach consensus and made a final deci-
sion; 134 studies were included in a full-text assessment.
Of the remaining studies, 46 were excluded for irrelevant
study design (i.e., did not meet criteria for the simulation
model) and outcome (i.e., did not include any information
on the pathway of opioid addiction). This left 88 studies for
inclusion in the final review. Figure 1 shows the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
diagram, which illustrates the inclusion and exclusion pro-
cess (32).

Descriptive characteristics of studies

Extracted data from the 88 studies, including model
details, data sources, calibration and validation approaches,
and findings, can be found in Web Table 1 (available at
https://doi.org/10.1093/aje/mxab013).
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram for study selection.

Model type. Different approaches were used in the included
studies to model the opioid epidemic. The most frequently
used approach was compartmental modeling (n = 32; 36%)
(33–64), which included deterministic compartmental (33,
34, 43, 45, 47, 48, 53, 56, 59, 60) and dynamic compart-
mental (35–42, 49, 50, 52, 54, 57, 58, 61–64) models. In
these models, probabilities were defined by groups on the
basis of a specific criterion (i.e., drug use status, sex, age).
The second most frequently used approach was Markov
models (n = 18; 20%) (65–82), including Markov chain (67,
68, 82, 69, 75–81), semi-Markov cohort (71, 72), Markov
process (68, 69), decision-analytical Markov (65, 66), and
2-state Markov (73, 74) models. In these models, health
states were modeled with the assumption that future states
rely on the current state, and transition probabilities were
mainly included at the population level but sometimes also
at the individual level. SD and ABM were the third (each
n = 14; 16%) most frequently used models. SD models use
a series of stocks and flows and feedback loops to model the
opioid epidemic at a population level (83–96). ABMs use
calculated probabilities at the individual level (97–110). The
rest of the 10 models included ordinary differential equations
transmission (111–113), Monte Carlo simulation (114, 115),
discrete-event simulation (116), and decision-analytic (117–
119) and microsimulation (120) models.

Research questions. The types of research questions used
to motivate the simulation modeling studies included evalu-
ating the impact of increases in OUD treatment (n = 31) (34,
35, 58, 60–65, 67, 71, 72, 38, 73–75, 80, 81, 83, 85, 96, 112,
115, 42, 119, 45, 46, 48, 49, 51, 56), harm reduction and
prevention (n = 12) (37, 39, 111, 116, 40, 52, 54, 59, 90, 94,
95, 110), including naloxone distribution (n = 9) (66, 68, 77–
79, 82, 100, 117, 118), adjusting prescribing patterns (n = 10)
(41, 69, 76, 84, 86, 87, 89, 92, 101, 104), or educational pre-
vention programs (n = 2) (35, 93). If studies did not involve
simulating a specific intervention, their research question
was focused more broadly on understanding specific drug
markets (n = 7) (36, 99, 103, 107–109, 114) or a model was
created to be used to answer a series of research questions
(n = 9) (33, 55, 70, 88, 91, 97, 98, 106, 120) or used
as a validation tool (105). These research questions were
often answered through a cost-effectiveness analysis (n = 35;
40%) (35, 37, 59, 61–64, 66, 67, 69, 71, 72, 40, 73–78, 80–
82, 96, 41, 115, 117–120, 42, 45, 51, 52, 56, 57).

Geographic target population. Simulation models can be
used to examine dynamics at any population size, ranging
from a small network of individuals in a neighborhood to an
entire country. Regardless of the modeled population size,
the goal of simulation models can be to model dynamics
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within a specific geographic region, which is known as a
geographic target population. In a majority of the included
studies (n = 41; 47%), researchers modeled aspects of opioid
misuse at the national level, including Australia (36, 43, 44,
60, 85), China (114), Canada (83), and the United States (33,
35, 84, 86, 87, 89, 90, 92–94, 115, 118, 63, 119, 64, 69, 73,
76, 78, 80, 81) Opioid misuse was modeled at the local level
in many studies (n = 40; 45%), with researchers looking
at dynamics within countries, states, and cities. A geo-
graphic target population was not specified in the remaining
7 studies (8%).

Data sources

Simulated population data. Data to characterize the target
population came from sources ranging from national sur-
veys, such as the US Census or National Survey on Drug Use
and Health (NSDUH), to vital statistics data (the US Centers
for Disease Control and Prevention’s CDC WONDER), to
published literature or small cohort studies or ethnographic
data.

Intervention data. Data from published literature, often
from clinical trials or literature reviews, were used in a
majority of the studies that modeled policy changes or
MOUD-related interventions (n = 50; 68%) (33–35, 37, 39,
40, 45, 56, 59, 60–65, 68–74, 76–78, 80–84, 88, 90, 95, 96,
101, 110, 116–119, 120), including interventions expanding
needle exchange programs, methadone maintenance pro-
grams, and street outreach programs. Primary data sources
were used to parameterize intervention measures in more
than one third of the studies (n = 29; 39%) (33, 38, 41, 42,
66, 68, 69, 75, 79, 82, 84–87, 89, 91, 93, 94, 109, 115, 120),
including NSDUH (75, 86, 87, 89, 93, 94, 115), which was
often used to parameterize interventions related to reducing
opioid initiation and opioid misuse.

Calibration and validation approaches

Calibration. In a majority of the studies (n = 55; 62%),
researchers described calibrating their models to prevalence
or incidence of empirical data (34, 35, 37, 38, 44, 48–
59, 61–64, 69, 75, 77–79, 83, 84, 86, 87, 89, 90, 92–96,
99, 101, 102, 105, 107–115, 118–120). Of these studies,
5 reported specific calibration methods such as Bayesian
inference (68, 79), random search algorithm (35), step-
wise approach (114), maximum likelihood estimation, or
other search algorithms (e.g., evolutionary, swarm, tunnel-
ing, annealing) (101). These calibration approaches used
either statistical (e.g., Bayesian inference and maximum
likelihood estimation) or computational (e.g., random search
algorithm, step-wise approach) techniques to adjust model
inputs or to identify 1 or more sets of models out of many
possible models. We provide in Web Table 1 additional
details of calibration approaches for each study in which
specific calibration methods were reported.

Validation. In almost one third of the articles (n = 28; 31%),
authors discussed validation approaches used in their mod-

eling assumptions (33, 36, 38, 41, 42, 51, 57–59, 61, 62, 66,
68, 71, 72, 77, 82, 87, 89, 95, 101, 102, 112, 113, 115, 116,
120). Multiple types of model validation were conducted
across these studies, including internal and external vali-
dation, face validation using subject matter experts, cross-
validation techniques, and comparing behavior and output
from the model to either real-world data or data generated
from another model. In several studies, calibration, but not
model validation, was conducted. Also, the 2 terms tended
to be conflated in some studies and, therefore, it may be
difficult to ascertain which of these 2 critically important
model-building steps had been conducted across the studies
we identified in this review.

Model parameters

The studies ranged in what aspect of the opioid epidemic
were examined, so we extracted parameters that focused
specifically on the pathway of opioid addiction from opioid
misuse (i.e., nonmedical prescription opioid, heroin, and
injection drug use (IDU)) to OUD to overdose and death,
as well as opioid-related treatment (e.g., MOUD, nalox-
one) and relapse. From the 63 studies in which authors
provided parameters in these areas of interest, we extracted
1,303 inputs that resulted in 787 unique parameters. Of the
1,303 inputs, 71% came from literature, 19% came from
direct data sources (6% extracted from data reports, 3%
from NSDUH, 1% from CDC WONDER), and 10% were
calculated, assumed, or calibrated by the authors. Authors of
the remaining 28 studies reported results from their models
but either did not give information about how their models
were parameterized or the parameters they reported were not
on the pathway of opioid addiction.

Opioid misuse and OUD had the highest rates of param-
eterization using primary data sources (e.g., NSDUH or
national and local cohort studies) at 32% and 21%, respec-
tively, and treatment variables had the highest rate of being
calculated, assumed, or calibrated by the authors (22%).
The breakdown of each variable type by data source used
to parameterize it can be found in Table 1, and the studies
in which each source was used are listed in Table 2. All
extracted opioid-related variables, their sources, and values
are in an online database hosted by the authors on Github
(https://github.com/avahamilton/OpioidSimulation_SR).

In many of the studies, authors reported the empirical data
used for calibration purposes relied on similar data sources.
For example, NSDUH was relied on in 53% of the studies
in which parameters were reported and that were conducted
in the United States, to quantify opioid misuse and OUD,
and CDC WONDER was used in 37% to quantify opioid
overdose.

Transparency and reproducibility assessment

The studies were assessed against 25 predetermined cri-
teria, which were divided into 3 categories: development,
testing, and analysis (Figure 2). The mean score (number
of criteria met out of 25) was 17 (median = 17; 68%). The
modeling problem, objective, and method were defined in
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Figure 2. Percentage of articles meeting transparency and reproducibility criteria. Light blue: yes (criterion was met); dark blue: no (criterion
was not met).

each article. In all but 1 article the model boundary was
specified; the authors of that article instead aimed to model
a generalized drug epidemic (91). Of the 88 articles, 38
reported how stakeholders were engaged throughout the
development of the model, allowing insight into how they
leveraged different areas of expertise to inform their model
(34, 36, 40, 44, 48, 51–53, 55, 56, 58, 64, 66, 72, 83–88,
90, 92–98, 100, 101, 102, 106–109, 116, 119, 120). Equa-
tions composing the model (e.g., differential equations that
describe compartmental models) were reported in 43 articles
(33–36, 38, 41, 43, 44, 46–51, 53–56, 58–62, 64, 65, 68, 79,
86, 87, 90, 91, 94, 95, 99, 101, 103, 105, 109, 111, 112,
113, 114, 117). These criteria fell under the development
category.

In 87 of the 88 articles, authors reported their quantitative
results, a criterion within the analysis category. In 22 of the
articles, authors fulfilled all 3 criteria of placing the study
results within the broader context of the literature, including
connecting results to model and structural insights (33, 34,
36, 38, 39, 41, 42, 44, 52, 54, 58, 62, 63, 67, 70, 71, 76,
77, 83, 84, 85–89, 92–95, 97, 98, 100, 102–109, 111, 113,
115, 116), comparing with other results (34–43, 44–47, 49–
54, 55, 57–59, 62, 63, 65–68, 70–78, 80, 82, 83, 86, 94, 100,

102, 105, 107, 109, 111, 112, 113, 115–119), and discussing
generalizability of findings (34, 35, 48–57, 36, 58–64, 68,
71, 72, 37, 73, 76, 83–85, 87–89, 91, 92, 38, 93–102, 40,
103, 105–107, 109, 111, 113–116, 43, 119, 120, 44–46).

More often than not, models failed to fulfill the criteria in
the testing category; authors reported model calibration and
parameter estimation in 55% (n = 48) (33–38, 44, 48–50,
51–54, 57–59, 61–65, 68, 71, 72, 75, 77–79, 82, 83, 85–87,
90, 94–96, 101, 110, 111–115, 117, 118, 120), and quality
of calibration fit to real-world data was reported in 42%
(n = 37) (33–38, 44, 48, 50–54, 57–59, 61, 62, 64, 68, 71, 72,
77–79, 84, 86, 87, 92, 93, 94–96, 101, 111, 112, 118). The
average score (number of criteria met out of 25) of articles
in which parameter values and their sources were reported
and in which authors calibrated their model using real data
(n = 37) was 19.9 (80%), whereas the average score was
15.9 (64%) for articles in which the quality of calibration
fit or parameter values or sources was not reported (n = 51)
(Figure 3). Model testing other than calibration to data was
reported in 38% of the articles (n = 33) (33, 36, 35, 56, 64, 66,
67, 71, 72, 74, 75, 77, 79–82, 84–87, 92–96, 105, 107, 110,
118, 120). Finally, in 88% of the articles (n = 77), authors
reported whether their research was supported by outside

Epidemiol Rev. 2021;43:147–165
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Figure 3. Trends in criteria met over time for articles in which model validation was reported via calibration using real data and parameter
values, and sources were reported versus those that did not.Modeling codes and instructions for reproducibility were provided in 9 articles; only
3 provided both (56, 111, 117). Light blue: yes (both criteria were met); dark blue: no (both criteria were not met).

funding, and potential conflicts of interest were reported in
63% (n = 55).

Calibrated model parameters

Web Table 2 shows model parameters that were calibrated
by authors of the 14 articles that reported these values
(33, 37, 50, 53, 57, 61, 68, 77, 79, 86, 111, 112, 118,
120). Two or more separate models calibrated a compara-
ble value for IDU development, MOUD initiation, MOUD
exit, baseline overdose rate, increased risk of overdose after
relapse from remission due to decreased tolerance, naloxone
effectiveness and relative risk of death, fentanyl overdose
rates, overdose mortality rates, and all-cause mortality rates
generally and during active use. Each model we assessed
had different underlying assumptions and structure, which
could account for value differences. Notably, the baseline
death rates ranged from 0.057–1.97 per 100 person-years
(68, 79, 120). We did not perform meta-analysis on these
values; even though the parameters were comparable, there
was still considerable heterogeneity among parameters in
each category (e.g., IDU initiation (61) vs. heterosexual IDU
initiation in Toronto and Ottawa (37)). Researchers should
use parameters in Web Table 2 with caution, and information
on the parameter target population should be assessed to
determine whether the parameters are generalizable to the
population, setting, and time period simulated in their own
model. It is also important to note that Web Table 2 is not
meant to be comprehensive and even wide ranges reported
in the table might still fall short in presenting high hetero-
geneities. Research in this space is growing; thus, additional
reviews and expansion of this table are- warranted.

DISCUSSION

Simulation models are particularly helpful in predict-
ing the potential benefits and costs of investing in alterna-
tive strategies to address opioid misuse; almost half of the
studies we reviewed were focused on evaluating the cost-
effectiveness of strategies to address the opioid overdose
epidemic, and almost one third focused on simulating the
impact of increasing access to treatment and harm reduction
services on opioid-related harms. The potential use of simu-
lation modeling to understand the mechanisms and feedback
processes that give rise to the population distribution of
opioid misuse, or to predict the evolution of the overdose epi-
demic, remain underexplored. As of March 2020, 88 studies
were published in which the authors used simulation models
of opioid misuse; with the exception of 1 study published in
1972 (88), all other studies were published starting in 1999.

A range of different simulation models were used to
answer questions about opioid misuse. The most frequently
used simulation models included ABMs, and compartmen-
tal, Markov, and SD models. Substantial heterogeneity was
found in the estimates reported for some of the key calibrated
model parameters across studies, including those associated
with IDU and overdose, such as transition probabilities.
Differences in modeling approach, data sources, calibrated
model parameters, and model assumptions will likely lead to
different conclusions to the same research questions, high-
lighting the vital importance of transparency in the model
development process so that models can be replicated and
results can be interpreted appropriately. This represents an
area for growth in the application of simulation models to
opioid misuse; in our assessment, fewer than half of studies
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presented model equations or provided access to model code
and documentation in order to reproduce the reported find-
ings based on the model. Placing studies in the context of the
larger body of work is also critical to be able to adequately
interpret findings from new studies; researchers compared
their results with another model’s findings in fewer than half
of the studies we reviewed.

The data sources used to calibrate the model play an im-
portant role in defining simulation model–based outcomes.
Our review highlights 2 key issues with the primary and
secondary data sources used to parameterize the pathway
of the opioid epidemic. First, many of the studies in which
empirical data were used for calibration purposes relied
on similar data sources. Any limitations of these data sets
will be magnified in opioid simulation models, especially
in compartmental models with linked differential equations
where calibrating multiple outcomes simultaneously can be
difficult. NSDUH, for example, has been shown to substan-
tially under-report OUD (121), likely due to issues such as
reporting bias for stigmatized drugs, and lack of represen-
tation of vulnerable populations such as those incarcerated
or homeless. Death certificate data may also underestimate
opioid overdose deaths by as much as 24%, due to underi-
dentification of specific drug involvement in overdose deaths
(122). Data availability and data quality remain major chal-
lenges in simulation models for the opioid epidemic, as is
the need to incorporate assumptions about data uncertainty
and underestimation into simulation models (123). Second,
for most models, researchers relied on published estimates
to calibrate input parameters, particularly when calibrat-
ing the effect of any kind of intervention such as treat-
ment, emergency medical services, or naloxone. Under ideal
circumstances, reported intervention effects obtained from
published estimates would be unconfounded; the causal
effect of an intervention found in the published population,
setting, and time period would be directly transportable to
a different site; there would be no selection bias or mea-
surement bias in the evaluation of the intervention effect;
and the distributions of unmeasured confounding would be
the same in the 2 sites (124, 125). However, several of
these assumptions are often unfulfilled. For example, the
prevalence of interacting factors that activate the effect of an
exposure and the background prevalence of the disease all
modify the effect of such an exposure across sites, raising
concerns about the transportability of intervention-effect
estimates to simulation models that represent different peri-
ods, types of target populations, or geographic areas (125,
126) Furthermore, in cases of intervention effects that are
affected by time-dependent confounding, treating published
estimates of past intervention effects as causal effects raises
concerns about collider bias (125). To elaborate: When there
is intervention-confounder feedback and (as is often the
case) an unmeasured factor affects both the confounder and
the outcome, conditioning on the confounder (a “collider,”
because it is a common effect of the intervention and the
unmeasured confounder) creates an artificial association
between the intervention and the unmeasured confounder,
and therefore between the intervention and the outcome
(because the unmeasured confounder is associated with the
outcome) (125).

These issues highlight 5 priorities for future simulation
model–based studies of opioid misuse: 1) incorporate data
specific to the target population and period whenever pos-
sible; 2) incorporate input from stakeholders on the quality
and limitations of local and national data and on sources of
variation in assumptions about intervention effects; 3) use
transparent approaches during model development to test
the extent to which different assumptions about data qual-
ity (e.g., estimates of outcome underestimation) and trans-
portability might affect model findings; 4) consider using
approaches such as g-computation (127–129) that account
for time-varying confounding by prior exposure to obtain
unbiased intervention-effect estimates in cases where the
simulation model represents the population from which the
intervention effect was originally examined; and (5) build on
prior work developing transportability estimates (129), and
incorporate the estimates into simulation models to predict
the potential impact of new interventions in new populations
and contexts (130, 131).

Model calibration and validation of simulation model–
based studies of opioid misuse is another area that needs
much more research attention. Fewer than half of the re-
viewed studies fulfilled the criteria meant to assess model
testing, including reporting the quality of calibration fit to
data. Indeed, calibration and validation were key drivers of
model quality; for example, models that reported the quality
of calibration fit to historical data performed 28% better
than other models in terms of our assessment criteria. To
build confidence in the reliability and validity of simulation
models and to encourage independent replication of models
that simulate opioid misuse, presentation of the quality of
model calibration and attempts to validate model results
are critical. This is especially true for simulation models
developed specifically to support decision-making. As the
plethora of simulation models for COVID-19 pandemic have
shown, public confidence in models for decision-making
relies heavily on the quality of the model calibration and
validation procedures (132). For opioid-epidemic simulation
models, this can include approaches such as period-by-
period processes of calibration-test-recalibration; predictive
validation; splitting data into training and testing sets and
testing whether a model developed using training data can
predict outcomes in the testing set; and testing sensitiv-
ity of results to the choice of input parameters, including
multivariate sensitivity analysis (133–135). There are well-
established guidelines for model calibration and validation
for dynamical simulation models that should be followed in
future simulation modeling studies of the opioid epidemic
(136, 137).

This systematic review was focused on simulation models
related to opioid misuse. No studies identified in our review
simulated co-use of opioids with stimulants or contamina-
tion of stimulants with fentanyl and other illegally manufac-
tured synthetic opioids. Hence, the parameters presented in
the reviewed papers are likely not applicable to questions
of emerging drug-product combinations. As polydrug use
emerges as an important driver of overdose trends (138)
and data on the national drug supply become available (e.g.,
from the National Forensic Laboratory Information System),
incorporating information on fentanyl contamination and
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stimulant-opioid co-use in models simulating future over-
dose trends should be a priority.

Simulation models are an important tool to help us under-
stand the dynamics that give rise to population patterns of
opioid misuse and identify the types of interventions that can
reduce population rates of opioid misuse in ways we cannot
do with real data or in experiments. Increasing application of
simulation methods to study opioid misuse and, in particular,
to predict potential outcomes and costs associated with
interventions to reduce opioid misuse, offers real promise
to the field. At the same time, studies applying simulation
models to questions of opioid misuse should actively address
methodological challenges pervading this field, including
the potential for bias in the choice of parameter inputs,
investment in calibration and validation, and transparency
in the assumptions and mechanics of simulation models that
would facilitate reproducibility.
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