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INTRODUCTION

If electronic health records (EHRs)1 are ubiquitous in
health care, then why are EHR data so difficult to
access and use? Since their inception in the 1970s,
EHRs have been envisioned to transform how health
systems generate and use knowledge,2-6 including in
oncology.7,8 Federal investments from the 2010Health
Information Technology for Economic and Clinical
Health (HITECH) Act9-11 led to near-universal EHR
adoption by 2017 in nonfederal acute care settings
(96%) and high adoption in clinics (80%).12-14 In
parallel, the learning health system (LHS) model was
born, which seeks to use EHR and other data on
patients and patient care processes to increase quality
at reduced cost.15,16

The reality of EHRs has been mixed. Early studies
showed potential to optimize work processes; provide
information gathering, summarization, reminders, and
clinical decision support (CDS)17; improve quality; and
lower costs.18,19 However, recent studies have shown
that EHRs require provider workarounds that nega-
tively affect ability to access or write information reli-
ably, leading to burnout20-23 and inefficient and lower
quality care delivery.24,25

The LHS model has limited support from current EHRs.
It needs readily available population data, but most EHRs
only support querying a patient at a time. Pooling EHR
data for regional and national LHS analyses is arduous.
Oncology’s precision medicine transformation from
hundreds of diagnoses to thousands of distinct cancer
subtypes driven by molecular testing26-29 places
unique burdens on EHRs,8 which were not designed
for molecular data.30 In addition, precision oncology
requires synergy between the clinic and academic
research that is ill supported by current EHRs.

This narrative review articulates how interoperability
and other EHR technology issues have held back the
oncology LHS, and it describes promising directions
involving industry and academia for improving data
and software integration and interoperability.

EHR LIMITATIONS

Incumbent EHR vendors in the United States used
1990s client-server software architecture31,32 for their

products. Although innovative compared with previous
terminal-based systems, today, these EHRs often lack
functionality found in consumer software, were not
designed for the open data exchange needed in
modern clinical practice, and put hospitals at the
center of care not patients. In addition, their central-
ized information technology (IT) management model
restricts provider customization and experimentation,
which was commonplace in paper charts, and makes
customization slow and expensive.33-35 High purchase
prices, disruption to health care operations from
switching EHRs, vendor reluctance to implement in-
teroperability with competing products, and complex
regulations that new market entrants must implement
have entrenched these technologies.

Furthermore, IT spending by US health care institu-
tions has lagged other nations and other industries
with complex needs,18,36-39 limiting institutions’ ability
to augment vendor EHRs or even fully implement what
vendors provide. Rigorous evaluation through imple-
mentation science40 is needed to guide EHR imple-
mentations, but such evaluations can cost nearly as
much as implementing the technology itself,41 which
is likely part of why they are rarely done.42 Out-
sourcing EHR-related IT, as some health systems
have attempted,43 is puzzling because digital trans-
formation cannot happen if executives view informatics
as outside of their organization’s core competencies. As a
result, most EHR implementations have numerous
clinical and research limitations.

Clinical Limitations of Current EHRs

HITECH defined basic and comprehensive EHRs.
Basic EHRs, shown in Figure 1, essentially duplicate
the paper chart in electronic form. Comprehensive
EHRs add simple data interpretations like threshold
checks on numerical observations without regard for
context. A total white count of 100,000 in a patient
with no known blood cancer, a patient with acute
leukemia, and a chronic lymphocytic leukemia
patient with a steady white count for half a decade
have drastically different implications, yet EHRs will
detect this finding as critical in all three patients.
Oncologists need dynamic longitudinal views that
contextualize findings.
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Comprehensive EHRs also provide alerting44 that relies on
clinical guideline development and manual curation of
business rules that are triggered by patterns in laboratory
test results, diagnosis codes, medications, and the like.
This approach to authoring alerts cannot keep up with the
pace of clinically actionable new knowledge.45 Further-
more, the accuracy of such rules is frequently low, leading
many providers to override CDS alerts habitually.46

These visualizations and checks are limited partly because
80% of EHR data are in unstructured documents that EHRs
cannot parse.47,48 A provider signing off on a note detailing
a patient with shortness of breath because of end-of-life
lung cancer will be asked by the EHR to duplicate the chief
complaint in a structured field and order a prostate-specific
antigen test. Cancer stage, histopathologic biomarkers,
smoking status, clinical genetic testing, and other pertinent
cancer data and provider interpretations of it are typically
found in text notes that are unavailable to CDS.

Physician burnout has arisen from using these EHRs.
Causes include information overload,49,50 increased com-
plexity of cognitive work,51 excessive data entry driven by
billing and administrative requirements, inefficient user
interfaces, click fatigue,52 inadequate data exchange with
other providers, and EHR-related workflows that interfere
with the physician-patient relationship.22 Cancer is a
complex set of diseases in which information overload in
EHRs may be exacerbated.8 Patient safety measures like
medication reconciliation, implemented through burden-
some EHR workflows, have also contributed to burnout.19

The same problems result in information input and output
errors and adversely affect care safety and efficiency.53,54

This has been noted in studies worldwide and for different
provider roles and levels of training.55-57

Inadequate data exchange between providers is largely
due to inadequate EHR data standardization. Most EHR
implementations have site-specific codes that are ill
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To provide a narrative review of challenges and opportunities with electronic health record (EHR) data, including interop-

erability and integration with other data sources, impacts on cancer research and cancer care, and promising directions for
next-generation EHR technologies.

Knowledge Generated
Although federal EHR technology investments had disappointing results, they were necessary to start digitizing the nation’s

health care data and set the stage for a promising future. An architecture focused on application programming interfaces
and data standards provides a flexible approach that is highly likely to accommodate precision oncology and enable a rapid
learning health system.
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New EHR technologies promise to support all levels of the data-information-knowledge-wisdom pyramid through efficient

capture of clinical and molecular data on individuals, visualization of longitudinal context of care (information), use of real-
world data to enable new and rapid modes of cancer research (knowledge), and clinical decision support driven by near
real-time analyses of patient populations (wisdom).
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FIG 1. Depiction of current EHRs in a LHS.
Although current EHRs provide longitudi-
nal patient data storage, they typically vi-
sualize only snapshots of the state of
individual patients. In addition, they pro-
vide little support for research uses of the
data or stakeholder decision making to
improve care quality at lower cost. This
figure depicts a snapshot view of four
patients’ medical records, accessed by
their providers (red arrows), with no patient
population view. EHR, electronic health
record; LHS, learning health system.
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documented. Where standards may be used, like Logical
Observation Identifiers Names and Codes (LOINC) for
clinical laboratory test results,58 codes may be applied
inconsistently from one institution to another. Cancer-
specific data are complex and would especially benefit
from structured data representation and standardization.
Disease classification standards used in EHRs, like the
Systematic Nomenclature of Medicine—Clinical Terms
(SNOMED-CT) used in EHR problem lists59 and structured
pathology reporting,60 frequently classify cancer types by
histology and location but not molecular testing although
clinical genetic testing has become routine.61

Furthermore, data quality has plagued EHRs. Adminis-
trative coding systems like International Classification of
Diseases version 10 have too many codes for providers and
coders to document accurately without substantial com-
puter support,62-64 and these codes document billing, not
patient care. Problem lists, ostensibly a clinical represen-
tation of a patient’s conditions, are frequently inaccurate,
incomplete, and out-of-date because of burdensome data
entry.65 EHRs were recognized early in their history to po-
tentially cause the recording of a greater quantity of bad data
compared with paper, leading to the first law of informatics in
1991 stating that data shall be used only for the purpose for
which they were collected.66 In the decades since the first law,
health care has found value in reusing EHR data, but the
data’s limitations are insufficiently understood.

Research Limitations of Current EHRs

EHR data are typically available for academic and opera-
tional research through a relational database called an
Enterprise Data Warehouse (EDW),67-69 which may be
refreshed daily to quarterly. Maintaining an EDW requires
expertise that only larger health systems typically have, and
even basic queries require substantial informatics support.
EHR vendors increasingly provide self-service population
query tools that are updated in near real time, but these
tools often provide neither access to historical data before
the EHR’s implementation nor data stored in ancillary
systems.

Data problems in EDWs affect the data’s fitness for use in
research.70,71 They include infrequent refreshes, left cen-
soring (the first instance of disease may not be when the
disease first manifested), right censoring (the data may not
cover a long enough time interval), missing data from other
clinical and nonclinical settings, institutional and personal
variation in practice and documentation styles, and in-
consistent use of medical codes.72 Misunderstanding these
challenges has led to multiple retractions in major journals.73

Efforts to increase EDW data completeness and quality are
frequently framed as a need for more structured data entry in
EHRs, but research needs must be balanced with already-
excessive provider documentation requirements.

Chart abstraction and harmonizing74 EDWs to standards
are resource-intensive but increasingly necessary to

participate in clinical research networks. Ill-documented
local codes and mappings to standards require extensive
informatics support to understand. Local codes tend to
change without warning to the research community,
resulting in corrupted data.15,75,76 Data located in text notes
must be abstracted manually or parsed from the EHR’s
database using natural language processing (NLP).77

Other informatics challenges in EDWs include complicated
data models that appear markedly different from how the
same data appear in the EHR. Data visible in the EHR as
scanned image files, such as clinical genetic test results,
are usually unavailable in EDWs. Even when genetic testing
is available, its use in research is often hampered by the
absence of linkages to sequencing data. Extracting clinical
concepts, exposures, and outcomes for studies and ap-
plying inclusion and exclusion criteria are challenging even
for the most experienced data analysts.

Policies also hamper EDW use in research. Budget limi-
tations and governance conflicts between the research and
clinical sides of academic institutions tend to result in re-
search needs getting low priority.78 When EHRs are out-
sourced as described above, the EHR vendor may charge
for research access, thus increasing costs to researchers.
In addition, although security and privacy concerns29,79

rightly necessitate carefully crafted access policies, many
institutions simply restrict access. Safe harbor deidentifi-
cation defined by the Health Insurance Portability and
Accountability Act may alleviate privacy concerns but
removes critical information such as seasonality.80 Fur-
thermore, there is frequently an overlap between data
capture forms used for patient care and research, but
institutions may have separate clinical and research data
capture policies, forcing investigators through a quagmire
to get their work done and severely hampering integration
between patient care and research needed to realize a
LHS.81

THE LHS

The LHS encompasses infrastructure, governance, in-
centives, and shared values to harness data and analytics
to learn from every patient, on the basis of real-world care
process and outcomes data drawn primarily from
EHRs.16,82 The LHS aims to feed this knowledge back to
clinicians, informaticians, data scientists, public health pro-
fessionals, patients, and other stakeholders to create cycles of
continuous improvement.16,82,83 To realize this vision in on-
cology, EHRsmust go beyondHITECH’s comprehensive EHR
requirements to improve patient care, better connect patients
and their oncologists, and provide seamless data flows be-
tween clinical and research missions.7

The data-information-knowledge-wisdom pyramid,84,85

shown in Figure 2, describes LHS data flows starting
with capturing data on individuals (Fig 1); data cleaning,
validation, and interpretation to form information, shown in
Figure 3; developing insights that add to knowledge about
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similar patients, shown in Figure 4; and taking wise action,
shown in Figure 5. EHR limitations create barriers at all
levels of the pyramid, but with sufficient IT investments,

opportunities exist to address them. Table 1 links topics in
the research and clinical opportunities subsections below
to each data-information-knowledge-wisdom level.

Clinical Opportunities

The Quality Oncology Practice Initiative113 took initial steps
toward creating an oncology LHS by combining patient-
reported surveys and manually abstracted EHR data from
seven practice groups to study clinical practice variation.
Improvements in compliance with practice benchmarks
were highest when relevant information was in the EHR,114

but the heterogeneity of cancer cases limited the effec-
tiveness of chart abstraction-based data capture.

A rapid LHS aims to replace manual chart abstraction with
near-real-time data flow from EHRs. In this future vision,
EHRs will automatically mine and render genotypic and
phenotypic data86 together with the latest evidence for clinical
decision making.27 Clinical outcomes will lead to iterative
knowledge refinement and new research studies that may
ultimately result in further practice changes.8,29,115 This ap-
proach may be of particular value for patients with late-stage
cancer for whom treatment benefits are less clear.

Early rapid LHS adopters developed a proof-of-concept
iPad-based CDS system called Substitutable Medical Ap-
plications and Reusable Technologies (SMART) Precision
Cancer Medicine (PCM).111 SMART PCM supports pro-
viders and patients in collaboratively reviewing the patient’s
mutation status in the context of a continuously updated
database of patients with similar mutations and linkages to
other data and knowledge. CUSTOM-SEQ (Continuously
Updating System for Tracking Outcome by Mutation to
Support Evidence-based Querying) calculates and displays
mutation-specific survival statistics.112 Decision precision is
a lung cancer screening application for shared decision

Wisdom

Knowledge

Information

Data

FIG 2. Illustration of the DIKW pyramid. It provides a framework
for understanding how future EHRs need to better support ab-
straction of data into information, and inference of knowledge from
information, to help providers and other stakeholders gain wisdom
to realize the learning health system’s overall goal of improving
care quality at lower cost. DIKW, Data-Information-Knowledge-
Wisdom; EHR, electronic health record; LHS, learning health
system.
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FIG 3. Longitudinal data abstraction on Patient 1’s medical record (gold arrows) and interpretation of Patient 1’s data to form information, the
second level in the DIKW pyramid (Fig 2). Current EHRs typically display only snapshot views (thin gray arrows, Fig 1). With the ability to interpret
longitudinal data, future EHRs could visualize a patient’s cancer journey and provide basic support for correlating clinical features with genetic
testing over time. DIKW, Data-Information-Knowledge-Wisdom; EHR, electronic health record.
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making between patients and providers about screening.41

These applications are tightly integrated into EHRs, and
they rely on availability of structured clinical genetic test
results, which have begun to be supported by major EHR
vendors, for example, Epic’s genomics module.116 Similar
technologies may allow automated capture of patient-
reported data in EHRs, for example, Apple HealthKit,
thus reducing provider data entry and potentially increasing
patient engagement.19,117,118

A prerequisite of this tight integration is shared data models
between EHRs and apps.78 Early oncology data models
include electronic Clinical Oncology Treatment Plan and

Summary, which builds upon a health care data exchange
standard from Health Level Seven International119 called
Clinical Document Architecture.101 Its successor, Minimal
CommonOncology Data Elements (mCODE), is built upon a
Clinical Document Architecture replacement called FHIR
(Fast Healthcare Interoperability Resources) that is
new but is already used by SMART PCM, HealthKit, and
other apps.88 As important as shared data models are,
structured data are unlikely to replace all text notes as
information sources for CDS. Thus, EHR vendors have
begun introducingNLP-based document indexing that extracts
clinical events and observations from text notes automatically.
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FIG 4. Future EHRs providing longitudinal individual information (Fig 3, gold arrows) and population information (light blue arrows) to better
guide patient care and inform continuous quality improvement efforts. With such EHRs, providers, stakeholders, and researchers may more
easily generate knowledge through insights gained from advanced visualizations and clinical decision support. Knowledge is the third level in the
DIKW pyramid. DIKW, Data-Information-Knowledge-Wisdom; EHR, electronic health record.
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FIG 5. Implementation of new care processes in a LHS (blue arrow), in part through evolving the EHR (cyclic arrows) in response to knowledge
about a patient population gained from advanced visualizations and clinical decision support (Fig 4). Transforming knowledge into action is the
top level of the DIKW pyramid (Wisdom). DIKW, Data-Information-Knowledge-Wisdom; EHR, electronic health record; LHS, learning health
system.
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Machine learning may further accelerate creating apps
that reason with continuously updated knowledge in-
ferred from EHRs.102,103 Potential applications include
cohort identification120 and prediction of future events,
prognosis, and outcomes.102 In addition, machine learning
may simplify provider interactions with EHRs through
speech recognition102,121 and reducing data entry through
improved NLP.122 Unsolved challenges include burden-
some provider time to label cases, trained algorithms’ lack
of generalizability from one disease condition to another, no
way to run clinical trials of trained models in the

clinical environment, and no way to incorporate vali-
dated models into EHRs. Newer machine learning
methods like deep learning require less data pre-
processing and training than prior techniques,104 but
more work is needed. Integrated academic and clinical
missions are required to support algorithm develop-
ment, evaluation, and implementation.

Research Opportunities

Clinical practice knowledge inferred from EHRs may
complement traditional scientific discovery, embodied by

TABLE 1. Electronic Health Record-Related Technologies Supporting the Cancer Learning Health System, Organized by Level in the Data-
Information-Knowledge-Wisdom Pyramid
DIKW Level Supporting Technologies

Data: data capture on individuals Electronic forms
Clinical documents (free text)
Patient portals
Scanned paper forms and documents

Information: data cleaning, validation, and interpretation Natural language processing77

Simple reference ranges and computed values
Phenotypes derived from patterns in electronic health record data86

Data model standards78

Observational Medical Outcomes Partnership Common Data Model76

Patient-Centered Outcomes Research Institute Common Data Model87

Minimal Common Oncology Data Elements88

Electronic Clinical Oncology Treatment Plan and Summary89

Data classification standards
Logical Observation Identifiers, Names, and Codes58

International Classification of Diseases for Oncology90

Systematic Nomenclature of Medicine—Clinical Terms59,60

OncoTree91

HemOnc92

National Cancer Institute Thesaurus93

Knowledge: development of insights Research data networks
Oncology Research Information Exchange Network94

Patient-Centered Outcomes Research Network87

Observational Health Data Sciences and Informatics76

Flatiron95

TriNetX96

CancerLinQ97

Genomics Evidence Neoplasia Information Exchange98

Data exchange standards
FHIR99,100

Clinical Document Architecture101

Artificial intelligence
Machine learning102,103

Deep learning104

Cancer surveillance programs105

SEER106

National Program for Cancer Registries107

National Childhood Cancer Registry108

Enterprise Data Warehouse67-69

Wisdom: application of knowledge Clinical Decision Support17

SMART109

SMART on FHIR applications in oncology109,110

SMART-Precision Cancer Medicine111

Continuously Updating System for Tracking Outcome by Mutation to Support
Evidence-based Querying112

Decision precision (shared decision making about lung cancer screening)41

Abbreviation: FHIR, Fast Healthcare Interoperability Resources; SMART, Substitutable Medical Applications and Reusable Technologies.
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the clinical trial.123 Two to three percent of patients par-
ticipate in trials.29 Although the participation rate in cancer
trials may be somewhat higher,124 such low participation
may result in under-representing older patients, racial and
ethnic minorities, comorbidities, and low socioeconomic
status, which are present in real-world EHR data.125,126 In
addition, data collection in clinical trials is expensive, and
trials are slow to yield results and affect patient care.97 Real-
world evidence-based studies will not fully replace clinical
trials, and careful attention to established guidelines in
using such data is needed,73 but appropriate use of EHR
data may yield results faster and at lower cost.

Potential studies include comparing anticancer drug com-
binations and their timing and identifying unexpected
associations between clinical events, prognoses, and
outcomes, for example, comorbidities associated with
poorer chemotherapeutic response.115 Population-based
disparities such as geographic differences in cancer out-
comes could point toward epidemiologic and performance
hypotheses. Such associations can support predictive
modeling of individual prognosis and outcomes.

Furthermore, integrating EHR data with health department,
social media, and other data could increase statistical
power and increase the likelihood of new genetic variant
associations and other discoveries.127,128 EHR data could
boost cancer registries105 such as the SEER program106 and
the National Program for Cancer Registries107 through
enhanced data capture and linkage. Early examples in-
clude CancerLinQ, which harmonizes EHR and SEER data
for quality improvement and research,97 and the National
Childhood Cancer Registry,108 which links tumor registry
data with EHR data from National Cancer Institute (NCI)–
designated cancer centers.

Integrating regional and national data frommany EHRs also
shows promise. Examples that support oncology research
include the Oncology Research Information Exchange
Network,94 the Patient-Centered Outcomes Research
Network,87 the Observational Health Data Sciences and
Informatics (OHDSI) initiative,76 the All of Us Research
Program,129 and the Genomics Evidence Neoplasia Infor-
mation Exchange (GENIE) network.98 Oncology Research
Information Exchange Network, All of Us, and GENIE
capture genetic data and link them with clinical data.
OHDSI provides an open-source repository of statistical
analysis scripts that make correct use of multisite EHR
data.130,131

Research networks use many of the same vocabularies as
CDS, but more work is needed to expand and augment
them. For example, like SNOMED-CT, the International
Classification of Diseases for Oncology used by tumor
registries90 classifies cancer types by histology and location
but not molecular testing. OncoTree, used by GENIE,
shows promise for additionally classifying cancers by
genotype.91 The NCI Thesaurus aims to provide broad

coverage of clinical and molecular concepts in oncology
and relationships between them93 and is used by the
National Childhood Cancer Registry for annotating data
contributions. HemOnc aims to represent chemother-
apeutic regimens at OHDSI sites,92 expanding upon
SNOMED-CT and the NCI Thesaurus. Continuous devel-
opment of vocabularies for both patient care and research
is needed to move data through capture, interpretation,
knowledge generation, and CDS (wisdom) steps of the LHS.

REIMAGINING THE EHR

The above EHR opportunities represent substantial
changes and are unlikely to be realized through purely
incremental improvement of existing EHRs. The American
Medical Informatics Association EHR-2020 Task Force19

and the JASON advisory group report127 proposed similar
visions for next-generation EHRs that advance the state-of-
the-art by enabling newmarket entrants to invent advanced
functionality that integrates seamlessly with hospital and
clinic databases.

Their recommendations focus on reducing manual data
entry through multiple approaches, including NLP47; al-
ternative data entry modes like voice and handwriting
recognition; patient portal and mobile device integration
with EHRs; interoperability between EHRs and ancillary
systems132; and broadening the settings in which EHRs
operate to home health, pharmacy, population health, long-
term care, and physical and behavioral therapy centers.
With these changes, providers could refocus manual
documentation on data elements that contribute to patient
outcomes rather than billing and administration.

EHR data are among the most granular available, and
sequencing data are even more so.128 Patient privacy
concerns with health care big data29 legitimately increase
as the volume of data held in EHRs increases, as do se-
curity concerns when a breach could affect so many pa-
tients. Such detailed data could be nearly impossible to
deidentify because of unique data patterns that only one
individual has.127 Next-generation EHRs will require ad-
vanced encryption to ensure security, privacy, and patients’
trust in the clinical and research communities.

Additional recommendations include restoring the ac-
ademic informatics community’s role in EHR technol-
ogy advancement, which was common in early EHR
implementations but lost when academic centers adopted
vendor systems. Many promising CDS and other methods
from the informatics community remain unimplemented by
vendors, and site-specific customization requests to ven-
dors tend to receive low priority, creating suboptimal fit with
local operational processes.

Both reports propose an open EHR architecture composed
of third-party best-of-breed applications, available in an
app store for health systems to purchase in different
combinations. Health systems would also purchase a
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software foundation that provides apps with authentication,
authorization, encryption, databases, protocols for reading
and writing data, terminologies, and patient and encounter
data models. The foundation would have application pro-
gramming interfaces (APIs) for apps to access its capa-
bilities, connect to other apps and comprise a cohesive
system. Like how the Apple app store catalyzed the pop-
ularity of the iPhone on the basis of its iOS foundation, EHR
APIs would allow a software marketplace to form. If all
software foundation vendors shared the same APIs, new
market entrants could write apps once for use anywhere
with a standards-compliant foundation.

Early versions of this architecture extended current EHRs
with sidecar133 software that connects to any EHR’s da-
tabase and presents standardized data views on the basis
of a common data model (CDM),96 primarily in support of
research. Sidecars include i2b2, using a flexible star
schema134; OHDSI, using the Observational Medical Out-
comes Partnership (OMOP) CDM135; Patient-Centered
Outcomes Research Network, using the Patient-Centered
Outcomes Research Institute CDM87; and TriNetX, using a
proprietary CDM.96 Sidecars access data the same way as
EDWs and require similar levels of provider resourcing.
Data movement is typically one way from EHRs into the
sidecar, limiting support for patient care. Services like
CancerLinQ,97 Flatiron,95 and Health Catalyst Data Oper-
ating System136 moved the sidecar into the cloud but
similarly rely on one-way EDW-style data movement from
EHRs into the services.

The SMART project109 went a step further by creating a
standardized API on top of these sidecars for building
apps.137 SMART apps use FHIR for data exchange,99,100

and existing EHRs can eliminate the sidecar and imple-
ment the API directly. Cerner, Epic, Athenahealth, and
others support SMART on FHIR to some degree, and more
than 500 hospitals have begun using SMART on FHIR
apps,110 including ours.41

The above SMART PCM application is an example of
SMART on FHIR in oncology. Compass linkedmCODE data
elements in an EHR with data from similar patients
extracted from CancerLinQ.138 The Integrating Clinical
Trials and Real-World Endpoints app supported an Alliance
for Clinical Trials in Oncology study using real-world data.138

Compass and Integrating Clinical Trials and Real-World
Endpoints were pilot projects leading to the development of
mCODE, which future SMART apps in oncology will likely
rely upon. Epic’s App Orchard effectively provides an app
store in the health care space.

Over time, a new software foundation would replace current
EHRs and EDWs. Functionality would include a fully
encrypted database permitting selective data decryption
according to fine-grained access granted by patients to-
gether with their providers. Flexible data storage would

permit high-performance query, extraction, and visualiza-
tion of patient and population data in a variety of clinical and
research contexts. Existing apps would continue to function
as before because the new foundation would implement
extensions of existing APIs that add functionality without
breaking current capabilities. Cost-effective means of formally
evaluating these technologies are needed to ensure that they
have the desired impact on patient care and research.

In summary, EHRs began as highly customized tools de-
veloped by academic medical centers.139 Initial systems
were replaced by one-size-fits-all vendor EHRs that are
deployed widely but have limited support for oncology. The
informatics community has envisioned a new architecture
that returns to permitting the innovation and customization
required to realize the LHS. The adoption of SMART on
FHIR by vendor EHRs will allow this new architecture to be
studied and fine-tuned in the real world before ultimately
replacing current EHRs with new technologies.

Challenges include scaling SMART to a vision of EHRs as a
collection of applications that providers compose according
to need. Apps are envisioned as independent and con-
nected to a foundation. However, it is easy to imagine a CDS
app needing to connect directly to a data visualization app
because the foundation does not yet support the necessary
integrations. Unless informatics architectures and gover-
nance support interoperability between apps in an orga-
nized fashion, chaos could ensue as many-to-many
relationships form between apps.

Before one-size-fits-all EHRs, many institutions mixed
paper charts with best-of-breed applications, typically for
billing and pathology and radiology reports.4 Institutions
migrated to legacy EHRs in part to simplify purchasing and
obtain vendor support for integrations between EHR
components.140 Perhaps vendors will emerge who package
and support sets of interoperable SMART on FHIR apps for
oncology and other subspecialties.

The SMART and FHIR standards need performant pop-
ulation query capability to realize the LHS. FHIR was re-
cently extended with EDW-style bulk query,141 but EHR
vendors have yet to implement it. EHRs have data gaps and
performance bottlenecks when querying large data vol-
umes using FHIR, and thus, the sidecar remains the only
working solution for bulk queries. Interoperability between
EHR data and high-value oncology data like SEER and
National Program for Cancer Registries is also needed.

Despite these challenges, this new API-centric and
interoperability-focused architecture is a flexible approach
that is highly likely to accommodate the needs of precision
oncology. Results from HITECH have been disappointing,
but HITECH was a necessary step toward digitizing the
nation’s health care data and setting the stage for a
promising future.
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