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poral dynamics. This mini-review outlines different spatiotemporal dynamic patterns that have
been identified in four commonly used modalities: electrophysiological recordings, optical im-
aging, functional magnetic resonance imaging, and electroencephalography. Signal sources for
each modality, possible sources of the observed dynamics, and future directions are also dis-
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1 Introduction

From molecules to the whole brain, constant fluctuations in brain activity occur at every scale of
organization. The modeling of these constantly changing activity patterns in the brain, or spa-
tiotemporal patterns, has become a major focus in recent years. The relative timing of these
fluctuations within a neural population is known to be constantly changing. Instead of having
precise synchrony, a range of phase offsets is possible. With flexible phase offsets, these fluc-
tuations in neural activity can be viewed as traveling waves of different shapes including plane,
radial, and spiral waves.1 The combination of multiple traveling waves forms subsequent com-
plex spatiotemporal patterns.1 Moreover, these spatiotemporal patterns can recur repeatedly over
time, sometimes rhythmically, sometimes at variable intervals. These waves travel along brain
networks at multiple scales, modulating neural excitability as they pass. Troves of data have now
been collected measuring the spatiotemporal dynamics of these traveling waves in different ani-
mal models and at different scales, but assessing the causality between patterns measured at
different scales remains a major challenge. Relating these spatiotemporal dynamics across scales
and modalities is critical for a better understanding of causality between microscopic and macro-
scopic brain activity and the etiology of behavior and disease.2,3

Relating spatiotemporal dynamics within scales is always simpler than relating across scales
of organization.4 Activity across microscopic and macroscopic scales is related by what has been
termed circular causality.5 This means that emergent patterns from smaller scales (i.e., single
neurons or circuits) generate large scale patterns at higher levels of organization (systems or
the whole brain), which in turn constrain the activity generated at smaller scales. A better under-
standing of this circular causality across brain hierarchy, in both health and pathology, requires
an integrated understanding of the spatiotemporal patterns across experimental modalities. As a
first step toward the goal of cross-scale comparison, this review describes and compares patterns
that occur at different spatial and temporal scales, measured with different modalities.
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Awide range of characteristic spatiotemporal dynamic patterns has been identified at differ-
ent scales, from single neurons to systems to whole brains. In this review, we discuss systems-
level spatiotemporal patterns (primarily cortex-wide scale patterns) in different modalities.
Specifically, we survey the main spatiotemporal patterns that have been detected at the meso-
scale using electrode arrays and optical imaging and at the macroscale with functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG). For a brief overview and
comparison of these modalities see Table 1.

Table 1 Overview of the spatiotemporal resolution, specificity, observed patterns, and consid-
erations for all of the discussed imaging modalities.

Electrode arrays

Optical imaging of
fluorescence and
intrinsic signals fMRI EEG

Number of
neurons

One to hundreds Tens to hundreds n/a Millions, cortical
surfacen/a

Spatial
resolution

200 to 400 μm 50 to 100 μm 400 to 500 μm 10 to 20 mm
∼100 μm

Time
resolution

Millisecond Millisecond
(depends on
kinetics of sensor)

Second Millisecond to
hundreds of
milliseconds

Second

Cell-type
specificity

Limited High (depends
on the promoter)

Very low signal
from hemodynamic
response to neural
activity.

Low signal
predominantly
from EPSPs and
IPSPs in cortical
pyramidal apical
dendrites

n/a

Patterns
found

(1) Slow oscillation
generated around
layer 5 (in vitro ferret
occipital cortex,
in vivo rats and
cats) 6,7,8,9,10

(1) Global plane
waves traveling
anterior to posterior
(mice)13,14

(1) Propagating
activity, such as
QPPs (rats and
humans)16,17,18–22

(1) Transient spatial
configurations, such
as EEG and microstates
(humans)31,26,27,28,29,30

(2) Brief spontaneous
depolarizations,
localized to an area
of a barrel column
(rats and mice)11

(2) Standing waves
that have no net
movement (mice)15

(2) Transient spatial
configurations, such
as CAPs (rats and
humans)23,16,24,25

(3) Propagating
waves that traveled
horizontally across
dorsal cortex
(rats and mice)11,12

(3) Local source,
sink, and saddle
points (mice)15

Pitfalls (1) Large artifacts (1) Problems of light
delivery

(1) Low temporal
resolution

(1) Low spatial
resolution

(2) Tissue damage (2) Dependent on
efficiency of viral
transfection

(2) No cell type
specificity

(2) Signal primarily from
postsynaptic potentials
of apical dendrites

(3) Potential toxicity
of opsins

(3) Low SNR (3) Superficial signal,
no localization at
greater
cortical depths(4) Unspecific

effects
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A better understanding of how systems-level dynamic patterns vary across modalities and
scales will enhance knowledge of the brain’s functional architecture, giving insight into the ori-
gins of intentional behavior and the neural correlates of consciousness, and ultimately allowing
for a better understanding of the etiology of pathological brain states and disease.

2 Electrode Arrays

2.1 Source of Signal

Single electrode recording has been in use for decades, but recent advances to multi-electrode
arrays have enabled researchers to characterize the macroscopic dynamic patterns. Electrode
arrays can be used as a tool to study spatiotemporal dynamics by measuring changes in local
field potentials (LFPs). LFPs have several qualities that make them suitable for studying neural
brain dynamics. LFPs represent the aggregate activity of small populations of neurons charac-
terized by their extracellular potentials.32 A cardinal feature of this signal is that it represents
activity from many neurons in the vicinity of the recording site. Thus, it samples local neuronal
populations and captures network dynamics that would otherwise be missed by single-cell
recordings.33 These network dynamics are what define LFP, which has a spatial resolution
of 200 to 400 μm and a temporal resolution on the order of millisecond. A drawback to
LFPs is that the spatial coverage is limited to a single column or activity across distinct columns
with multiple arrays. Because of this, most of the identified dynamic patterns inform the local-
ized occurrence and spread of spontaneous activity rather than a brain-wide understanding of
spatiotemporal dynamics.

2.2 Dynamic Patterns

Electrode arrays have been used to identify recurring traveling waves in spontaneous activity in
both cortical slices and surface recordings.6,8–35

In vitro experiments have proven to be beneficial for elucidating the mechanism that drives
the observed recurrent propagation. Slow rhythmic activity (<1 Hz) was generated in vitrowhen
slices of the ferret neocortex were placed in a bathing medium that mimics the extracellular ionic
composition in situ.6 The transition from a depolarized to hyperpolarized state recurred with a
periodicity of once every 3.44� 1.76 s.6 These oscillations were initiated by layer 5 excitatory
interactions between pyramidal neurons. For in vitro slice preparation, the slow oscillation then
propagates within these infragranular layers.6 These oscillations were further studied across
cortical slices using multi-electrode arrays to investigate local and global network dynamics.
It was found that activation waves systematically propagated parallel to the cortical surface,
with wide variability in spatial source and speed.6,8 Irrespective of their variability, wavefronts
revealed loci across L4/L5, adding to the evidence that most excitable cell assemblies reside
in L5.6,7,8

Further evidence of the initiation souce in L5 was also found in vivo validating the role of
layer ⅘ in “up” state initiation.9,10 Ensemble spatiotemporal dynamics of spontaneous depolar-
izations were either brief and localized to an area of a barrel column or occurred as propagating
waves dependent on local glutamatergic synaptic transmission in layer ⅔.11 This flow of exci-
tation is strictly feed forward from layer 4 neurons projecting to layer ⅔. Individual layer ⅔
pyramidal neurons are oriented preferentially along the rows of the barrel field, inducing pref-
erential spread of excitation along the cortical axis.11 Neurons in the rat somatosensory cortex
revealed that “up” state onsets initiate a sequential spread of activity across the population as
shown in Fig. 1(a).12 They found that sequential structure was expressed only in the first
∼100 ms after the “up” state initiation and was most readily detected by the number of neurons
with the highest firing rates (>2 Hz).12 A subset of “up” states then propagated as traveling
waves. Regardless of their propagation direction, these traveling waves initiated similar local
sequences. These patterns were found in both anesthetized and unanesthetized conditions.12

An observed difference between the two states was that the induced sequences under anesthesia
lasted almost twice as long as those in unanesthetized animals.
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Both in vitro and in vivo studies using electrode arrays have definitively demonstrated rhyth-
mic activity that propagates along the cortex. These direct measurements of relatively localized
neural activity help to validate the widespread patterns of propagation observed with other
modalities and allow the mechanisms underlying the generation and coordination of such activ-
ity to be rigorously probed on a larger scale.

3 Optical Imaging

3.1 Source of Signal

An important component to studying the spatiotemporal dynamics of the brain is the understand-
ing of the cellular mechanisms, something that cannot be done with LFPs. This includes the
monitoring of membrane voltage at the cellular, circuit, and systems levels. A game-changing
advance made in recent years using genetically engineered animal models has enabled the mon-
itoring of these cellular mechanisms. These optical tools include voltage-sensitive dies and
genetically encoded indicators of voltage (GEVIs) or calcium (GECIs). The set of optical im-
aging tools is cell type-specific, less invasive, and able to relate activity and anatomy and to
facilitate long-term recordings of individual cell’s activities over weeks.37 Due to their inherent
properties, there are key conceptual differences between GEVI and GECI signals. Things that
must be considered are (1) the mode (calcium or voltage), (2) site of protein expression, and
(3) sensitivity to action potential versus synaptic potential. GEVI signals largely represent the
synaptic input arriving into a neural circuit whereas GECI signals present the action potential
output generated in the neural circuit.38

Their differing sources, in turn, impact characteristics of the measured signal including the
resolution and signal strength. The typical spatial resolution for population activity is 50 to
100 μm.38 The temporal resolution of calcium imaging is limited by calcium ion dynamics in
the neurons and is usually too slow for following brain oscillations at frequencies >10 Hz, a
limitation that is not shared by voltage imaging. Calcium indicators, however, usually produce
larger fractional changes in fluorescence, whereas voltage-sensitive dyes provide smaller signals.
For population imaging, with no cellular resolution, GECI optical signals showed an 8 to 20
times better signal-to-noise ratio (SNR) than GEVI signals.38

These tools can be combined with intrinsic optical signal imaging (IOSI), which makes use of
the spectral properties of hemoglobin (Hgb), which has different absorption properties when
oxygenated or deoxygenated, to measure changes in brain activity.39 IOSI benefits particularly

Fig. 1 (a) Pseudocolor plot showing the normalized activity of a simultaneously recorded popu-
lation triggered by “up” state onset, arranged vertically by latency. The dots indicate from which
shank the neurons were recorded. Reprinted from Ref. 12 Copyright 2007 National Academy of
Sciences. (b) Classification and detection of specific wave patterns at the cortex-wide scale.
Reprinted from Ref. 15. (c) Spatial configuration of four microstate classes. SCH, individual with
schizophrenia; HC, healthy controls; All, all participants in the study. Note how topographies
extend over wide-scale areas representing global brain electrical events. Reprinted from Ref. 36.
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from a relatively simplistic experimental setup in which there is no need for a genetically engi-
neered animal. IOSI can provide information about hemodynamics that is complementary to the
information about neural activity obtained with fluorescence imaging techniques.40

3.2 Dynamic Patterns

Optical imaging can measure activity from single neurons to cortex-wide spatiotemporal dynam-
ics. Imaging cortex-wide patterns reveal critical neuronal dynamics that have unique spatiotem-
poral dynamics for slower and faster frequency bands of activity.15,11,26,13

Spontaneous infraslow activity (<0.1 Hz) travels through the cerebral cortex along stereo-
typical spatiotemporal trajectories that are recapitulated in Hgb optical imaging. The spatiotem-
poral trajectories of the infraslow calcium signal and the Hgb signals prove to be highly similar,
demonstrating that neurovascular coupling is preserved during spontaneous activity.13 The time
scale for this activity ranges from �0.5 s. Under anesthesia, infraslow calcium signals travel
posterior–anterior with posterior leading anterior activity by ∼0.5 s.13 This is consistent with
other reports of correspondence between infraslow neural activity and hemodynamic
signals.41,42 This relationship does not hold for slightly higher frequency bands of 1 to 4 Hz
(Delta Band).13

Delta band spontaneous activity ranges from �10 ms and travels in a reciprocal direction
along the anterior–posterior axis of the mouse cortex. Under anesthesia, the anterior delta band
leads the posterior delta by ∼100 ms.13 This result is consistent with others that have shown that
delta activity travels anterior–posterior in anesthesia and sleep.43,14 Dynamics of the delta band
were also investigated for anesthetized mice using voltage imaging.15 By treating the sponta-
neous neural activity as propagating waves, delta band activity is shown to propagate in hetero-
geneous directions. Specific wave patterns found included plane waves, standing waves, and
source, sink, and saddle patterns [Fig. 1(b)]. Plane waves are those that travel anterior to pos-
terior, whereas standing waves are defined as periods in which there is no apparent wave propa-
gation across the analysis window.15 These patterns were observed globally and locally in mice,
with local wave patterns of source, sink, or saddle emerging in preferred spatial locations.15

Most of the dynamic analysis that has been done so far using optical imaging has been con-
fined to two frequency bands: infraslow activity and the delta band. It was found that infraslow
motifs (<0.1 Hz) are analogous to cortical motifs observed from slow frequency spontaneous
activity (0.5 to 6.0 Hz),22 in contrast to prior studies that showed the direction of propagation was
different for delta and infraslow waves. A clear area for future research is determining how the
spatiotemporal dynamics of these two bands interact. This is particularly important given that
these slow frequencies are relevant for interpreting fMRI.

4 Functional Magnetic Resonance Imaging

4.1 Source of Signal

Due to its wide availability, intrinsic contrast mechanism, and ability to capture whole brain
changes in activation, fMRI is one of the most widely used functional imaging techniques
in humans and other animals.44

Most fMRI studies rely on blood-oxygen-level-dependent, or BOLD contrast, as an indirect
measure of neural activity in the brain.45 The BOLD signal is a composite hemodynamic signal
that is affected by factors including cerebral blood flow (CBF) and changes in the ratio of dia-
magnetic oxyhemoglobin to paramagnetic deoxyhemoglobin (HbR) in response to the increased
metabolic demand of neurons and other cells in the brain. The increase of HbR in the wake of
neural activity can be felt by the local protons in water, affecting their T2 and T2* relaxation
times, resulting in an MRI-based signal that can be used for functional imaging.44–47 In other
words, the BOLD signal that is almost universally used in fMRI studies is an indirect measure of
neural activity.

The BOLD signal directly constrains the temporal and spatial resolution of fMRI and has
important implications for the use of fMRI to study the spatiotemporal dynamics of the brain.
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The BOLD signal has a temporal resolution on the scale of the hemodynamic response to neural
activation, which occurs on the order of a few seconds after neural activity. In humans, the hemo-
dynamic response typically has a width of about 3 s and peaks between 5 and 6 s, but this is
variable across conditions and animal models.44 The spatial resolution of BOLD fMRI (and the
SNR) is dependent on the strength of the applied magnetic field.44,48 The typical voxel size in
fMRI can range from 3 to 4 mm in lower field strength (1.5 to 3 T) magnets and from 400 to
500 μm with field strengths of 7 T and above.44,48

4.2 Dynamic fMRI Patterns

4.2.1 Quasi-periodic patterns

Quasi-periodic patterns, or QPPs, are reliably recurring spatiotemporal patterns of propagating
activity.16,17,18 The patterns are detected in fMRI data [typically resting state (rs)] using a cor-
relation-based iterative approach without a user-defined start point (for more details, see
Ref. 17). QPPs are an infraslow pattern (below 0.5 Hz), occurring on a timescale of 0.2 to
0.1 Hz, or 1 cycle every 5 to 10 s. QPPs can be thought of as rhythmic waves that are a combi-
nation of standing and traveling waves. Originally described in rats in Majeed et al.,17 QPPs have
since been detected in several human datasets.

A major feature of QPPs is that they show a reliable anti-correlation in propagating activity
between the well-described default mode networks (DMNs) and task-positive networks (TPNs)
[Fig 2(b)].16,19 The DMN and TPN are intrinsic connectivity networks that are traditionally asso-
ciated with either introspective self-referential cognition (mind wandering) or with the conscious
direction of attention or processing of incoming stimuli, respectively.16,20 QPPs also contribute to
normal functional connectivity and the level of anti-correlation typically seen between the DMN
and TPN.16 The contribution of QPPs to typical functional connectivity in attentional networks
may shed light on the etiology of diseases and brain states related to disrupted attention. Work by
Abbas et al.,16 for example, found a reduced contribution of QPPs to functional connectivity in
individuals with attention-deficit/hyperactivity disorder.

The neural origins and mechanisms underlying the generation of QPPs is an area of active
research, but early work with local field potentials and resting-state fMRI (rs-fMRI) in rodents
suggests that QPP activity is correlated to infraslow electrical activity.18,21 Spontaneous infraslow
patterns have also been detected in mice using wide-field voltage-sensitive dye imaging, but
specific mechanisms underlying the generation of infraslow patterns are still unclear.22 A com-
bination of multimodal and/or cell-type specific techniques in rodents may provide the best
approach to better understanding the origins and role of QPPs in dynamics and functional
connectivity.

Fig. 2 (a) CAPs showing distinct co-activation in “task-positive” areas and consistent deactivation
in “task-negative” areas. Reprinted from Ref. 23. (b) Spatiotemporal patterns seen in the resting-
state QPP. Reprinted with permission from Ref. 16.
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4.2.2 Co-activation patterns

Co-activation patterns, or CAPs, are brief periods, a few seconds long, of spontaneous co-
activation or co-deactivation between different brain regions. These CAPs represent recurring
instantaneous brain states near the temporal resolution of a single fMRI time point.24 CAPs
analysis uses single fMRI volumes rather than time series as the basic units of analysis.23,25

The method use a k-means algorithm to cluster and average activities at different spatial and
temporal points.23,24,25 CAPs often appear in pairs, in which one group of areas is activated and
another is deactivated in one CAP and the inverse pattern occurs in another CAP. These com-
plementary patterns might be considered different phases of a standing wave, similar to the
standing waves that were observed with optical imaging.

The CAPs method was initially used in rs-fMRI data to decompose spontaneous rs fluctua-
tions of well-characterized networks into distinct CAPs that happen on a smaller dynamic
timescale.23 For example, the CAPs method was employed by Liu et al.23 to analyze dynamics
within the DMN. In this study, it was found that the DMN contained multiple CAPs and diverg-
ing activities of the nuclei within the canonical DMN that are not detected with traditional static
functional connectivity analysis. Some, but not all, of the CAPs detected show correlated acti-
vation that resembles traditional seed-based DMN activation maps or independent components
analysis maps [Fig 2(a)]. However, some of the CAPs showed deactivation or coactivation only
within specific subsets of the DMN, such as the hippocampus, parahippocampal gyrus, and cau-
date nucleus.

In addition to rs analyses, CAPs have also been used in task-based fMRI datasets to inves-
tigate functional networks. For example, using CAPs analysis, one study found that the typical
DMN connectivity and anti-correlation with the TPN was robust across tasks and during rest.49

CAPs provide another innovative option for the dynamic analysis of functional datasets to
reveal possible patterns and mechanisms that may be missed by traditional static connectivity
analysis. However, as with QPPs, or with other types of more recently described dynamic pat-
terns of functional connectivity, the exact neural basis of CAPs is still not well understood.16,25

Unlike optical imaging or electrophysiology, fMRI is sensitive to hemodynamics, which means
systemic oscillations of the vasculature can influence the signal, along with physiological cycles
such as respiration or cardiac pulsation, and this makes it more difficult to interpret the patterns
that are observed. It is possible that more than one type of neural activity can contribute to the
CAPs and other types of spontaneous signals seen in fMRI.25 However, the presence of propa-
gating and standing waves of activity is consistent with prior findings in more specific
modalities.

4.2.3 Deep learning of spatiotemporal trajectories

Deep learning and artificial neural networks have recently been used to identify characteristic
spatiotemporal trajectories in rs-fMRI data.39 In Zhang et al.,39 a variational autoencoder was
used to identify a relatively small number of spatiotemporal features of rs-fMRI, which may act
as the building blocks for spatiotemporal patterns such as QPPs and CAPs.39 Some of the spa-
tiotemporal trajectories modeled with this method closely resemble QPPs and CAPs, but others
may represent unique spatiotemporal patterns. This autoencoder method also found anti-
correlation between the activity of the DMN and TPN, consistent with QPP and CAPs analysis
methods. As with other MRI-based methods, the spatiotemporal trajectories exhibit aspects of
standing and traveling waves.

Sobczak et al.50 also used a neural network approach to investigate fMRI dynamics.
Specifically, recurrent neural networks were trained on vessel-specific rs-fMRI signals to
predict the temporal evolution of rs-fMRI dynamics up to 10 s ahead. This approach used both
principal components analysis and independent component analysis to reduce the dimensionality
of the data and identify independent components in underlying brain networks. This was done
on both rat data and human connectome project data.50 The studies demonstrate the potential
for deep learning to provide additional insight into the spatiotemporal evolution of brain
activity.

Meyer-Baese, Watters, and Keilholz: Spatiotemporal patterns of spontaneous brain activity: a mini-review

Neurophotonics 032209-7 Jul–Sep 2022 • Vol. 9(3)



4.3 Spatiotemporal fMRI Pattern Summary

Dynamic fMRI analysis of QPPs, CAPs, and other spatiotemporal trajectories already shows
great promise in detecting unique spatiotemporal patterns that are missed by traditional static
fMRI analysis. Each of these approaches has led to new insights into spatiotemporal dynamics
and has generated a validation of the findings shared between the approaches. For example,
QPPs, CAPs, and the variational autoencoder approach to spatiotemporal patterns all validate
some aspects of DMN/TPN anti-correlation. A common drawback of all of these spatiotemporal
analysis methods is a lack of understanding of the origins of the patterns.

As previously mentioned, multimodal approaches in animals and humans provide the most
promising route to a better understanding of the neural basis of these patterns and to a trans-
lational impact. Pairing fMRI with cell-type-specific imaging techniques such as optical imag-
ing, opto/chemo-genetics, or electrophysiology in animal models will lead to better models of
the neural substrates of cortex-wide spatiotemporal patterns and give experimental insight into
circular causality across scales.

5 Electroencephalogram

5.1 Source of Signal

The primary source of the signal captured by electroencephalography (EEG) recordings is the
electrical activity generated by postsynaptic potentials in the apical dendrites of cortical pyrami-
dal neurons.51,52 Because the sensors are located relatively far from the neurons, the EEG signal
represents the summed activity of a large number of neurons spread across the cortex.

EEG’s sensitivity to electrical events on the order of postsynaptic potentials means it has
significantly higher temporal resolution than fMRI. EEG can capture electrical events ranging
from millisecond to hundreds of milliseconds.44 Although the temporal resolution of EEG is very
fast, the spatial resolution of EEG is one of its major drawbacks. EEG relies on the placement of
scalp electrodes, with a higher number of electrodes resulting in better signal localization and
resolution.52 Even with a high number of scalp electrodes (ranging from 4 to 256 electrodes in
some studies53), the spatial resolution of EEG is limited to between 10 and 20 mm and is limited
to electrical activity at the cortical surface, as the sources rely on superficial postsynaptic
potentials.44,51

Individual postsynaptic potential events as measured with EEG are extremely small and do
not result in a large signal.51 However, when a large number of excitatory or inhibitory post-
synaptic potentials [excitatory post - synaptic potentials (EPSPs) or inhibitory post - synaptic
potentials (IPSPs], respectively) occur with synchrony, the effects summate and can result in
detectable EEG waves. The frequency and amplitude of such waves due to variation in under-
lying synchrony constitute the primary signal that can be used in EEG to measure differences
across brain states or disease states.51 A number of important waveforms and patterns have been
detected with EEG that correlate with different brain states, levels of consciousness, sensory
inputs, or disease states. However, the canonical oscillatory bands of EEG such as delta, theta,
alpha, or beta waves are not the focus of this review. Instead, EEG microstates will be discussed,
as their spatiotemporal characteristics are similar to CAPs and comparable optical spatial
patterns.

5.2 Dynamic Patterns

EEG microstates are spontaneous spatiotemporal patterns of electrical activity occurring on the
sub-second timescale and lasting between 80 and 120 ms.26,54 These microstates are described as
being quasi-stable for those brief sub-second periods. In other words, EEG microstates are a
form of standing wave. EEG microstates are normally measured during rs (eyes closed).
Somewhat similar to QPPs or CAPs observed in rs-fMRI, EEG microstates are global patterns
that reliably recur temporally and topographically across subjects.26,27

Similar to functional networks such as the DMN or TPN, defined in fMRI studies, EEG
microstates have also led to the description of canonical brain states. Four canonical classes
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of microstate maps that are reliable across studies have emerged over time.54,55,28 Changes in the
typical spatiotemporal configuration of these activation maps have been observed during differ-
ent cognitive and neurological states [Fig 1(c)]. For example, a 1998 study by Lehmann et al.56

presented human subjects with a tone at a random interval and then asked them to relay what was
going through their mind just before they heard the tone. Thoughts were then classified as visual
or abstract thinking and then compared with the EEG microstate topography at the moment
preceding the report of visual or abstract thinking. The microstate associated with visual
thoughts closely resembled the second canonical EEG microstate, which has been implicated
in resting visual network activity.54,56 In a related study, EEG microstates were found to differ
significantly when subjects were presented with words associated with either imagery or abstract
meaning.55 Studies such as these have led to the suggestion that microstates may be the funda-
mental building blocks or units of cognition or mentation.54 In addition to normal cognition or
mentation, EEG microstates have also been shown to differ in psychiatric disease states such as
schizophrenia [also see Fig 1(c)].28

As with fMRI, combining multiple modalities in both humans and animals may be the most
promising route to an integrated understanding of the origins of spatiotemporal patterns such as
microstates detected in EEG. In humans, studies have paired EEG with simultaneous fMRI to
compare EEG microstates with BOLD activation maps, giving some insight into the source
localization of EEG microstates.29,30 To better understand the neural origins of EEG microstates,
EEG could also potentially be paired with fMRI or other more invasive and cell-type-specific
approaches in transgenic animal models. Multimodal animal approaches could shed light on the
cross-species persistence of the four canonical EEG microstates seen in human studies and pro-
vide experimental tools to investigate their origins.

6 Possible Sources of Patterns

Spontaneous rs patterns travel along brain networks at multiple scales modulating neural activity.
These spatiotemporal patterns transverse the mammalian neocortex through its massively inter-
connected synaptic network in which a vast majority of excitatory synapses onto cortical excita-
tory neurons come from other cortical excitatory neurons.57,58 As a consequence cortical and
thalamic neurons can initiate and sustain patterned network activity. In some instances, this net-
work activity results in periods of intense synaptic activity, termed “up” states, and almost com-
plete silence, termed down states. It is the relationship between patterned network activity and
anatomical architecture that allows for brain operations to be carried out simultaneously at multi-
ple temporal and spatial scales.59

On a mesoscopic network scale, the thought behind the initiation of cortex-wide activity is
split into two theories: initiation from persistently active pacemaker cortical neurons or stochas-
tic initiation by temporal summation of spontaneous synaptic activity.60 In both instances, how-
ever, pyramidal cells in cortical layer 5 are known to be acting as key players in driving
synchronous network activation due to their dense recurrent synaptic connectivity. In the first
in vitro recordings of slow oscillations, it was shown that multiunit activity was the strongest and
earliest in layer 5.6 When synaptic connections were severed via a horizontal cut through layer 4,
the lower cortical layers still generated the slow oscillation, whereas the upper layers generated
this activity infrequently or not at all. The importance of layer 5 cells in initiating up states was
demonstrated later in vivowork and through optogenetic manipulation of layer 5 cells in vivo.7,61

Many layer 5 pyramidal cells exhibit intrinsic rhythmic activity that resonates at frequencies
<15 Hz following the short depolarizing or hyperpolarizing current pulses, which could facilitate
the slow oscillation seen in the entire cortical network. However, it is important to note that other
sources have been found to contribute to slow oscillation activity. For example, work in humans
and primates has shown that “fidgeting” type movements result in slow-wave signals.62 Small
movements of the face and limbs such as slight head movement, blinking, swallowing, etc., can
occur in the absence of any stimulation and contribute to slow spatiotemporal fluctuations in
functional activation.62

For a macroscopic network scale, neural recordings such as those obtained from EEG, wide-
field optical imaging, or fMRI capture the effects of interaction among billions of neurons across
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the cortex. Connections across large-scale populations are mediated by cortical white matter
fibers, which connect nearby regions or long-range areas.1 There are distance-dependent delays
as signals have to transverse axonal conduction up to tens of milliseconds.63 These delays in-
fluence the emergence of spatiotemporal patterns at the macroscopic level, including radial and
spiral waves that can be found in networks of coupled oscillators.1,15 Thus the macroscopic
structural network of the brain can contribute to the coordination of mesoscale patterns into
whole-brain patterns. Moreover, many neuromodulatory nuclei (e.g., locus coeruleus, raphe
nuclei) have widespread, spatially distributed inputs to the rest of the brain, which may further
organize the mesoscale activity into macroscale trajectories.64

7 Future Directions

7.1 Complementary Multimodality Studies

Each of the aforementioned modalities has its own strengths and weaknesses as outlined in
Table 1. To leverage their individual strengths, multimodal imaging approaches have become
increasingly popular. Multimodal imaging has the promise of allowing for not only the study of
how different signals are related across scales but also a better understanding of how the
observed dynamic patterns are influenced across these scales. There is also no known timing
for wide-scale intrinsic brain activity, and simultaneous measurement at different spatial and
temporal scales is needed to bridge this gap.

EEG is a valuable multimodal tool for correlating electrophysiological events with dynamic
patterns. Recent efforts to better understand the origins of EEG microstates have paired EEG
with fMRI, in which source localization of microstates can be inferred by comparing simulta-
neously measured BOLD activation.29,30 Simultaneous recordings of EEG microstates and
BOLD fMRI show that some canonical rs networks from fMRI such as the DMN correspond
to microstate associated networks as measured with EEG.29,30 Beyond microstates, other multi-
modal studies have compared the infraslow dynamics of multichannel EEG with BOLD fMRI.
For example, using a multimodal approach with simultaneous EEG and fMRI in human subjects,
it is possible to correlate the infraslow dynamics of scalp potentials (0.01 to 0.1 Hz) with the
infraslow dynamics of the BOLD signal. Using this approach, it has been shown that scalp poten-
tials from EEG correlated strongly to fMRI/BOLD dynamics temporally and spatially.65,66

Anatomically, EEG dynamics correlate with the BOLD activity of well-defined intrinsic con-
nectivity networks in fMRI including the DMN and the TPN.65 Infraslow dynamics have also
been studied using simultaneous LFP and fMRI.42 A spontaneous BOLD signal at the recording
sites was found to exhibit significant localized correlation with the infraslow LFP signals as well
as with the slow power modulations of higher-frequency LFPs (1 to 100 Hz) with a delay com-
parable to the hemodynamic response time.42

Simultaneous multimodal methods to measure complementary features of activity using opti-
cal imaging and fMRI have also been described.81–70,71 Wide-field optical imaging provides the
advantage of covering a large field of view while measuring cell-type-specific signals.67,69,70

There have been great advances made in understanding the functional roles of different
cell types, but what remains unknown is how the activity at the cellular scale affects the activity
measured at a global scale recorded with fMRI. Because the brain exhibits structured activity
at all scales, a better understanding of how different levels contribute to the system as a whole
is still needed. The combination of wide-field optical imaging with fMRI to study how
different cell types influence hemodynamic regulation is particularly promising.67,70,72

Another potential benefit of simultaneous optical imaging and fMRI is that the whole brain
coverage of fMRI provides some information about activity in subcortical areas, which cannot
be observed optically but which plays an important role in the generation of coordinated brain
activity.

One of the main limitations of wide-field optical imaging is that it does not allow for the
resolution of single neurons, capillaries, or subcortical nuclei.69 Fiber photometry is another
promising approach that has been increasingly used for multimodal fMRI studies.72–76 Fiber
photometry allows for cell-type-specific fluorescence imaging such as wide-field optical
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imaging with the placement of one or more fibers that can target specific neural populations or
regions of interest.

Multimodal fiber photometry has been successfully paired with fMRI in rats, as in Liang
et al.75 and Tong et al.,73 and in mice, as in Wang et al.72 and Schlegel et al.76 The targeting
specificity and subcortical reach of fiber photometry mean that it can be used to compare multi-
modal signals obtained in different nuclei of interest. This can be done in parallel animals or with
multiple fibers within one animal.77 Fiber photometry tracts can be multichannel and capture
signals from multiple fluorophores or physiological sources at once.74 Chao et al.74 recently
used a fiber photometry/fMRI approach to simultaneously measure GCaMP6f fluorescence,
photometry-based cerebral blood volume (CBV), and fMRI CBV. This fiber photometry
approach allowed them to estimate hemodynamic response functions in different subcortical
nuclei, an analysis that could not be made with a superficial approach such as wide-field optical
imaging.

A multimodal fiber-optics approach was used in Schwalm et al.78 to study slow-wave brain
dynamics. Using fiber photometry to record calcium indicators in populations of the cortex and
thalamus in anesthetized rats with simultaneous BOLD fMRI, they found that the calcium activ-
ity of the entire cortex was related to the generation of slow-wave BOLD activity.78 In another
fiber optics example, Pais-Roldán et al.79 used fiber photometry Ca+2 imaging and BOLD fMRI
to relate pupil dynamics to the global fMRI signal and found a positive correlation between pupil
dilation and the activity of a population of noradrenergic cells in the ventral brainstem. He et al.80

used fiber optics with simultaneous fMRI to investigate the relationship between BOLD, CBV,
and neuronal activity and found that the Ca+2 signal from neurons is linked to intrinsic cerebral
vascular oscillations.

Given that complex brain-wide spatiotemporal patterns are unlikely to be driven by the activ-
ity of a single brain’s nuclei, the advantage of targeting multiple subcortical nuclei makes multi-
modal fiber photometry fMRI studies an excellent multimodal approach to studying brain
dynamics. (For a more in-depth review of the multi-modal application of fiber optics and opto-
genetics in fMRI studies, see Albers et al.81)

An alternative approach that has been used to track Ca+2 activity in relation to the BOLD
fMRI signal is the use of magnesium-enhanced MRI (MEMRI) ion imaging.82 For example,
Duong et al.82 used anesthetized rats and MEMRImagnesium Ca+2 imaging to show that syn-
apse dependent Ca+2 signal was correlated with BOLD and cerebral blood flow. The changes
detected with MEMRI are much slower than those observed with methods such as optical im-
aging, often taking 24 to 48 h to show the enhancement throughout a pathway.83 The slower time
scale makes it better suited to imaging long-term changes rather than the fast intrinsic dynamics
that are the primary focus of this review.

7.2 New Imaging Tools

Ideally, to understand the relationship of neural activity across spatial and temporal scales,
recordings should be made simultaneously from all neurons in the brain. To date, no imaging
modality is capable of this task. Some, such as fMRI, obtain whole-brain coverage but lack
sensitivity to individual neurons; others, such as electrophysiology, can detect activity in a single
neuron but have limited spatial coverage. This gap is well-recognized in the field of neuroimag-
ing, and improved methods that more closely approach the ideal case are constantly being devel-
oped, in part due to support from the BRAIN initiative. Larger microelectrode arrays, optical
reporters that provide greater depth sensitivity, and higher resolution fMRI studies have all had a
positive impact on the coverage and/or resolution that can be obtained.

Functional ultrasound (fUS) also presents a unique and promising approach to studying
large-scale spatiotemporal patterns. Initially developed in rats,84 and relying on a thinned-skull
cranial window, Osmanski et al.84 found that fUS is capable of increased spatial and temporal
resolution compared with fMRI, with spatial resolution on the order of 100 μm and a temporal
resolution of 2 ms. The equipment for fUS is also significantly more portable and less expensive
than fMRI. Recently, fUS has been successfully used in mice to measure the activity of the
default mode network.85 Ferrier et al.85 found that, under an awake or slightly sedated state,
mice showed deactivation of hubs of the DMN, including the retrosplenial cortex, validating
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the use of fUS to study functional networks and spatiotemporal dynamics in mouse models. fUS
has also been used in human neonates.86 Baranger et al.86 showed that fUS can be used as an
effective and portable bedside method for measuring functional connectivity in human neonates
in both healthy and diseased states. fUS has also been combined with EEG in human neonates to
study sleep phases and epilepsy.87 In both animal models and human neonates, fUS provides a
portable and cost-effective alternative to fMRI that offers improved spatial and temporal reso-
lution. However, fUS is limited in its potential to capture whole-brain activity in adult humans
because of its poor penetration through the skull, and it is better suited to rodents with a cranial
window or human neonates before the adult formation of the skull is complete.

7.3 Role of Spontaneous Activity in Brain Function

Many experimental approaches to understanding functional aspects of different stimuli or tasks
rely on averaging large numbers of trials to effectively suppress background activity and high-
light only activity that is repeatable across trials. However, there is growing appreciation that the
dynamics of ongoing, systems-level activity influence activity in different trials and account for
much of the variability that is observed. As an example, infraslow dynamic patterns detected
with EEG have been shown to have predictive power for the response to incoming somatosen-
sory input. In a 2008 study by Monto et al.,88 human subjects received a weak electrical stimulus
to the right index finger and their ability to detect the stimulus was correlated with the phase and
amplitude of infraslow EEG dynamics. It was found that the likelihood of a subject perceiving a
weak stimulus was significantly higher during the rising phase of the infraslow EEG fluctuations
compared with the other phases.52 Studies such as this demonstrate the influence of spontaneous
dynamics on perception and task performance and make it clear that the “circular causality”
between dynamics at different scales has important implications for human behavior.

More recently, Iemi et al.89 also used EEG to study the variation in response to stimuli based
on internal states. Specifically, Iemi et al.89 measured the variation in the event-related potential
(ERP) compared with the EEG waveform present in the subject when the stimulus was received.
They found that the ERP changed if the stimulus (black and white checkerboard images) was
applied during strong alpha or beta waves.89 In rodent studies of the role of spontaneous activity
in modulating stimulus-response, Karvat et al.90 used a closed-loop LFP system to test the
hypothesis that beta-band activity can mask the response to an externally applied stimulus.
Using LFP, beta-band activity was measured and compared with sensory-evoked responses
in rats. It was found that beta-power activity in the rat somatosensory cortex was anti-correlated
with sensory-evoked responses. In other words, the incoming sensory input could be masked
depending on the band of spontaneous background activity occurring in the somatosensory
cortex.

Studies such as these provide further evidence that spontaneous background activity heavily
modulates or even masks perception and reaction to external stimuli. Further work is needed
across modalities and models to better characterize the interplay between multiscale, ongoing
activity and behavioral outcomes such as perception or task performance.

7.4 Astrocytic Contribution to Brain Wide Patterns

Recently, GECIs have been combined with fiber photometry and fMRI in mouse models to
explore the contribution of astrocytic activity to the BOLD signal and brain-wide patterns.
For example, Gray et al.77 used simultaneous fiber photometry in the cerebellum and V1 of
anesthetized mice to show that astrocytic calcium signaling tracks the dynamics of noradrenergic
neurons in response to stimuli and that astrocytes may act as amplifiers of vigilance states. In the
thalamus, Wang et al.72 used simultaneous GECI optical fiber recording and fMRI in anes-
thetized rats to relate astrocytic calcium signal to the BOLD signal both at rest and in response
to a stimulus. They found that the evoked astrocytic Ca+2 signal positively correlated with the
BOLD signal, whereas the rs or intrinsic Ca+2 signal negatively correlated with the BOLD
signal.72

Going forward, multimodal fMRI approaches are the most promising route to a better under-
standing of the role of astrocytes in brain-wide spatiotemporal dynamics. In addition to pairing
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cell-type-specific fiber photometry and optical imaging with fMRI, chemogenetics and optoge-
netics provide experimental options to drive the activity of astrocytic Ca+2 signals and study
their role in brain-wide dynamics.

7.5 Complex Systems Analysis

With coordinated patterns of activity at multiple spatial and temporal scales, the brain has all of
the hallmarks of a complex system and shares features with other complex systems (e.g., global
climate). New methods for characterizing these complex systems and their cross-scale inter-
actions are continually being developed, and each new tool provides another view of the func-
tional organization of the brain. For example, some research suggests that the brain as a complex
system self organizes into a critical state. In this state interactions between system components
lead to scale-invariant events that are beneficial for the system performance by obtaining an
optimal balance of stability and flexibility.91,92 These tools and concepts can inform further
research that aims to drive an individual brain into particular states using invasive or noninvasive
brain stimulation technology, moving the field closer to truly personalized medicine.

8 Conclusion

Through the use of various recording and imaging techniques, considerable progress has been
made in elucidating the cellular and network mechanisms involved in coordinated brain-wide
dynamics. This review has outlined four commonly used imaging modalities that have provided
unique insights at various scales, allowing for a better understanding of the self-organization of
the brain.

The emergence of self-organization has two directions: the upward or local to global cau-
sation and the downward or global to local causation. This results in the circular causality of
spontaneous brain activity. The spatiotemporal patterns of this spontaneous brain activity are
hard to tackle, in part, because spontaneous activity acts in the absence of outside influences.
The patterns found suggest that the largest amplitude and most regular spontaneous oscillations
occur at the seemingly “wrong” time, during sleep or when the brain is otherwise disengaged
from the environment.93

There are still many further avenues for investigation of the mechanisms and functions of
these spatiotemporal dynamics. Promising future approaches can provide increasingly inform-
ative experimental access to dynamic states at different resolutions, providing a path forward for
elucidating the patterns involved in creating dynamical brain states that are important in health
and disease.
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