Skip to main content
. 2022 Apr 12;30:100945. doi: 10.1016/j.imu.2022.100945

Table 4.

COVID-19 recognition results from different experiments of multi-class classification (see in Table 1) applying the proposed network on CXR images employing 5-fold cross-validation.

Different studiesa Dataset distribution Metrics
(Train/Val/Test) Recall Precision Accuracy
NOR: 951/316/316 0.925±0.011 0.940±0.009 0.925±0.012
NCP: 2,565/854/854 0.978±0.003 0.969±0.006 0.977±0.003
CVP: 300/100/100
0.944±0.041
0.976±0.010
0.946±0.041
CXR-Single-CL3 Weighted Average 0.964±0.005 0.963±0.004 0.964±0.005

NOR: 2,155/718/718 0.970±0.018 0.844±0.029 0.970±0.018
NCP: 2,757/919/919 0.863±0.029 0.990±0.004 0.863±0.029
CVP: 2,409/803/803
0.980±0.008
0.968±0.019
0.980±0.008
CXR-Multiple-CL3 Weighted Average 0.933±0.013 0.940±0.011 0.933±0.013

NOR: 2,155/718/718 0.962±0.023 0.902±0.026 0.962±0.023
OBP: 1,668/556/556 0.741±0.021 0.874±0.023 0.741±0.021
OVP: 897/298/298 0.705±0.050 0.646±0.032 0.705±0.051
CVP: 2,409/803/803
0.975±0.007
0.968±0.011
0.975±0.007
CXR-Multiple-CL4 Weighted Average 0.882±0.003 0.886±0.004 0.882±0.003
a

X-Y-CL#: X is CXR or CT; Y denotes the way images from different sources are combined for each class during training or evaluation; CL# is the number of classes. Details in Table 1.