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Recent, single-molecule, long-read sequencing technolo-
gies have enabled breakthroughs in producing de novo 
haplotype-resolved genome assemblies1–4. Major efforts 

are under way5 (https://www.genome.gov/news/news-release/
NIH-funds-centers-for-advancing-sequence-of-human-genome- 
reference) to generate hundreds of human genome assemblies, with 
the intention of deriving a variation-aware pangenome representa-
tion that replaces the current linear reference genome, GRCh38. 
Although long-read technologies are rapidly advancing, advan-
tages of cost and scalability, and the requirement for large study  
cohorts, will make short reads a more practical approach for the 
foreseeable future.

Diploid organisms have two copies of each autosomal chromo-
some, each of which carries genetic variation. The process of deter-
mining whether a known variant allele is located on none, one or 
both of these copies is referred to as genotyping. Variant genotyping 
is an essential step in genetic studies, enabling population analysis, 
quantitative trait locus studies or trait association analysis. Large 
studies have produced comprehensive catalogs of human variation 
ranging from single-nucleotide polymorphisms (SNPs) and indels 
(insertions and deletions up to 49 bp in size) to larger structural 
variants (SVs)6–9, and many such variants have been linked to dis-
eases and other traits10–15.

Widely used genotyping methods for sequencing data16–20 are 
based on short-read alignments to a reference genome or pange-
nome graphs, which include possible alternative alleles21–27. 

Graph-based approaches have been shown to improve genotyp-
ing accuracy over methods that rely on a linear reference genome. 
However, aligning sequencing reads is time-consuming even for lin-
ear reference genomes, where mapping 30× short-read sequencing 
data of a single human sample takes around 100 CPU hours. This 
problem is amplified when transitioning to graph-based pange-
nome references, where the read-mapping problem is even more 
computationally expensive.

A much faster alternative is to genotype known variants based on 
k-mers, short sequences of a fixed length k, in the raw sequencing 
reads without alignment to a reference. Counts of reference- and 
allele-specific k-mers allow fast and accurate genotyping of various 
types of genetic variation28–33. However, these methods can struggle 
in repetitive and duplicated regions of the genome not covered by 
unique k-mers. This is especially problematic for SVs, which are 
often located in repeat-rich or duplicated regions of the genome8,34 
that are generally difficult to access by short-read sequencing35.

This problem has been addressed previously by leveraging 
long-range connectivity information from sequencing reads36. 
In a similar manner, haplotype-resolved assemblies of known 
samples could improve k-mer-based genotyping, especially in 
difficult-to-access regions of large diploid genomes, but methods 
for this have so far been lacking. Known haplotypes have been used 
to construct population-based reference panels to phase small vari-
ants (Li–Stephens model)37 as well as impute missing genotypes38–41, 
but accurate reference panels that include SVs are still lacking.
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Typical genotyping workflows map reads to a reference genome before identifying genetic variants. Generating such align-
ments introduces reference biases and comes with substantial computational burden. Furthermore, short-read lengths limit 
the ability to characterize repetitive genomic regions, which are particularly challenging for fast k-mer-based genotypers. In 
the present study, we propose a new algorithm, PanGenie, that leverages a haplotype-resolved pangenome reference together 
with k-mer counts from short-read sequencing data to genotype a wide spectrum of genetic variation—a process we refer to 
as genome inference. Compared with mapping-based approaches, PanGenie is more than 4 times faster at 30-fold coverage 
and achieves better genotype concordances for almost all variant types and coverages tested. Improvements are especially 
pronounced for large insertions (≥50 bp) and variants in repetitive regions, enabling the inclusion of these classes of variants 
in genome-wide association studies. PanGenie efficiently leverages the increasing amount of haplotype-resolved assemblies to 
unravel the functional impact of previously inaccessible variants while being faster compared with alignment-based workflows.
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In this report, we describe an algorithm, PanGenie (for 
Pangenome-based Genome Inference), that makes use of haplotype 
information from an assembly-derived pangenome representation 
in combination with read k-mer counts to efficiently genotype a 
wide spectrum of variants. That is, our method can leverage short 
and longer linkage disequilibrium (LD) structures inherent in the 
assemblies to infer the genome of a new sample for which only short 
reads are available. PanGenie bypasses read mapping and is entirely 
based on k-mers, which allows it to rapidly proceed from the 
input short reads to a final callset including SNPs, indels and SVs, 
enabling analysis of variants typically not accessible in short-read 
workflows—including many deletions <1 kb and most insertions 
≥50 bp. We applied our method to genotype variants called from 
haplotype-resolved assemblies of 11 individuals, revealing a sub-
stantial advance in terms of runtime, genotyping accuracy and 
number of accessible variants.

Results
Algorithm overview. We call variants from haplotype-resolved 
assemblies (see Constructing a pangenome reference) of several 
samples and construct a pangenome graph in which these vari-
ants are represented as bubbles and each haplotype as a path (Fig. 
1, step 1). This graph is given as input to PanGenie, together with 
short-read sequencing data of a new sample to be genotyped. The 
k-mers contained in the graph are counted in the reads and k-mers 
unique to bubble regions are identified (step 2 in Fig. 1; Methods). 
PanGenie combines two sources of information to genotype bub-
bles: read k-mer counts and the already known haplotype sequences. 
The distribution of k-mer counts along the allele paths of a bubble 
can provide evidence for the genotype of the sample. Figure 1 (right 
panel) provides an example: k-mers corresponding to the second 
allele of the first bubble are absent from the reads, indicating that 
the individual carries the alleles of the green and blue haplotypes. 
However, bubbles may be poorly covered by k-mers or no unique 
k-mers may exist in repetitive regions of the genome. Such positions 
cannot be reliably genotyped based on the k-mer counts alone, but 
known haplotypes can help to infer genotypes based on neighbor-
ing bubbles (Fig. 1).

For genotyping, we integrate information from k-mer counts and 
haplotypes by constructing a hidden Markov model (HMM), which 
models the unknown genome as a mosaic of the provided haplo-
types and reconstructs it based on the read k-mer counts observed 
in the sample’s sequencing reads (Methods). Hidden states repre-
sent pairs of haplotype paths that can be chosen at each bubble posi-
tion and emit counts for the unique k-mers of the respective region. 
State transitions between adjacent bubbles correspond to recombi-
nation events. Using the forward–backward algorithm, genotype 
likelihoods are computed for each bubble, from which a genotype 
is derived.

Constructing a pangenome reference. We generated haplotype- 
resolved assemblies of 14 individuals including 3 mother–father–
child trios (Fig. 2a and Methods; samples include: Yoruban trio: 
NA19238, NA19239, NA19240; Puerto Rican trio: HG00731, 
HG00732, HG00733; southern Han Chinese trio: HG00512, 
HG00513, HG00514; and NA12878, HG02818, HG03125, NA24385 
and HG03486) and used all 11 unrelated samples to call variants 
on each haplotype of all autosomes and chromosome X. We com-
puted the transition:transversion (ti:tv) ratio for SNPs and the 
heterozygous:homozygous (het:hom) ratio as quality control mea-
sures42,43. Our SNP calls contained around twice as many transitions 
as transversions (Fig. 2b) resulting in ti:tv ratios between 2.01 and 
2.02 for all samples. We obtained het:hom ratios between 1.37 and 
2.20 for all our 11 callset samples. These numbers are in line with 
respective results for African (AFR), American (AMR), Asian (EAS) 
and European (EUR) individuals reported in previous studies43,44. 
Furthermore, our callset contains comparable numbers of inser-
tions and deletions (Fig. 2c), except for the expected enrichment 
for insertion alleles for SVs8. We show detailed counts of distinct 
variant alleles for all types in Fig. 2d (first row) and Supplementary 
Tables 2 and 3. We distinguish small variants (1–19 bp), midsize 
variants (20–49 bp) and large variants (≥50 bp).

We created an acyclic and directed pangenome graph contain-
ing bubbles representing our variant callset (Methods and Extended 
Data Fig. 1). Sets of overlapping variant alleles are merged into a 
single bubble representing all alternative sequences observed across 

kmers

1 20

k-mer copy number

1 20

k-mer copy number

Missing k-mers

Step 3: Genome inference
(PanGenie)

c

Possible alleles

FASTA
format

VCF format

Known samplesTarget sample

Bubble 1 Bubble 2 Bubble 3

Haplotype-resoved assemblies

Step 1: Graph construction

Pangenome graph

Step 2: k-mer counting

Reads

a

b

Fig. 1 | Overview. a, Step 1: variants are called from haplotype-resolved assemblies of a set of known samples and a pangenome graph is constructed, which 
represents variants as bubbles and contains one path per haplotype. b, Step 2: the k-mers (represented by circles) contained in the graph are counted in 
the short-read sequencing data of the target sample to be genotyped. The color of the nodes indicates copy number estimates for the k-mers. c, Step 3: 
PanGenie uses k-mer counts and haplotype paths to infer the unknown genome. For the first bubble, k-mer counts suggest that the sample probably carries 
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two local haplotype paths.
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the haplotypes (Fig. 2d). The haplotypes themselves are represented 
as paths through the resulting pangenome. We distinguish biallelic 
from complex bubbles. The latter corresponds to bubbles with more 
than two branches and the former to all bubbles with two branches 
(reference and alternative sequence). Based on the type of bubbles, 
we define genomic regions as ‘biallelic’ or ‘complex’ (Methods and 
Extended Data Fig. 1).

Comparison to existing genotyping methods. We conducted 
a ‘leave-one-out experiment’ (Methods and Extended Data  
Fig. 2) based on Illumina reads from the Genome in a Bottle (GIAB) 
consortium45 and 1000 Genomes Project high-coverage data46. In 
the same way as described above, we created a callset containing 
variants detected from haplotype-resolved assemblies of a subset of 
ten samples and re-genotyped these variants using Illumina data of 
the remaining sample. Variants called from the assemblies of the 
left-out sample are used as the ground truth for evaluation. We ran 
this experiment twice, leaving out samples NA12878 and NA24385 
for evaluation, respectively. In addition to running PanGenie, we ran 
BayesTyper32 (k-mer based), Platypus19, GATK HaplotypeCaller16, 
GraphTyper22, Paragraph25 and Giraffe27 (all mapping based) to 
re-genotype the same set of variants (Methods and Extended 
Data Fig. 2). We ran our experiments on coverage levels 30×, 20×,  
10× and 5×.

Not all tools are designed to handle all types of variants. 
Therefore, we ran GATK only on SNPs, small and midsize variants 
and Paragraph only on midsize and large variants. GraphTyper and 
Giraffe were run on large variants only.

Results for NA12878 (Fig. 3 and Extended Data Figs. 3–8) and 
NA24385 (Supplementary Figs. 4–9) are similar, showcasing con-
sistency of results across samples. To analyze genotyping perfor-
mance, we introduced the weighted genotype concordance (wGC) 
which puts equal emphasis on the ability to detect all three possible 
genotypes (Supplementary Note). As an alternative view on the per-
formance of the individual methods, we offer precision, recall and 
F score, all in an unadjusted version and an adjusted version that 

does not penalize methods for ‘missing’ variants that are undetect-
able because they are not in the input set (Supplementary Note). 
Furthermore, we stratify our analyses by considering variants out-
side and inside short-tandem repeats (STRs) and variable-number 
tandem repeats (VNTRs)47. We annotated variants according to 
their repeat status and observed that between 68% and 72% of mid-
size (20–49 bp) and large variants (≥50 bp) are repeat associated, 
respectively (Supplementary Table 4). We consider two configura-
tions for PanGenie: ‘high-gq’ filtering, where we use only genotypes 
reported with high quality scores and treat all other variants as 
not genotyped, and ‘all’, where we consider all reported genotypes 
regardless of their quality.

For biallelic SNPs in nonrepetitive regions, all methods reach 
excellent levels of genotype concordance (Extended Data Fig. 3) and 
F scores (Extended Data Fig. 7), with all F scores >0.95 at coverage 
30×. For biallelic SNPs in repetitive regions, PanGenie still achieves 
an F score of 0.85, whereas the second-best tool GATK reaches only 
0.75 (Extended Data Fig. 8). In repetitive regions, BayesTyper has 
the largest fraction of untyped SNPs of all tools, resulting in lowest 
recall of 0.6 for biallelic SNPs and 0.17 for SNPs inside of complex 
bubbles (Extended Data Fig. 6).

For small insertions and deletions, PanGenie (‘all’) outperforms 
the mapping-based approaches, in particular in STR/VNTR regions 
(wGC of 90.4% for insertions and 92.8% for deletions; Extended 
Data Fig. 4), where the best mapping-based tools (GATK) achieved a 
wGC of 83% and 86.9% for biallelic insertions and deletions, respec-
tively, at coverage 30×. BayesTyper and PanGenie using ‘high-gq’ 
filtering achieved the highest wGCs, both >99% for nonrepetitve 
(Extended Data Fig. 3) and >97% for repetitive regions (Extended 
Data Fig. 4). For both tools, these good wGCs came at the expense 
of relatively few genotyped variants, with PanGenie being able to 
genotype slightly more. We also evaluated our results for SNPs, 
small and midsize variants using the GIAB high-confidence small 
variant callset48 as a ground truth (Supplementary Fig. 11).

Performance differences were largest for midsize and large vari-
ants (Fig. 3). PanGenie clearly outperforms the mapping-based 
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approaches, especially in repeat regions. Here, PanGenie (‘all’) 
reaches wGCs for large SVs of 85%, 92% and 76% for biallelic 
insertions, biallelic deletions and variants in complex multiallelic 
regions, respectively, at coverage 30×. This is in contrast with the 
performance of the best mapping-based tool, achieving only 64%, 
79% and 51%, respectively. BayesTyper reached high wGCs, but left 
42%, 39% and 77% of these variants untyped, respectively. Using 
‘high-gq’ filtering, PanGenie can reach concordances similar or 
superior to BayesTyper, while still being able to type much larger 
fractions of variants (Fig. 3). PanGenie’s genotyping performance 
for large SVs in repetitive regions is underscored also by the F score 
(Fig. 3): for large biallelic insertions, for example, PanGenie (‘all’) 
shows an F score of 0.7 whereas all other tools reach F scores <0.5. 
We additionally used the SVs contained in the syndip benchmark 
set49 to evaluate genotyping performance. Although the absolute 
results tend to be slightly worse for all tools, PanGenie again pro-
duced the most accurate genotype predictions and outperformed 
the other tools (Supplementary Fig. 12).

Runtimes. For each method, we measured the time required to pro-
duce genotypes given variants and raw, unaligned sequencing reads 

(Supplementary Table 5). The k-mer-based methods PanGenie 
and BayesTyper were much faster compared with the remaining, 
mapping-based methods that were combined with BWA50 for read 
mapping. PanGenie was fastest on all coverages, being between 3.97× 
and 4.6× faster than the fastest mapping-based approach at 30×.

Accuracy in the major histocompatibility complex. To evaluate 
the accuracy of all 14 haplotype-resolved assemblies in the human 
leukocyte antigen (HLA) region, we used HLA*ASM51 to determine 
assembly HLA types (Supplementary Table 6). HLA*ASM success-
fully processed 27 of 28 input assemblies and identified perfect (edit 
distance 0) HLA-G group matches52 for all classic HLA loci (HLA-A, 
-B, -C, -DQA1, -DQB1 and -DRB1) in all processed input assemblies 
with one exception (HLA-DRB1 in NA19238), which was resolved 
by manual curation with minimap253. To verify the accuracy of the 
assembly HLA types, we integrated publicly available HLA genotype 
data for samples from the 1000 Genomes Project54–56 for HLA-A, -B, 
-C, -DQB1 and -DRB1, intersected these with the assembly-implied 
HLA types, and found perfect agreement in all evaluated  
cases (9 samples and 85 individual genotype comparisons; 
Supplementary Table 6).
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We additionally evaluated PanGenie’s genotyping performance 
in the HLA region based on a ‘leave-one-out’ experiment for sam-
ples HG00731, NA12878 and NA24385, and observed high levels of 
wGCs across commonly studied HLA genes. Although the average 
wGC across all three samples was lowest for HLA-DRB1 and -C4 
(58% and 79%, respectively in biallelic regions), it was between 98% 
and 100% for HLA-C, -DPA1, -DPB1 and -DRA in biallelic regions, 
and between 93% and 100% for all variants in complex regions 
(Extended Data Fig. 9).

Genotyping larger cohorts. The low runtime of PanGenie makes 
it well suited to genotype larger cohorts. As an example use case, 
we applied it to a set of 300 samples consisting of 100 randomly 
selected trios from the 1000 Genomes Project using high-coverage 
data46. We used our pangenome graph containing all 2 × 11 haplo-
types to compute genotypes for all detected variants. Similar to the 
approach introduced previously4, we employed Mendelian consis-
tency of the genotyped trios and the genotype quality reported by 
PanGenie to compute an integrated score for genotyping reliability 
of each variant. To this end, we defined different filters for a positive 
set with the most reliable (termed ‘strict’ set) and a negative set with 
the most unreliable variants. Using a machine-learning approach 
trained on these two subsets, we computed scores for all remain-
ing variants, reflecting how confident we were about their genotyp-

ing, and used those to derive a ‘lenient’ set of variants containing 
78% and 83% of all insertion SVs and deletion SVs, respectively 
(Supplementary Note and Supplementary Table 8). To confirm that 
the lenient set still offers very good genotyping performance, we 
analyzed allele frequencies and heterozygosities observed from the 
predicted genotypes for all variants in the lenient set and observed 
a relationship close to what is expected from the Hardy–Weinberg 
equilibrium (HWE; Fig. 4a and Methods). When testing for HWE, 
90.7% of SV alleles inside of repeats, and 90.9% outside of repeats, 
showed no significant deviation. Furthermore, observed allele fre-
quencies (AFs) across all 200 unrelated samples are in excellent 
agreement with coarse-grained AF estimates obtained from the 
22 haplotype assemblies of our 11 input samples (Fig. 4b). Note 
that neither of these two measures, HWE and agreement in esti-
mated AFs, has been used when defining the lenient set and there-
fore serves as independent evidence for PanGenie’s performance. 
PanGenie on average only took about 30 single-core CPU hours  
per sample.

Our callset contains 209 of 250 medically relevant SVs reported 
by GIAB57. We observed that 174 medically relevant SVs were con-
tained in our lenient set, of which 119 were part of our strictly fil-
tered set. We show the score distribution for these variants as well as 
AFs and heterozygosities observed across all 200 unrelated samples 
for the lenient set in Extended Data Fig. 10.
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Comparison to gnomAD. We compared the 119,126 SV alleles 
genotypable by PanGenie (lenient set) with the SVs that are part of 
the Genome Aggregation Database (gnomAD)9; gnomAD contains 
SVs collected across 14,891 genomes from different populations9. 
Requiring a reciprocal overlap of at least 50% or a start, end and 
variant length deviation of <200 bp, we found that both callsets had 
34,468 variants in common (Supplementary Note), whereas 84,658 
(71%) of our SV alleles were not contained in gnomAD. This find-
ing is consistent with previous observations that short-read-based 
SV detection misses most SVs35. Of those 84,658 SVs, around 80% 
were located in STR/VNTR regions. Furthermore, 43% of these 
84,658 variants were common variants with AF ≥ 0.05 across all 
genotyped samples. The length distribution of common insertions 
and deletions (Fig. 4c) demonstrates the ability of PanGenie to gen-
otype variants in regions inaccessible by callers based on short-read 
data alone, and shows its particular impact when genotyping inser-
tions and shorter deletions.

LD analysis. Based on the genotypes obtained across all 200 
unrelated samples (Genotyping larger cohorts), we performed 

an LD analysis (Methods). We selected all SNPs from our callset 
that were contained at least five times in the NHGRI-EBI GWAS 
(genome-wide association studies) catalog58. For each resulting 
variant, we calculated LD, comparing it with all our callset variants 
within a window of 1 Mb.

For 147 of 3,404 disease-associated SNPs from NHGRI-EBI, 
we found nearby structural variants that were in LD (r2 ≥ 0.8; see 
Supplementary Table 9 for all hits with r2 ≥ 0.9). An insertion of 
length 129 bp located at position 133,278,856 on chromosome 9, 
close to the ABO gene, looked particularly interesting (Fig. 5). It 
is in LD with six GWAS variants (rs2519093, rs495828, rs507666, 
rs579459, rs635634 and rs651007) which are related to low-density 
lipoprotein-cholesterol levels58. Of note, neither the GWAS SNPs 
nor the insertions are in LD with blood-type markers present in 
our callset (rs8176747 (ref. 59), rs8176746 (ref. 60), rs8176743 (ref. 59), 
rs8176742 (ref. 61), rs8176741 (ref. 61), rs8176740 (ref. 61), rs7853989 
(ref. 61), rs1053878 (ref. 61), rs8176720 (ref. 61) and rs8176719 (ref. 60)). 
The insertion is located in a long tandem repeat (LTR10B2 for ERV1 
endogenous retrovirus). Analysis of the insertion sequence revealed 
that it contains three exact copies of a 43-bp sequence (Methods and 
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Supplementary Fig. 19), which appears with copy number 1 in the 
reference genome. We thus conclude that this insertion is a repeat 
expansion, leading to four copies of this repeated subsequence. A 
comparison with nonhuman primate genomes62,63 shows that the 
43-mer occurs as two copies in gorilla (Gorilla gorilla), but is a 
single copy in chimpanzee (Pan troglodytes), bonobo (Pan panis-
cus) and the Sumatran orangutan (Pongo abelii). This suggests inde-
pendent expansion events or incomplete lineage sorting in humans  
and gorillas.

Another interesting association was an intronic insertion of 
length 322 bp located at position 28,264,365 on chromosome 12, 
inside the CCDC91 gene close to a regulatory element reported by 
ENCODE64 (Supplementary Fig. 20). It was in LD with two GWAS 
variants (rs10843151 and rs11049566), which are both linked to 
body fat58. One of these SNPs, rs10843151, is in perfect LD with 
many other variants in this region, which suggests that it is probably 
embedded in the same haplotype block. Such perfect LD provides 
further evidence that PanGenie is accurately genotyping new inser-
tions within short-read sequencing data.

Discussion
We presented an algorithm, PanGenie, that can leverage the 
long-range haplotype information inherent to a panel of assembled 
haplotypes in combination with read k-mer counts for genotyping 
an uncharacterized sample. Although we generated such pange-
nome reference panels from haplotype-resolved assemblies for the 
present study, generating these panels was not the main focus of 
this report and PanGenie is not restricted to panels created in this 
way. In fact, it can be applied to any acyclic genome graph with fully 
phased path information.

Traditionally, longer variants are especially difficult to genotype 
based on short reads only, because such variants are often located 
in repetitive or duplicated regions of the genome, leading to the 
difficulty of unambiguously aligning the reads. Approaches based 
on k-mers additionally lack connectivity information contained in 
the reads because they do not use the order of k-mers stemming 
from the same read or read pair. PanGenie overcomes these limita-
tions of short reads because it incorporates long-range haplotype 
information inherent to the pangenome reference panel that it uses. 
In comparison to BayesTyper, a graph-based genotyper relying on 
k-mers, PanGenie genotypes a large fraction of variants not typable 
by the former. For SVs and indels, PanGenie clearly outperforms 
mapping-based approaches, which require alignments of reads 
to a reference genome. Compared with Paragraph, a graph-based 
method relying on such read alignments, PanGenie produces bet-
ter genotyping results while additionally providing the ability to 
jointly genotype SNPs, indels and SVs. Our approach was faster 
than the other methods, especially when comparing with the 
mapping-based approaches. The fast runtime makes PanGenie well 
suited for genotyping larger cohorts, providing the basis for popu-
lation genetic analysis. In the present study, we have presented an 
application to a cohort of 300 samples that suggests that SVs in 
LD with disease-associated SNPs may functionally underlie these 
associations.

We have hence presented a method that is both fast and lever-
ages a haplotype-resolved pangenome reference to enable genotyp-
ing of otherwise inaccessible variants. Although we have tested it 
only on human data so far, PanGenie can be applied to any diploid 
genome once corresponding panels of high-quality phased assem-
blies become available for other species. Still, some limitations 
remain. Although PanGenie improves results over other methods in 
repetitive regions of the genome, genotyping within these remains 
challenging. Although biallelic variants are less problematic, more 
complex cases such as segmental duplications, α-satellite repeats or 
acrocentric DNA are hard to access because of the lack of unique 
k-mers, but also because such regions are still difficult to assemble. 

Once a panel of telomere-to-telomere assemblies becomes available, 
future experiments can clarify which additional loci are amenable to 
genotyping with PanGenie.

Our model assumes that the unknown haplotypes of the sam-
ple to be genotyped are mosaics of the given panel haplotypes. 
Therefore, currently it cannot be used to genotype rare variants that 
are present only in the sample, but in none of the other haplotypes. 
We believe that there are exciting opportunities to develop methods 
to discover variation that our approach has not captured because 
it was not present in the reference panel. For example, one could 
either filter the reads for as yet ‘unexplained’ k-mers and use those 
for the discovery of rare variants, or utilize PanGenie’s output as a 
personalized pangenome reference graph to map reads to.

The runtime of our method depends on the number of input 
haplotypes, because we defined a hidden state for each possible 
pair of haplotypes that can be selected for each bubble. Therefore, 
additional engineering would be required to use much larger pan-
els, which could be approached similarly to how statistical phasing 
packages prune the solution space and/or proceed iteratively65–67. 
Such techniques could also pave the way toward a version of 
PanGenie for polyploid genomes, which would be prohibitively 
slow when implemented without such additional optimization.

In summary, we have presented a method that, in combination 
with high-quality phased reference assemblies, offers a powerful 
approach for genotyping and association studies, on ever-larger 
cohorts, for all variant types—including those currently understud-
ied due to technical limitations.

Online content
Any methods, additional references, Nature Research reporting 
summaries, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availabil-
ity are available at https://doi.org/10.1038/s41588-022-01043-w.

Received: 15 February 2021; Accepted: 3 March 2022;  
Published online: 11 April 2022

References
	1.	 Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human 

genomes. Nat. Biotechnol. 39, 309–312 (2021).
	2.	 Porubsky, D. et al. A fully phased accurate assembly of an individual human 

genome. Nat. Biotechnol. 39, 302–308 (2021).
	3.	 Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio 

binning. Nat. Biotechnol. 36, 1174–1182 (2018).
	4.	 Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated 

analysis of structural variation. Science 372, eabf7117 (2021).
	5.	 Wang, T. et al. The Human Pangenome Project: a global resource to  

map genomic diversity. Nature https://doi.org/10.1038/s41586-022-04601-8 
(2022).

	6.	 1000 Genomes Project Consortium & Others. A global reference for human 
genetic variation. Nature 526, 68–74 (2015).

	7.	 Sudmant, P. H. et al. An integrated map of structural variation in 2,504 
human genomes. Nature 526, 75–81 (2015).

	8.	 Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved 
structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

	9.	 Collins, R. L. et al. A structural variation reference for medical and 
population genetics. Nature 581, 444–451 (2020).

	10.	Craddock, N. et al. Genome-wide association study of CNVs in 16,000  
cases of eight common diseases and 3,000 shared controls. Nature 464, 
713–720 (2010).

	11.	Williams, N. M. et al. Rare chromosomal deletions and duplications in 
attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376, 
1401–1408 (2010).

	12.	Sebat, J. et al. Strong association of de novo copy number mutations with 
autism. Science 316, 445–449 (2007).

	13.	Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications 
of the 7q11.23 Williams syndrome region, are strongly associated with 
autism. Neuron 70, 863–885 (2011).

	14.	Malhotra, D. et al. High frequencies of de novo CNVs in bipolar disorder and 
schizophrenia. Neuron 72, 951–963 (2011).

Nature Genetics | VOL 54 | April 2022 | 518–525 | www.nature.com/naturegenetics524

https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41586-022-04601-8
http://www.nature.com/naturegenetics


Technical ReportNature Genetics

	15.	Walsh, T. et al. Rare structural variants disrupt multiple genes in 
neurodevelopmental pathways in schizophrenia. Science 320,  
539–543 (2008).

	16.	DePristo, M. A. et al. A framework for variation discovery and genotyping 
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

	17.	Garrison, E. & Marth, G. Haplotype-based variant detection from short-read 
sequencing. Preprint at arXiv https://doi.org/10.48550/arXiv.1207.3907 (2012).

	18.	Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end 
and split-read analysis. Bioinformatics 28, i333–i339 (2012).

	19.	Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based 
approaches for calling variants in clinical sequencing applications. Nat. Genet. 
46, 912–918 (2014).

	20.	Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and 
interpretation. Nat. Methods 12, 966–968 (2015).

	21.	Eggertsson, H. P. et al. Graphtyper enables population-scale genotyping using 
pangenome graphs. Nat. Genet. 49, 1654–1660 (2017).

	22.	Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of 
structural variation using pangenome graphs. Nat. Commun. 10, 1–8 (2019).

	23.	Rakocevic, G. et al. Fast and accurate genomic analyses using genome graphs. 
Nat. Genet. 51, 354–362 (2019).

	24.	Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based 
genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. 
Biotechnol. 37, 907–915 (2019).

	25.	Chen, S. et al. Paragraph: a graph-based structural variant genotyper for 
short-read sequence data. Genome Biol. 20, 291 (2019).

	26.	Hickey, G. et al. Genotyping structural variants in pangenome graphs using 
the vg toolkit. Genome Biol. 21, 1–17 (2020).

	27.	Sirén, J. et al. Pangenomics enables genotyping of known structural variants 
in 5202 diverse genomes. Science 374, abg8871 (2021).

	28.	Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly 
and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 
226–232 (2012).

	29.	Dilthey, A., Cox, C., Iqbal, Z., Nelson, M. R. & McVean, G. Improved genome 
inference in the MHC using a population reference graph. Nat. Genet. 47, 
682–688 (2015).

	30.	Shajii, A., Yorukoglu, D., William Yu, Y. & Berger, B. Fast genotyping of 
known SNPs through approximate k-mer matching. Bioinformatics 32, 
i538–i544 (2016).

	31.	Dolle, D. D. et al. Using reference-free compressed data structures to analyze 
sequencing reads from thousands of human genomes. Genome Res. 27, 
300–309 (2017).

	32.	Sibbesen, J. A., Maretty, L. & Krogh, A. Accurate genotyping across  
variant classes and lengths using variant graphs. Nat. Genet. 50,  
1054–1059 (2018).

	33.	Sun, C. & Medvedev, P. Toward fast and accurate SNP genotyping from whole 
genome sequencing data for bedside diagnostics. Bioinformatics 35, 415–420 
(2019).

	34.	Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of 
genomic structural variation: insights from and for human disease. Nat. Rev. 
Genet. 14, 125–138 (2013).

	35.	Zhao, X. et al. Expectations and blind spots for structural variation detection 
from long-read assemblies and short-read genome sequencing technologies. 
Am. J. Hum. Genet. 108, 919–928 (2021).

	36.	Turner, I., Garimella, K. V., Iqbal, Z. & McVean, G. Integrating long-range 
connectivity information into de Bruijn graphs. Bioinformatics 34, 2556–2565 
(2018).

	37.	Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying 
recombination hotspots using single-nucleotide polymorphism data. Genetics 
165, 2213–2233 (2003).

	38.	Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands 
of genomes. G3: Genes, Genomes, Genet. 1, 457–470 (2011).

	39.	Menelaou, A. & Marchini, J. Genotype calling and phasing using 
next-generation sequencing reads and a haplotype scaffold. Bioinformatics 29, 
84–91 (2013).

	40.	Das, S. et al. Next-generation genotype imputation service and methods. Nat. 
Genet. 48, 1284–1287 (2016).

	41.	Browning, B. L. & Browning, S. R. Genotype imputation with millions of 
reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

	42.	Guo, Y., Ye, F., Sheng, Q., Clark, T. & Samuels, D. C. Three-stage quality 
control strategies for DNA re-sequencing data. Brief. Bioinform. 15, 879–889 
(2013).

	43.	Wang, J., Raskin, L., Samuels, D. C., Shyr, Y. & Guo, Y. Genome measures 
used for quality control are dependent on gene function and ancestry. 
Bioinformatics 31, 318–323 (2014).

	44.	Wang, J., Samuels, D. C., Shyr, Y. & Guo, Y. Population structure analysis on 
2504 individuals across 26 ancestries using bioinformatics approaches. BMC 
Bioinform. 16, 1–2 (2015).

	45.	Zook, J. M. et al. Extensive sequencing of seven human genomes to 
characterize benchmark reference materials. Sci. Data 3, 1–26 (2016).

	46.	Byrska-Bishop, M. et al. High coverage whole genome sequencing of the 
expanded 1000 Genomes Project cohort including 602 trios. Preprint at 
bioRxiv https://doi.org/10.1101/2021.02.06.430068 (2021).

	47.	Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids 
Res. 32, D493–D496 (2004).

	48.	Zook, J. M. et al. An open resource for accurately benchmarking small 
variant and reference calls. Nat. Biotechnol. 37, 561–566 (2019).

	49.	Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling 
evaluation. Nat. Methods 15, 595–597 (2018).

	50.	Li, H. & Durbin, R. Fast and accurate short read alignment with 
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

	51.	Dilthey, A. T. et al. HLA*LA-HLA typing from linearly projected graph 
alignments. Bioinformatics 35, 4394–4396 (2019).

	52.	Robinson, J., Mistry, K., McWilliam, H., Lopez, R. & Marsh, S. G. E. 
IPD—the Immuno Polymorphism Database. Nucleic Acids Res. 38, 
D863–D869 (2010).

	53.	Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 
34, 3094–3100 (2018).

	54.	Abi-Rached, L. et al. Immune diversity sheds light on missing variation in 
worldwide genetic diversity panels. PLoS ONE 13, e0206512 (2018).

	55.	Gourraud, P.-A. et al. HLA diversity in the 1000 genomes dataset. PLoS ONE 
9, e97282 (2014).

	56.	Dilthey, A. T. et al. High-accuracy HLA type inference from whole-genome 
sequencing data using population reference graphs. PLoS Comput. Biol. 12, 
e1005151 (2016).

	57.	Wagner, J. et al. Curated variation benchmarks for challenging medically 
relevant autosomal genes. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-
01158-1 (2022)

	58.	Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide 
association studies, targeted arrays and summary statistics 2019. Nucleic Acids 
Res. 47, D1005–D1012 (2019).

	59.	Reid, M. E. & Denomme, G. A. DNA-based methods in the 
immunohematology reference laboratory. Transfus. Apher. Sci. 44,  
65–72 (2011).

	60.	Melzer, D. et al. A genome-wide association study identifies protein 
quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

	61.	Taylor-Cousar, J. L. et al. Histo-blood group gene polymorphisms as potential 
genetic modifiers of infection and cystic fibrosis lung disease severity. PLoS 
ONE 4, e4270 (2009).

	62.	Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape 
genomes. Science 360, eaar6343 (2018).

	63.	Logsdon, G. A. et al. The structure, function and evolution of a complete 
human chromosome 8. Nature 593, 101–107 (2021).

	64.	ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA 
elements) project. Science 306, 636–640 (2004).

	65.	Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing 
method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

	66.	Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype 
imputation method for the next generation of genome-wide association 
studies. PLoS Genet. 5, e1000529 (2009).

	67.	Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed  
genome from next-generation reference panels. Am. J. Hum. Genet. 103, 
338–348 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

Nature Genetics | VOL 54 | April 2022 | 518–525 | www.nature.com/naturegenetics 525

https://doi.org/10.48550/arXiv.1207.3907
https://doi.org/10.1101/2021.02.06.430068
https://doi.org/10.1038/s41587-021-01158-1
https://doi.org/10.1038/s41587-021-01158-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturegenetics


Technical Report Nature Genetics

Methods
Sequencing data. We used publicly available sequencing data from the GIAB 
consortium45, 1000 Genomes Project high-coverage data46 and Human Genome 
Structural Variation Consortium (HGSVC)4. All datasets include only samples 
consented for public dissemination of the full genomes.

Statistics and reproducibility. For generating the assemblies, we used all 14 
samples for which PacBio HiFi-data were available. For variant calling, the three 
children (HG00733, HG00514 and NA19240) were used for quality control and 
were not included in the final callsets/graphs, because they do not provide any 
additional information for genotyping. Code and pipelines to reproduce our 
analysis are available on Zenodo68,69.

Variant calling and pangenome construction. Assemblies. Fully phased assemblies 
for 14 samples (HG00731, HG00732, HG00733, HG00512, HG00513, HG00514, 
NA19238, NA19239, NA19240, NA12878, HG02818, HG03125, NA24385 and 
HG03486) were generated using a development version of the PGAS pipeline2,4 
(parameter settings v.13). Compared with the previous PGAS production release 
(v.12 used in the HGSVC project4), this PGAS development update included 
a new version of the SaaRclust package70 (v.6cb8c96), controlled for adapter 
contamination in the input HiFi reads (reimplementation of the process published 
at https://github.com/sheinasim/HiFiAdapterFilt), and employed hifiasm71 v.0.15.2 
as default assembler. In direct comparison to the previously used HiFi assembler 
Peregrine72, hifiasm substantially reduces the number of sequence collapses, 
leading to overall more correct assemblies (see the evaluation in Cheng et al.71).  
We provide assembly statistics in Supplementary Table 1.

Variant calling. We used haplotype-resolved assemblies of all 14 samples to call 
variants (Extended Data Fig. 1a). The three child samples (HG00733, HG00514 
and NA19240) were used only for quality control and filtering, and thus were not 
part of our final callset/graph. For each sample, we separately mapped contigs of 
each haplotype (Supplementary Table 1) to the reference genome (GRCh38). This 
was done using minimap2 (ref. 53) (v.2.18) with parameters -cx asm20 -m 
10000 -z 10000,50 -r 50000 --end-bonus=100 -O 5,56 -E 
4,1 -B 5 --cs. In the next step, we called variants on each haplotype of all 
autosomes and chromosome X using paftools (https://github.com/lh3/minimap2/
tree/master/misc) with default parameters. We generated a biallelic, VCF file 
containing variant calls made across all 11 unrelated samples (Extended Data  
Fig. 1a). If a region was not covered by any contig alignment in a sample, or the 
sample had multiple overlapping contig alignments, we set all its genotypes in this 
region to missing (“./.”), because it is unclear what the true genotype alleles are in 
this case. Furthermore, we removed variants from our callset for which >20% of 
the samples have missing genotype information. The remaining regions covered 
91.8% (2.8 Gbp) of chromosomes 1–22 and chromosome X. Of the 8.2% of regions 
not covered, 48.3% were gaps in GRCh38 and 24.0% were centromeres.

We computed the Mendelian consistency for the Puerto Rican (HG00731, 
HG00732, HG00733), Chinese (HG00512, HG00513, HG00514) and Yoruban 
(NA19238, NA19239, NA19240) trios and observed that 97.9%, 96.8% and  
97.6% of all variants were consistent with Mendelian laws, respectively. We 
removed a variant from our callset if there was a Mendelian conflict in at least one 
of the three trios. We show the number of variants in our final callset and  
the intermediate stages of variant calling in the first three columns of 
Supplementary Table 2.

Pangenome construction. Given the filtered variant calls, our goal was to construct 
an acyclic and directed graph by inserting the variants of all haplotypes into the 
linear reference genome. Variants produce bubbles in the graph with branches that 
define the corresponding alleles. The input haplotypes can be represented as paths 
through the resulting pangenome. When constructing the graph, we represent 
sets of variants overlapping across haplotypes as a single bubble, with potentially 
multiple branches reflecting all the allele sequences observed in the haplotypes 
in the respective genomic region (Extended Data Fig. 1b). The total number of 
bubbles in the resulting graph is presented in the last column of Supplementary 
Table 2. We represent the pangenome in terms of a fully phased, multisample 
VCF file that contains one entry for each bubble in the graph (Extended Data Fig. 
1b). At each site, the number of branches of the bubble is limited by the number 
of input haplotype sequences and the genotypes of each sample define two paths 
through this graph, corresponding to the respective haplotypes. We keep track of 
which individual input variants contribute to each bubble in the graph, so that we 
can convert our pangenome graph representation back to the set of input variants. 
In this way, we can convert genotypes computed by a genotyper for all these 
bubbles to genotypes for each individual callset variants.

PanGenie’s genotyping algorithm. We define a hidden Markov model that can be 
used to compute the two most likely haplotype sequences of a given sample based 
on known haplotype paths and the sample reads. The new haplotype sequences are 
combinations of the existing paths through the graph and are computed based on 
the copy numbers of unique k-mers observed in the sequencing reads provided for 
the sample to be genotyped.

Identifying unique k-mers. Sets of bubbles that are less than the k-mer size 
apart (we use k = 31) are combined and treated as a single bubble. The alleles 
corresponding to such a combined bubble are defined by the haplotype paths in 
the respective region. For each bubble position v, we determine a set of k-mers, 
kmersv, that uniquely characterize the region. This is done by counting all k-mers 
along haplotype paths in the pangenome graph using Jellyfish73 (v.2.2.10), and 
then determining a set of k-mers for each bubble that occurs at most once within a 
single allele sequence and are not found anywhere outside the variant bubble. We 
additionally counted all k-mers of the graph in the sequencing reads. This allows 
us to compute the mean k-mer coverage of the data, which we use later to compute 
emission probabilities (see Observable states).

Hidden states and transitions. We assume being given N haplotype paths Hi, i = 1, 
…, N, through the graph. Furthermore, for each bubble v, v = 1, …, M, we are 
given a vector of k-mers, kmersv, that uniquely characterize the alleles of a bubble. 
We assume some (arbitrary) order of the elements in kmersv and refer to the ith 
k-mer as kmersv[i]. In addition, we are given sequencing data of the sample to be 
genotyped and corresponding k-mer counts for all k-mers in kmersv. For each 
bubble v, we define a set of hidden states ηv =

{

Hv,i,j|i, j ≤ N
}

 which contain a 
state for each possible pair of the N given haplotype paths in the graph. Each such 
state Hv,i,j induces an assignment of copy numbers to all k-mers in kmersv. We 
define a vector av,i,j such that the kth position contains the copy number assigned to 
the kth k-mer in kmersv:

av,i,j [k] =



























0 kmersv [k] /∈ Hi ∪ Hj

1 kmersv [k] ∈ Hi\Hj

1 kmersv [k] ∈ Hj\Hi

2 kmersv [k] ∈ Hi ∩ Hj.

∀k = 1, …, |kmersv|

The idea here is that we expect to see copy number 2 for all k-mers occurring 
on both haplotype paths. In case only one of the haplotypes contains a k-mer, its 
copy number must be 1 and k-mers that do not appear in any of the two paths must 
have copy number 0. From each state Hv,i,j in ηv that corresponds to bubble position 
v, there is a transition to each state corresponding to the next position, v + 1. In 
addition, there is a start state, from which there is a transition to each state of the 
first bubble, and an end state, to which there is a transition from each state that 
corresponds to the last bubble.

Transition probabilities. Transition probabilities are computed following the  
Li–Stephens model37. Given a recombination rate r, the effective population size Ne 
and the distance x (in basepairs) between two ascending bubbles v − 1 and v  
we define:

d = x ×
1

1, 000, 000
× 4rNe.

We compute the Li–Stephens transition probabilities as:

pr =
(

1 − exp
(

−
d
N

))

×
1
N

qr = exp
(

−
d
N

)

+ pr.

Finally, the transition probability from state Hv–1,k,l to state Hv,i,j is computed as 
shown below:

P
(

Hv,i,j|Hv−1,k,l
)

=



























qr × qr i = k, j = l

qr × pr i = k, j ̸= l

qr × pr i ̸= k, j = l

pr × pr i ̸= k, j ̸= l.

Observable states. Each hidden state Hv,i,j in ηv outputs a count for each k-mer in 
kmersv. Let Ov be a vector of length |kmersv| for bubble v such that Ov[k] contains 
the observed k-mer count of the kth k-mer in the sequencing reads. To define the 
emission probabilities, we first need to model the distribution of k-mer counts for 
each copy number, P

(

Ov [k] |av,i,j [k] = c
)

, c = 0, 1, 2. For copy number 2, we use 
a Poisson distribution with mean λ which we set to the mean k-mer coverage that 
we compute from the k-mer counts of all graph k-mers. Similarly, we approximate 
the k-mer count distribution for copy number 1 in terms of a Poisson distribution 
with mean λ

2. For copy number 0, we need to model the erroneous k-mers that arise 
from sequencing errors. This is done using a geometric distribution, the parameter 
p of which we choose based on the mean k-mer coverage. Finally, we compute the 
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emission probability for a given state and given observed read k-mer counts  
as shown below, making the assumption that the k-mer counts are  
independent:

P
(

Ov|Hv,i,j
)

=

|kmersv|
∏

l=1

P
(

Ov [l] |av,i,j [l]
)

.

Genotypes and haplotypes. In this model, genotypes correspond to pairs of given 
haplotype paths at each bubble position. Genotype likelihoods can be computed 
using the forward–backward algorithm.

Forward–backward algorithm. The initial distribution of our HMM is such that we 
assign probability 1 to the start state and 0 to all others. Forward probabilities αv() 
are computed in the following way:

α0 (start) = 1.

For states corresponding to bubbles v = 1, …, M, the forward probabilities are 
computed as shown below. The set of observed k-mer counts at position v is given 
by Ov:

αv
(

Hv,i,j
)

=

∑

Hv−1,s,t∈ηv−1
αv−1 (Hv−1,s,t) × P

(

Hv,i,j|Hv−1,s,t
)

× P
(

Ov|Hv,i,j
)

∀i, j.

The transition probabilities are computed as described above, except for 
transitions from the start state to all states in the first column, which we assume 
to have uniform probabilities. Backward probabilities are computed in a similar 
manner. We set:

βM (end) = 1.

For v = 1, ..., M − 1, we compute them as:

βv
(

Hv,i,j
)

=

∑

Hv+1,s,t∈ηv+1
βv+1 (Hv+1,s,t) × P

(

Hv+1,s,t|Hv,i,j
)

× P (Ov+1|Hv+1,s,t) ∀i, j.

Finally, posterior probabilities for the states can be computed:

P
(

Hv,i,j|O1,O2, …,OM
)

=

αv
(

Hv,i,j
)

× βv
(

Hv,i,j
)

∑

h∈ηv
αv (h) βv (h)

.

Several states at a bubble position v can correspond to the same genotype, 
because different paths can cover the same allele. Also, the alleles in a genotype 
are unordered, therefore states Hv,i,j and Hv,j,i always lead to the same genotype. To 
compute genotype likelihoods, we sum up the posterior probabilities for all states 
that correspond to the same genotype. In this way, we can compute genotype 
likelihoods for all genotypes at a bubble position, based on which a genotype 
prediction can be made.

Comparison to existing genotyping methods. We conducted a ‘leave-one-out’ 
experiment to mimic a realistic scenario in which we genotyped variants detected 
from haplotype-resolved assemblies of a set of known samples in a new, unknown 
sample. We collected variants called across all but one sample and used them as 
input for genotyping the left-out sample (we refer to this set as known variants 
in the following). We used the set of variants called from the assemblies of the 
left-out sample for evaluation (evaluation variants). We ran this experiment 
twice, removing samples NA12878 and NA24385, respectively. As input for 
PanGenie (commit 1f3d2d2 (ref. 68)), BayesTyper (v.v1.5) and Paragraph (v.2a), we 
constructed a pangenome graph representation based on the known variants in the 
same way as described in Constructing a pangenome reference. We kept track of 
which variant alleles each resulting bubble consists of, so that genotypes derived 
for all bubbles can later be converted back to the original variant representation. 
For the other genotypers tested (GATK 4.1.3.0, Platypus 0.8.1, GraphTyper 2.7.1 
and Giraffe v.1.30.0), we directly used the set of known variants as input, without 
generating the graph representation first, because we observed that these tools 
could better handle variants represented in this way. As a result of running all 
genotypers, we had one VCF file per tool containing genotypes for all our known 
variants. We used the evaluation variants to evaluate the genotype predictions  
of all tools. Extended Data Fig. 2 provides an illustration of the leave- 
one-out experiment.

Note that re-genotyping a set of known variants in a new sample is different 
from variant detection. Variants present in the new sample that have not been seen 
in the callset samples can thus not be genotyped because genotypers can genotype 
only variants that they have seen before. We provide the number of unique 
variants of each panel sample in Supplementary Table 3. Most genotyping metrics 
(weighted genotyping concordance, adjusted precision/recall) explained in detail in 
Supplementary Note exclude these variants.

Besides re-genotyping our callset variants, we additionally ran GATK and 
Platypus in discovery mode to detect and genotype their own variants. We 
evaluated the results by computing precision/recall based on our ground-truth 
variants (Supplementary Figs. 10 and 11).

Evaluation regions. Some genomic regions are more difficult to genotype than 
others, such as SVs that tend to be located in repetitive and more complex regions 
of the genome. Therefore, we looked at variants located inside and outside of 
STR/VNTR regions which we obtained from the UCSC genome browser (Simple 
Repeats Track for GRCh38)47. In addition, we classified the genome into ‘complex’ 
and ‘biallelic’ regions based on the bubble structure of our pangenome graph: all 
variants located inside of complex bubbles, that is, bubbles with more than two 
branches, fell into the first category, and the remaining regions into the second. 
Consider Extended Data Fig. 1 for an example: the first and third bubbles are 
complex, thus all variants contained inside these bubbles fall into the category 
‘complex’. The second bubble is biallelic and therefore the corresponding SNP 
variant is considered ‘biallelic’.

For our ‘leave-one-out’ experiment for sample NA12878, we show the number 
of variants falling into the different categories in Fig. 3, Extended Data Figs. 3–8 
and Supplementary Table 4. It can be observed that most complex bubbles are 
located inside STR/VNTR regions (Supplementary Table 4). In addition, more than 
half of all midsize and large variants are located in these repetitive regions.

Genotyping larger cohorts. We randomly selected 100 trios (20 of each 
superpopulation: AFR, AMR, EAS, EUR, South Asian (SAS)) that are part of 
the 1000 Genomes Project and genotyped all our variant calls across these 300 
samples. We used our pangenome graph representation containing all 11 assembly 
samples as an input for PanGenie, genotyped all bubbles and later converted the 
resulting genotypes back to obtain genotypes for the individual callset variants. 
Our callset might contain variants that are difficult to genotype correctly. To 
identify a high-quality subset of variants that we could reliably genotype, we 
defined different filters based on the predicted genotypes that we list below. One 
metric used for defining filters is the Mendelian consistency. We computed the 
Mendelian consistency for each variant by counting the number of trios for which 
the predicted genotypes are consistent with Mendelian laws. We considered 
only trios with at least two different genotypes, that is, we excluded a trio if all 
three genotypes were 0/0, 0/1 or 1/1. This resulted in a more strict definition of 
Mendelian consistency (Supplementary Fig. 14). In addition to genotyping all 300 
trio samples, we also genotyped all 11 panel samples using the full input panel. 
Genotyping samples that are also in the panel helped us to find cases where panel 
haplotypes and reads disagreed and thus was another useful filter criterion. We 
defined filters as follows: (1) ac0-fail: a variant fails this filter if it was genotyped 
with AF 0.0 across all samples; (2) mendel-fail: a variant fails this filter if the 
fraction of Mendelian consistent trios was <90% (our definition of Mendelian 
consistency excludes all trios with all 0/0, all 0/1 or all 1/1 genotypes and only 
considers such with at least two different genotypes); (3) gq-fail: a variant failed 
this filter if it was genotyped with a genotype quality <200 in >5 samples; (4) 
self-fail: in addition to the 100 trios, we also genotyped the 11 panel samples; a 
variant failed this filter if the genotype concordance across all panel samples was 
<90%; and (5) non-ref-fail: the variant was genotyped as 0/0 across all  
panel samples.

For all combinations of filters, we show the number of large deletions 
and large insertions in each category in Supplementary Fig. 15. To define a 
strict, high-quality set of variants, we selected all that passed all five filters 
(Supplementary Table 7).

For quality control, we analyzed allele frequencies and the fraction of 
heterozygous genotypes for all variants contained in our unfiltered and strict sets 
(Supplementary Figs. 16 and 17). In addition, we used VCFTools74 (v.0.1.16) to test 
the genotype predictions of all variants typed with an AF > 0.0 for conformance 
with the HWE and corrected for multiple hypothesis testing by applying the 
Benjamini–Hochberg correction75 (α = 0.05).

In addition to defining a strict set, we constructed a more lenient set for our 
SV calls (≥50 bp) using a machine-learning approach based on support vector 
regression. We used the strict set as a positive set and defined a negative set 
consisting of all variants that were typed with an AF > 0.0 and failed at least three 
filters. For large insertions, the negative set contained 2,611 variants, and for large 
deletions 1,125. The model then predicted scores between −1 (worst) and 1 (best) 
for all variants that were in neither the positive nor the negative set. We show the 
distribution of scores for our variant calls in Supplementary Fig. 18. The lenient set 
was then constructed by adding all variants with a score >−0.5 to our strict SV set 
(Supplementary Table 8 and Supplementary Fig. 18).

LD analysis. We performed an LD analysis based on the genotypes we obtained 
across all 200 unrelated samples. We used gatk4 (ref. 16) (v.4.1.9.0) to annotate 
the calls with variant IDs from dbSNP (build 154)76. We selected variants that are 
contained in the NHGRI-EBU GWAS catalog58 and used plink77 (v.190b618) 
to determine SVs that are in LD with the GWAS variants (r2 ≥ 0.8). For 
comparison with other nonhuman primates, human genomic sequence (GRCh38; 
chr9:133278657-133279020) corresponding to 50 bp flanking the annotated 
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LTR10B2 VNTR was used to retrieve the corresponding orthologous sequence 
from primate genomes62 or HiFi PacBio sequence data from nonhuman primates63. 
Multiple sequence alignments were constructed using MAFFT and manually 
inspected for VNTR copy number.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Illumina short reads for NA24385 were downloaded from: https://ftp-trace.ncbi.
nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_
son/NIST_Illumina_2x250bps/reads. For 1000 Genomes samples, Illumina short 
reads were downloaded from the National Center for Biotechnology Information’s 
Search Read Archive (BioProject, accession no. PRJEB31736). For syndip, reads 
were downloaded from ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR134/006/ERR1341796. 
The GIAB small variant benchmark was downloaded from ftp://ftp-trace.ncbi.nlm.
nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2. GIAB medically relevant 
SVs were obtained from ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
data/AshkenazimTrio/analysis/NIST_HG002_medical_genes_SV_benchmark_
v0.01. The syndip benchmark variants were downloaded from https://github.
com/lh3/CHM-eval/releases (v.20180222). GnomAD variants were downloaded 
from https://gnomad.broadinstitute.org/downloads (v.2). Haplotype-resolved 
assemblies, variant calls and genotypes produced in the present study are 
available from: https://doi.org/10.5281/zenodo.5607680 (ref. 78). For generating 
haplotype-resolved assemblies, we used sequencing data published in ref. 4.

Code availability
The implementation of PanGenie is available at: https://github.com/eblerjana/
pangenie. Code to reproduce the data and rerun the analysis is available at:  
https://bitbucket.org/jana_ebler/genotyping-experiments/src/master. The versions 
used for the experiments in this report are additionally available at https://doi.org/ 
10.5281/zenodo.5767765 and https://doi.org/10.5281/zenodo.5864867.
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Extended Data Fig. 1 | Variant calling and graph construction. a) Shown are haplotype-resolved assemblies for three samples and corresponding variant 
calls made relative to a reference genome. On the right, we show how these variants are represented in a VCF file (simplified). The VCF file is biallelic and 
contains one record per (distinct) variant allele detected across the assemblies. b) Shown is the pangenome representation of the variants detected in 
panel a). Variants are represented as bubble structures. Sets of overlapping variants are merged into a single multi-allelic bubble (see first and last bubble 
for examples). Each haplotype can be represented as a path through the graph. We represent the pangenome in terms of a VCF file containing a record 
for each bubble and alleles corresponding to the branches of the bubble (right). We keep track of which callset variants each branch of the bubble was 
constructed from as illustrated in the VCF representation. In this way, we can later convert genotypes derived for a bubble back to genotypes for each 
individual variant inside of a bubble. Note that our VCFs contain the actual allele sequences in their ‘ALT’ column, we replaced them by their IDs in this 
figure for simplicity.
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Extended Data Fig. 2 | Leave one out experiment. We illustrate the leave-one-out experiment using three samples. Variants are called for all samples 
based on haplotype-resolved assemblies. For evaluation, we construct a callset containing all variants called in samples 1 and 3, and a truth set containing 
all variants called in the left out sample (sample 2). The former set of variants is used for genotyping, the latter for evaluation. When running PanGenie, 
BayesTyper and Platypus, we first convert the variant calls into a pangenome graph representation (stored as VCF) and genotyped the corresponding 
bubbles (A). We keep track of which bubbles consist of which variant alleles so that genotypes can later be converted back to the original variant 
representation. For the other tools tested (GATK, Platypus, GraphTyper, Giraffe), we directly used the callset variants as input, without creating the graph 
(B). The genotypes predicted by each tool are then compared to the variants detected in the left out sample for evaluation. Variants unique to the left out 
sample cannot be genotyped correctly by any re-genotyping approach (marked in red). We exclude such variants when computing weighted genotype 
concordances and adjusted precision/recall/Fscore metrics.
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Extended Data Fig. 3 | Weighted genotype concordance for NA12878 (non-repetitive regions). Weighted genotype concordance at different coverages 
for sample NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides 
not applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering 
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant 
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 4 | Weighted genotype concordance for NA12878 (STR/VNTR regions). Weighted genotype concordance at different coverages for 
sample NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides 
not applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering 
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant 
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Adjusted precision/recall for NA12878 (non-repetitive regions). Adjusted precision/recall at different coverages for sample 
NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not 
applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering 
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant 
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Adjusted precision/recall for NA12878 (STR/VNTR regions). Adjusted precision/recall at different coverages for sample 
NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not 
applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering 
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant 
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 7 | Adjusted Fscore for NA12878 (non-repetitive regions). Adjusted Fscore at coverage 30× for sample NA12878. We ran PanGenie, 
BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported 
genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering (genotype quality 200). SNPs, insertions 
and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant alleles falling into regions with complex 
bubbles in the pangenome graph representation.
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Extended Data Fig. 8 | Adjusted Fscore for NA12878 (STR/VNTR regions). Adjusted Fscore at coverage 30× for sample NA12878. We ran PanGenie, 
BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported 
genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering (genotype quality 200). SNPs, insertions 
and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant alleles falling into regions with complex 
bubbles in the pangenome graph representation.
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Extended Data Fig. 9 | HLA genotyping. Weighted genotype concordances for samples NA12878, NA24385 and HG00731 resulting from a 
‘leave-one-out’ experiment for HLA genes, as well as the average weighted genotype concordance across all three samples (red). For each gene, we 
separately computed concordances for the simpler, ‘biallelic’ regions, as well as the more difficult ‘complex’ regions.
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Extended Data Fig. 10 | GIAB medically relevant SVs in our lenient set. Distribution of SVR scores for all 209 GIAB medically relevant genes that are part 
of our variant callset (left), as well as heterozygosities and allele frequencies observed across all 200 unrelated trio samples in our lenient set (right).
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