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Pangenome-based genome inference allows
efficient and accurate genotyping across a wide
spectrum of variant classes
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Typical genotyping workflows map reads to a reference genome before identifying genetic variants. Generating such align-
ments introduces reference biases and comes with substantial computational burden. Furthermore, short-read lengths limit
the ability to characterize repetitive genomic regions, which are particularly challenging for fast k-mer-based genotypers. In
the present study, we propose a new algorithm, PanGenie, that leverages a haplotype-resolved pangenome reference together
with k-mer counts from short-read sequencing data to genotype a wide spectrum of genetic variation—a process we refer to
as genome inference. Compared with mapping-based approaches, PanGenie is more than 4 times faster at 30-fold coverage
and achieves better genotype concordances for almost all variant types and coverages tested. Improvements are especially
pronounced for large insertions (=50 bp) and variants in repetitive regions, enabling the inclusion of these classes of variants
in genome-wide association studies. PanGenie efficiently leverages the increasing amount of haplotype-resolved assemblies to
unravel the functional impact of previously inaccessible variants while being faster compared with alignment-based workflows.

gies have enabled breakthroughs in producing de novo

haplotype-resolved genome assemblies'™*. Major efforts
are under way’ (https://www.genome.gov/news/news-release/
NIH-funds-centers-for-advancing-sequence-of-human-genome-
reference) to generate hundreds of human genome assemblies, with
the intention of deriving a variation-aware pangenome representa-
tion that replaces the current linear reference genome, GRCh38.
Although long-read technologies are rapidly advancing, advan-
tages of cost and scalability, and the requirement for large study
cohorts, will make short reads a more practical approach for the
foreseeable future.

Diploid organisms have two copies of each autosomal chromo-
some, each of which carries genetic variation. The process of deter-
mining whether a known variant allele is located on none, one or
both of these copies is referred to as genotyping. Variant genotyping
is an essential step in genetic studies, enabling population analysis,
quantitative trait locus studies or trait association analysis. Large
studies have produced comprehensive catalogs of human variation
ranging from single-nucleotide polymorphisms (SNPs) and indels
(insertions and deletions up to 49bp in size) to larger structural
variants (SVs)®~, and many such variants have been linked to dis-
eases and other traits'*-".

Widely used genotyping methods for sequencing data'®-*" are
based on short-read alignments to a reference genome or pange-
nome graphs, which include possible alternative alleles”~*".

Recent, single-molecule, long-read sequencing technolo-

Graph-based approaches have been shown to improve genotyp-
ing accuracy over methods that rely on a linear reference genome.
However, aligning sequencing reads is time-consuming even for lin-
ear reference genomes, where mapping 30X short-read sequencing
data of a single human sample takes around 100 CPU hours. This
problem is amplified when transitioning to graph-based pange-
nome references, where the read-mapping problem is even more
computationally expensive.

A much faster alternative is to genotype known variants based on
k-mers, short sequences of a fixed length k, in the raw sequencing
reads without alignment to a reference. Counts of reference- and
allele-specific k-mers allow fast and accurate genotyping of various
types of genetic variation**-*". However, these methods can struggle
in repetitive and duplicated regions of the genome not covered by
unique k-mers. This is especially problematic for SVs, which are
often located in repeat-rich or duplicated regions of the genome®*
that are generally difficult to access by short-read sequencing®.

This problem has been addressed previously by leveraging
long-range connectivity information from sequencing reads™.
In a similar manner, haplotype-resolved assemblies of known
samples could improve k-mer-based genotyping, especially in
difficult-to-access regions of large diploid genomes, but methods
for this have so far been lacking. Known haplotypes have been used
to construct population-based reference panels to phase small vari-
ants (Li-Stephens model)*” as well as impute missing genotypes™*',
but accurate reference panels that include SV's are still lacking.
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Fig. 1| Overview. a, Step 1: variants are called from haplotype-resolved assemblies of a set of known samples and a pangenome graph is constructed, which
represents variants as bubbles and contains one path per haplotype. b, Step 2: the k-mers (represented by circles) contained in the graph are counted in
the short-read sequencing data of the target sample to be genotyped. The color of the nodes indicates copy number estimates for the k-mers. ¢, Step 3:
PanGenie uses k-mer counts and haplotype paths to infer the unknown genome. For the first bubble, k-mer counts suggest that the sample probably carries
the alleles of the green and blue haplotypes. The second bubble is poorly covered by k-mers; however, linkage to adjacent bubbles can be used to infer the

two local haplotype paths.

In this report, we describe an algorithm, PanGenie (for
Pangenome-based Genome Inference), that makes use of haplotype
information from an assembly-derived pangenome representation
in combination with read k-mer counts to efficiently genotype a
wide spectrum of variants. That is, our method can leverage short
and longer linkage disequilibrium (LD) structures inherent in the
assemblies to infer the genome of a new sample for which only short
reads are available. PanGenie bypasses read mapping and is entirely
based on k-mers, which allows it to rapidly proceed from the
input short reads to a final callset including SNPs, indels and SVs,
enabling analysis of variants typically not accessible in short-read
workflows—including many deletions <1kb and most insertions
>50bp. We applied our method to genotype variants called from
haplotype-resolved assemblies of 11 individuals, revealing a sub-
stantial advance in terms of runtime, genotyping accuracy and
number of accessible variants.

Results

Algorithm overview. We call variants from haplotype-resolved
assemblies (see Constructing a pangenome reference) of several
samples and construct a pangenome graph in which these vari-
ants are represented as bubbles and each haplotype as a path (Fig.
1, step 1). This graph is given as input to PanGenie, together with
short-read sequencing data of a new sample to be genotyped. The
k-mers contained in the graph are counted in the reads and k-mers
unique to bubble regions are identified (step 2 in Fig. 1; Methods).
PanGenie combines two sources of information to genotype bub-
bles: read k-mer counts and the already known haplotype sequences.
The distribution of k-mer counts along the allele paths of a bubble
can provide evidence for the genotype of the sample. Figure 1 (right
panel) provides an example: k-mers corresponding to the second
allele of the first bubble are absent from the reads, indicating that
the individual carries the alleles of the green and blue haplotypes.
However, bubbles may be poorly covered by k-mers or no unique
k-mers may exist in repetitive regions of the genome. Such positions
cannot be reliably genotyped based on the k-mer counts alone, but
known haplotypes can help to infer genotypes based on neighbor-
ing bubbles (Fig. 1).
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For genotyping, we integrate information from k-mer counts and
haplotypes by constructing a hidden Markov model (HMM), which
models the unknown genome as a mosaic of the provided haplo-
types and reconstructs it based on the read k-mer counts observed
in the sample’s sequencing reads (Methods). Hidden states repre-
sent pairs of haplotype paths that can be chosen at each bubble posi-
tion and emit counts for the unique k-mers of the respective region.
State transitions between adjacent bubbles correspond to recombi-
nation events. Using the forward-backward algorithm, genotype
likelihoods are computed for each bubble, from which a genotype
is derived.

Constructing a pangenome reference. We generated haplotype-
resolved assemblies of 14 individuals including 3 mother-father-
child trios (Fig. 2a and Methods; samples include: Yoruban trio:
NA19238, NA19239, NA19240; Puerto Rican trio: HGO00731,
HG00732, HG00733; southern Han Chinese trio: HG00512,
HGO00513, HG00514; and NA12878, HG02818, HG03125, NA24385
and HG03486) and used all 11 unrelated samples to call variants
on each haplotype of all autosomes and chromosome X. We com-
puted the transition:transversion (ti:tv) ratio for SNPs and the
heterozygous:homozygous (het:hom) ratio as quality control mea-
sures*>*’. Our SNP calls contained around twice as many transitions
as transversions (Fig. 2b) resulting in ti:tv ratios between 2.01 and
2.02 for all samples. We obtained het:hom ratios between 1.37 and
2.20 for all our 11 callset samples. These numbers are in line with
respective results for African (AFR), American (AMR), Asian (EAS)
and European (EUR) individuals reported in previous studies*>*.
Furthermore, our callset contains comparable numbers of inser-
tions and deletions (Fig. 2c), except for the expected enrichment
for insertion alleles for SVs®. We show detailed counts of distinct
variant alleles for all types in Fig. 2d (first row) and Supplementary
Tables 2 and 3. We distinguish small variants (1-19bp), midsize
variants (20-49 bp) and large variants (>50bp).

We created an acyclic and directed pangenome graph contain-
ing bubbles representing our variant callset (Methods and Extended
Data Fig. 1). Sets of overlapping variant alleles are merged into a
single bubble representing all alternative sequences observed across
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Fig. 2 | Callset statistics. a, Overview of the samples for which variants are called from haplotype-resolved assemblies as well as their het:hom ratios. Color
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r of different substitutions reported for all samples. ¢, Length distribution

of insertions and deletions across all samples (in basepairs). d, Total number of distinct variant alleles detected across all 11 samples (first row), as well as
the number of bubbles in the corresponding pangenome graph (second row). We distinguished small (1-19 bp), midsize (20-49 bp) and large (>50 bp)
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resulting from inserting overlapping variant calls into the graph.

the haplotypes (Fig. 2d). The haplotypes themselves are represented
as paths through the resulting pangenome. We distinguish biallelic
from complex bubbles. The latter corresponds to bubbles with more
than two branches and the former to all bubbles with two branches
(reference and alternative sequence). Based on the type of bubbles,
we define genomic regions as ‘biallelic’ or ‘complex’ (Methods and
Extended Data Fig. 1).

Comparison to existing genotyping methods. We conducted
a ‘leave-one-out experiment (Methods and Extended Data
Fig. 2) based on Illumina reads from the Genome in a Bottle (GIAB)
consortium® and 1000 Genomes Project high-coverage data*. In
the same way as described above, we created a callset containing
variants detected from haplotype-resolved assemblies of a subset of
ten samples and re-genotyped these variants using Illumina data of
the remaining sample. Variants called from the assemblies of the
left-out sample are used as the ground truth for evaluation. We ran
this experiment twice, leaving out samples NA12878 and NA24385
for evaluation, respectively. In addition to running PanGenie, we ran
BayesTyper” (k-mer based), Platypus’’, GATK HaplotypeCaller',
GraphTyper”, Paragraph® and Giraffe” (all mapping based) to
re-genotype the same set of variants (Methods and Extended
Data Fig. 2). We ran our experiments on coverage levels 30x, 20X,
10x and 5X.

Not all tools are designed to handle all types of variants.
Therefore, we ran GATK only on SNPs, small and midsize variants
and Paragraph only on midsize and large variants. GraphTyper and
Giraffe were run on large variants only.

Results for NA12878 (Fig. 3 and Extended Data Figs. 3-8) and
NA24385 (Supplementary Figs. 4-9) are similar, showcasing con-
sistency of results across samples. To analyze genotyping perfor-
mance, we introduced the weighted genotype concordance (WGC)
which puts equal emphasis on the ability to detect all three possible
genotypes (Supplementary Note). As an alternative view on the per-
formance of the individual methods, we offer precision, recall and
F score, all in an unadjusted version and an adjusted version that
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does not penalize methods for ‘missing’ variants that are undetect-
able because they are not in the input set (Supplementary Note).
Furthermore, we stratify our analyses by considering variants out-
side and inside short-tandem repeats (STRs) and variable-number
tandem repeats (VNTRs)”. We annotated variants according to
their repeat status and observed that between 68% and 72% of mid-
size (20-49bp) and large variants (>50bp) are repeat associated,
respectively (Supplementary Table 4). We consider two configura-
tions for PanGenie: ‘high-gq’ filtering, where we use only genotypes
reported with high quality scores and treat all other variants as
not genotyped, and ‘all, where we consider all reported genotypes
regardless of their quality.

For biallelic SNPs in nonrepetitive regions, all methods reach
excellent levels of genotype concordance (Extended Data Fig. 3) and
F scores (Extended Data Fig. 7), with all F scores >0.95 at coverage
30x. For biallelic SNPs in repetitive regions, PanGenie still achieves
an F score of 0.85, whereas the second-best tool GATK reaches only
0.75 (Extended Data Fig. 8). In repetitive regions, BayesTyper has
the largest fraction of untyped SNPs of all tools, resulting in lowest
recall of 0.6 for biallelic SNPs and 0.17 for SNPs inside of complex
bubbles (Extended Data Fig. 6).

For small insertions and deletions, PanGenie (‘all’) outperforms
the mapping-based approaches, in particular in STR/VNTR regions
(WGC of 90.4% for insertions and 92.8% for deletions; Extended
Data Fig. 4), where the best mapping-based tools (GATK) achieved a
wGC of 83% and 86.9% for biallelic insertions and deletions, respec-
tively, at coverage 30X. BayesTyper and PanGenie using ‘high-gq’
filtering achieved the highest wGCs, both >99% for nonrepetitve
(Extended Data Fig. 3) and >97% for repetitive regions (Extended
Data Fig. 4). For both tools, these good wGCs came at the expense
of relatively few genotyped variants, with PanGenie being able to
genotype slightly more. We also evaluated our results for SNPs,
small and midsize variants using the GIAB high-confidence small
variant callset’ as a ground truth (Supplementary Fig. 11).

Performance differences were largest for midsize and large vari-
ants (Fig. 3). PanGenie clearly outperforms the mapping-based
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Fig. 3 | Leave-one-out experiment. The wGC at different coverages for sample NA12878 and f scores for coverage 30x in nonrepetitive (top) and STR/

VNTR regions (bottom). We ran PanGenie, BayesTyper, Paragraph, Platypus,

GATK, GraphTyper and Giraffe to re-genotype all callset variants. Besides

not applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq' filtering
(genotype quality >200). Insertions and deletions include all respective variants in biallelic regions of the genome, whereas complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.

approaches, especially in repeat regions. Here, PanGenie (‘all’)
reaches wGCs for large SVs of 85%, 92% and 76% for biallelic
insertions, biallelic deletions and variants in complex multiallelic
regions, respectively, at coverage 30X. This is in contrast with the
performance of the best mapping-based tool, achieving only 64%,
79% and 51%, respectively. BayesTyper reached high wGCs, but left
42%, 39% and 77% of these variants untyped, respectively. Using
‘high-gq’ filtering, PanGenie can reach concordances similar or
superior to BayesTyper, while still being able to type much larger
fractions of variants (Fig. 3). PanGenie’s genotyping performance
for large SV in repetitive regions is underscored also by the F score
(Fig. 3): for large biallelic insertions, for example, PanGenie (‘all’)
shows an F score of 0.7 whereas all other tools reach F scores <0.5.
We additionally used the SVs contained in the syndip benchmark
set” to evaluate genotyping performance. Although the absolute
results tend to be slightly worse for all tools, PanGenie again pro-
duced the most accurate genotype predictions and outperformed
the other tools (Supplementary Fig. 12).

Runtimes. For each method, we measured the time required to pro-
duce genotypes given variants and raw, unaligned sequencing reads
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(Supplementary Table 5). The k-mer-based methods PanGenie
and BayesTyper were much faster compared with the remaining,
mapping-based methods that were combined with BWA™ for read
mapping. PanGenie was fastest on all coverages, being between 3.97x
and 4.6x faster than the fastest mapping-based approach at 30x.

Accuracy in the major histocompatibility complex. To evaluate
the accuracy of all 14 haplotype-resolved assemblies in the human
leukocyte antigen (HLA) region, we used HLA*ASM"' to determine
assembly HLA types (Supplementary Table 6). HLA*ASM success-
fully processed 27 of 28 input assemblies and identified perfect (edit
distance 0) HLA-G group matches™ for all classic HLA loci (HLA-A,
-B,-C,-DQA1, -DQBI and -DRBI) in all processed input assemblies
with one exception (HLA-DRBI in NA19238), which was resolved
by manual curation with minimap2. To verify the accuracy of the
assembly HLA types, we integrated publicly available HLA genotype
data for samples from the 1000 Genomes Project®*~° for HLA-A, -B,
-C, -DQBI and -DRBI, intersected these with the assembly-implied
HLA types, and found perfect agreement in all evaluated
cases (9 samples and 85 individual genotype comparisons;
Supplementary Table 6).
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We additionally evaluated PanGenie’s genotyping performance
in the HLA region based on a ‘leave-one-out’ experiment for sam-
ples HG00731, NA12878 and NA24385, and observed high levels of
wGCs across commonly studied HLA genes. Although the average
wGC across all three samples was lowest for HLA-DRBI and -C4
(58% and 79%, respectively in biallelic regions), it was between 98%
and 100% for HLA-C, -DPA1, -DPBI and -DRA in biallelic regions,
and between 93% and 100% for all variants in complex regions
(Extended Data Fig. 9).

Genotyping larger cohorts. The low runtime of PanGenie makes
it well suited to genotype larger cohorts. As an example use case,
we applied it to a set of 300 samples consisting of 100 randomly
selected trios from the 1000 Genomes Project using high-coverage
data*. We used our pangenome graph containing all 2x11 haplo-
types to compute genotypes for all detected variants. Similar to the
approach introduced previously’, we employed Mendelian consis-
tency of the genotyped trios and the genotype quality reported by
PanGenie to compute an integrated score for genotyping reliability
of each variant. To this end, we defined different filters for a positive
set with the most reliable (termed ‘strict’ set) and a negative set with
the most unreliable variants. Using a machine-learning approach
trained on these two subsets, we computed scores for all remain-
ing variants, reflecting how confident we were about their genotyp-
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ing, and used those to derive a ‘lenient’ set of variants containing
78% and 83% of all insertion SVs and deletion SVs, respectively
(Supplementary Note and Supplementary Table 8). To confirm that
the lenient set still offers very good genotyping performance, we
analyzed allele frequencies and heterozygosities observed from the
predicted genotypes for all variants in the lenient set and observed
a relationship close to what is expected from the Hardy-Weinberg
equilibrium (HWE; Fig. 4a and Methods). When testing for HWE,
90.7% of SV alleles inside of repeats, and 90.9% outside of repeats,
showed no significant deviation. Furthermore, observed allele fre-
quencies (AFs) across all 200 unrelated samples are in excellent
agreement with coarse-grained AF estimates obtained from the
22 haplotype assemblies of our 11 input samples (Fig. 4b). Note
that neither of these two measures, HWE and agreement in esti-
mated AFs, has been used when defining the lenient set and there-
fore serves as independent evidence for PanGenie’s performance.
PanGenie on average only took about 30 single-core CPU hours
per sample.

Our callset contains 209 of 250 medically relevant SVs reported
by GIAB®". We observed that 174 medically relevant SVs were con-
tained in our lenient set, of which 119 were part of our strictly fil-
tered set. We show the score distribution for these variants as well as
AFs and heterozygosities observed across all 200 unrelated samples
for the lenient set in Extended Data Fig. 10.
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Fig. 5 | LD analysis. We calculated the LD for GWAS variants and SVs that were part of our assembly-based callset. We detected an insertion (marked in
blue) close to the ABO gene which was in LD with six GWAS SNPs. The plots show all callset variants in this region; GWAS variants are annotated with
their name. Those variants colored in red correspond to blood-type markers.

Comparison to gnomAD. We compared the 119,126 SV alleles
genotypable by PanGenie (lenient set) with the SV’ that are part of
the Genome Aggregation Database (gnomAD)’; gnomAD contains
SVs collected across 14,891 genomes from different populations’.
Requiring a reciprocal overlap of at least 50% or a start, end and
variant length deviation of <200 bp, we found that both callsets had
34,468 variants in common (Supplementary Note), whereas 84,658
(71%) of our SV alleles were not contained in gnomAD. This find-
ing is consistent with previous observations that short-read-based
SV detection misses most SVs*. Of those 84,658 SVs, around 80%
were located in STR/VNTR regions. Furthermore, 43% of these
84,658 variants were common variants with AF>0.05 across all
genotyped samples. The length distribution of common insertions
and deletions (Fig. 4c) demonstrates the ability of PanGenie to gen-
otype variants in regions inaccessible by callers based on short-read
data alone, and shows its particular impact when genotyping inser-
tions and shorter deletions.

LD analysis. Based on the genotypes obtained across all 200
unrelated samples (Genotyping larger cohorts), we performed
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an LD analysis (Methods). We selected all SNPs from our callset
that were contained at least five times in the NHGRI-EBI GWAS
(genome-wide association studies) catalog®™. For each resulting
variant, we calculated LD, comparing it with all our callset variants
within a window of 1 Mb.

For 147 of 3,404 disease-associated SNPs from NHGRI-EBI,
we found nearby structural variants that were in LD (r*>0.8; see
Supplementary Table 9 for all hits with >0.9). An insertion of
length 129bp located at position 133,278,856 on chromosome 9,
close to the ABO gene, looked particularly interesting (Fig. 5). It
is in LD with six GWAS variants (rs2519093, rs495828, rs507666,
rs579459, rs635634 and rs651007) which are related to low-density
lipoprotein-cholesterol levels*. Of note, neither the GWAS SNPs
nor the insertions are in LD with blood-type markers present in
our callset (rs8176747 (ref. *°), rs8176746 (ref. ©°), rs8176743 (ref. *°),
rs8176742 (ref. °'), rs8176741 (ref. °'), rs8176740 (ref. ©'), rs7853989
(ref. "), rs1053878 (ref. '), rs8176720 (ref. °') and rs8176719 (ref. *)).
The insertion is located in a long tandem repeat (LTR10B2 for ERV1
endogenous retrovirus). Analysis of the insertion sequence revealed
that it contains three exact copies of a 43-bp sequence (Methods and
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Supplementary Fig. 19), which appears with copy number 1 in the
reference genome. We thus conclude that this insertion is a repeat
expansion, leading to four copies of this repeated subsequence. A
comparison with nonhuman primate genomes®* shows that the
43-mer occurs as two copies in gorilla (Gorilla gorilla), but is a
single copy in chimpanzee (Pan troglodytes), bonobo (Pan panis-
cus) and the Sumatran orangutan (Pongo abelii). This suggests inde-
pendent expansion events or incomplete lineage sorting in humans
and gorillas.

Another interesting association was an intronic insertion of
length 322bp located at position 28,264,365 on chromosome 12,
inside the CCDC91 gene close to a regulatory element reported by
ENCODE* (Supplementary Fig. 20). It was in LD with two GWAS
variants (rs10843151 and rs11049566), which are both linked to
body fat®. One of these SNPs, rs10843151, is in perfect LD with
many other variants in this region, which suggests that it is probably
embedded in the same haplotype block. Such perfect LD provides
further evidence that PanGenie is accurately genotyping new inser-
tions within short-read sequencing data.

Discussion

We presented an algorithm, PanGenie, that can leverage the
long-range haplotype information inherent to a panel of assembled
haplotypes in combination with read k-mer counts for genotyping
an uncharacterized sample. Although we generated such pange-
nome reference panels from haplotype-resolved assemblies for the
present study, generating these panels was not the main focus of
this report and PanGenie is not restricted to panels created in this
way. In fact, it can be applied to any acyclic genome graph with fully
phased path information.

Traditionally, longer variants are especially difficult to genotype
based on short reads only, because such variants are often located
in repetitive or duplicated regions of the genome, leading to the
difficulty of unambiguously aligning the reads. Approaches based
on k-mers additionally lack connectivity information contained in
the reads because they do not use the order of k-mers stemming
from the same read or read pair. PanGenie overcomes these limita-
tions of short reads because it incorporates long-range haplotype
information inherent to the pangenome reference panel that it uses.
In comparison to BayesTyper, a graph-based genotyper relying on
k-mers, PanGenie genotypes a large fraction of variants not typable
by the former. For SVs and indels, PanGenie clearly outperforms
mapping-based approaches, which require alignments of reads
to a reference genome. Compared with Paragraph, a graph-based
method relying on such read alignments, PanGenie produces bet-
ter genotyping results while additionally providing the ability to
jointly genotype SNPs, indels and SVs. Our approach was faster
than the other methods, especially when comparing with the
mapping-based approaches. The fast runtime makes PanGenie well
suited for genotyping larger cohorts, providing the basis for popu-
lation genetic analysis. In the present study, we have presented an
application to a cohort of 300 samples that suggests that SVs in
LD with disease-associated SNPs may functionally underlie these
associations.

We have hence presented a method that is both fast and lever-
ages a haplotype-resolved pangenome reference to enable genotyp-
ing of otherwise inaccessible variants. Although we have tested it
only on human data so far, PanGenie can be applied to any diploid
genome once corresponding panels of high-quality phased assem-
blies become available for other species. Still, some limitations
remain. Although PanGenie improves results over other methods in
repetitive regions of the genome, genotyping within these remains
challenging. Although biallelic variants are less problematic, more
complex cases such as segmental duplications, a-satellite repeats or
acrocentric DNA are hard to access because of the lack of unique
k-mers, but also because such regions are still difficult to assemble.
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Once a panel of telomere-to-telomere assemblies becomes available,
future experiments can clarify which additional loci are amenable to
genotyping with PanGenie.

Our model assumes that the unknown haplotypes of the sam-
ple to be genotyped are mosaics of the given panel haplotypes.
Therefore, currently it cannot be used to genotype rare variants that
are present only in the sample, but in none of the other haplotypes.
We believe that there are exciting opportunities to develop methods
to discover variation that our approach has not captured because
it was not present in the reference panel. For example, one could
either filter the reads for as yet ‘unexplained” k-mers and use those
for the discovery of rare variants, or utilize PanGenie’s output as a
personalized pangenome reference graph to map reads to.

The runtime of our method depends on the number of input
haplotypes, because we defined a hidden state for each possible
pair of haplotypes that can be selected for each bubble. Therefore,
additional engineering would be required to use much larger pan-
els, which could be approached similarly to how statistical phasing
packages prune the solution space and/or proceed iteratively®=’.
Such techniques could also pave the way toward a version of
PanGenie for polyploid genomes, which would be prohibitively
slow when implemented without such additional optimization.

In summary, we have presented a method that, in combination
with high-quality phased reference assemblies, offers a powerful
approach for genotyping and association studies, on ever-larger
cohorts, for all variant types—including those currently understud-
ied due to technical limitations.
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Methods

Sequencing data. We used publicly available sequencing data from the GIAB
consortium®, 1000 Genomes Project high-coverage data’ and Human Genome
Structural Variation Consortium (HGSVC)*. All datasets include only samples
consented for public dissemination of the full genomes.

Statistics and reproducibility. For generating the assemblies, we used all 14
samples for which PacBio HiFi-data were available. For variant calling, the three
children (HG00733, HG00514 and NA19240) were used for quality control and
were not included in the final callsets/graphs, because they do not provide any
additional information for genotyping. Code and pipelines to reproduce our
analysis are available on Zenodo®.

Variant calling and pangenome construction. Assemblies. Fully phased assemblies
for 14 samples (HG00731, HG00732, HG00733, HG00512, HG00513, HG00514,
NA19238, NA19239, NA19240, NA12878, HG02818, HG03125, NA24385 and
HG03486) were generated using a development version of the PGAS pipeline™*
(parameter settings v.13). Compared with the previous PGAS production release
(v.12 used in the HGSVC project’), this PGAS development update included
anew version of the SaaRclust package” (v.6cb8¢96), controlled for adapter
contamination in the input HiFi reads (reimplementation of the process published
at https://github.com/sheinasim/HiFiAdapterFilt), and employed hifiasm” v.0.15.2
as default assembler. In direct comparison to the previously used HiFi assembler
Peregrine’, hifiasm substantially reduces the number of sequence collapses,
leading to overall more correct assemblies (see the evaluation in Cheng et al.”").
We provide assembly statistics in Supplementary Table 1.

Variant calling. We used haplotype-resolved assemblies of all 14 samples to call
variants (Extended Data Fig. 1a). The three child samples (HG00733, HG00514
and NA19240) were used only for quality control and filtering, and thus were not
part of our final callset/graph. For each sample, we separately mapped contigs of
each haplotype (Supplementary Table 1) to the reference genome (GRCh38). This
was done using minimap2 (ref. ) (v.2.18) with parameters ~cx asm20 -m
10000 -z 10000,50 -r 50000 --end-bonus=100 -0 5,56 -E
4,1 -B 5 --cs.In the next step, we called variants on each haplotype of all
autosomes and chromosome X using paftools (https://github.com/Ih3/minimap2/
tree/master/misc) with default parameters. We generated a biallelic, VCF file
containing variant calls made across all 11 unrelated samples (Extended Data

Fig. 1a). If a region was not covered by any contig alignment in a sample, or the
sample had multiple overlapping contig alignments, we set all its genotypes in this
region to missing (“/”), because it is unclear what the true genotype alleles are in
this case. Furthermore, we removed variants from our callset for which >20% of
the samples have missing genotype information. The remaining regions covered
91.8% (2.8 Gbp) of chromosomes 1-22 and chromosome X. Of the 8.2% of regions
not covered, 48.3% were gaps in GRCh38 and 24.0% were centromeres.

We computed the Mendelian consistency for the Puerto Rican (HG00731,
HGO00732, HG00733), Chinese (HG00512, HG00513, HG00514) and Yoruban
(NA19238, NA19239, NA19240) trios and observed that 97.9%, 96.8% and
97.6% of all variants were consistent with Mendelian laws, respectively. We
removed a variant from our callset if there was a Mendelian conflict in at least one
of the three trios. We show the number of variants in our final callset and
the intermediate stages of variant calling in the first three columns of
Supplementary Table 2.

Pangenome construction. Given the filtered variant calls, our goal was to construct
an acyclic and directed graph by inserting the variants of all haplotypes into the
linear reference genome. Variants produce bubbles in the graph with branches that
define the corresponding alleles. The input haplotypes can be represented as paths
through the resulting pangenome. When constructing the graph, we represent
sets of variants overlapping across haplotypes as a single bubble, with potentially
multiple branches reflecting all the allele sequences observed in the haplotypes

in the respective genomic region (Extended Data Fig. 1b). The total number of
bubbles in the resulting graph is presented in the last column of Supplementary
Table 2. We represent the pangenome in terms of a fully phased, multisample
VCEF file that contains one entry for each bubble in the graph (Extended Data Fig.
1b). At each site, the number of branches of the bubble is limited by the number
of input haplotype sequences and the genotypes of each sample define two paths
through this graph, corresponding to the respective haplotypes. We keep track of
which individual input variants contribute to each bubble in the graph, so that we
can convert our pangenome graph representation back to the set of input variants.
In this way, we can convert genotypes computed by a genotyper for all these
bubbles to genotypes for each individual callset variants.

PanGenie’s genotyping algorithm. We define a hidden Markov model that can be
used to compute the two most likely haplotype sequences of a given sample based
on known haplotype paths and the sample reads. The new haplotype sequences are
combinations of the existing paths through the graph and are computed based on
the copy numbers of unique k-mers observed in the sequencing reads provided for
the sample to be genotyped.

Identifying unique k-mers. Sets of bubbles that are less than the k-mer size

apart (we use k=31) are combined and treated as a single bubble. The alleles
corresponding to such a combined bubble are defined by the haplotype paths in
the respective region. For each bubble position v, we determine a set of k-mers,
kmers,, that uniquely characterize the region. This is done by counting all k-mers
along haplotype paths in the pangenome graph using Jellyfish™ (v.2.2.10), and
then determining a set of k-mers for each bubble that occurs at most once within a
single allele sequence and are not found anywhere outside the variant bubble. We
additionally counted all k-mers of the graph in the sequencing reads. This allows
us to compute the mean k-mer coverage of the data, which we use later to compute
emission probabilities (see Observable states).

Hidden states and transitions. We assume being given N haplotype paths H, i=1,
..., N, through the graph. Furthermore, for each bubble v, v=1, ..., M, we are
given a vector of k-mers, kmers,, that uniquely characterize the alleles of a bubble.
We assume some (arbitrary) order of the elements in kmers, and refer to the ith
k-mer as kmers,[i]. In addition, we are given sequencing data of the sample to be
genotyped and corresponding k-mer counts for all k-mers in kmers,. For each
bubble v, we define a set of hidden states 7, = {HV,,-J-|i, j<N } which contain a
state for each possible pair of the N given haplotype paths in the graph. Each such
state H,;; induces an assignment of copy numbers to all k-mers in kmers,. We
define a vector a,;; such that the kth position contains the copy number assigned to
the kth k-mer in kmers,;

i

0 kmers, [k] ¢ H; U H;

1 kmers, [k] € H\H;
a,;; [k] = Vk =1, ..., |kmers,|

1 kmers, [k] € H)\H;
2 kmers, (k] € H; N H;.

The idea here is that we expect to see copy number 2 for all k-mers occurring
on both haplotype paths. In case only one of the haplotypes contains a k-mer, its
copy number must be 1 and k-mers that do not appear in any of the two paths must
have copy number 0. From each state H,;; in 7, that corresponds to bubble position
v, there is a transition to each state corresponding to the next position, v+ 1. In
addition, there is a start state, from which there is a transition to each state of the
first bubble, and an end state, to which there is a transition from each state that
corresponds to the last bubble.

Transition probabilities. Transition probabilities are computed following the
Li-Stephens model”. Given a recombination rate r, the effective population size N,
and the distance x (in basepairs) between two ascending bubbles v—1 and v

we define:

1
d=xX ——— X 4rN,.
1, 000, 000

We compute the Li-Stephens transition probabilities as:

_ {1 d 1
pr= — exp N XN
()
qr = €xp N pr

Finally, the transition probability from state H,_, ;, to state H,,;; is computed as
shown below:

g xq i=kj=1

g xpr i=kj#l
P (Hyij|Hy— 1) = )

@ xpr iFkj=1

prxXpr iFkjEL

Observable states. Each hidden state H,;; in 5, outputs a count for each k-mer in
kmers,. Let O, be a vector of length |kmers,| for bubble v such that O,[k] contains
the observed k-mer count of the kth k-mer in the sequencing reads. To define the
emission probabilities, we first need to model the distribution of k-mer counts for
each copy number, P (O, [K] |ay;j [k] = c), ¢ = 0, 1, 2. For copy number 2, we use
a Poisson distribution with mean 1 which we set to the mean k-mer coverage that
we compute from the k-mer counts of all graph k-mers. Similarly, we approximate
the k-mer count distribution for copy number 1 in terms of a Poisson distribution
with mean 4. For copy number 0, we need to model the erroneous k-mers that arise
from sequencing errors. This is done using a geometric distribution, the parameter
p of which we choose based on the mean k-mer coverage. Finally, we compute the
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emission probability for a given state and given observed read k-mer counts
as shown below, making the assumption that the k-mer counts are
independent:

| kmers, |

P(OHyy) = [ P (O lawis ).

=1

Genotypes and haplotypes. In this model, genotypes correspond to pairs of given
haplotype paths at each bubble position. Genotype likelihoods can be computed
using the forward-backward algorithm.

Forward-backward algorithm. The initial distribution of our HMM is such that we
assign probability 1 to the start state and 0 to all others. Forward probabilities ()
are computed in the following way:

ap (start) = 1.

For states corresponding to bubbles v=1, ..., M, the forward probabilities are
computed as shown below. The set of observed k-mer counts at position v is given
by O,:

ay (Hyij) =

ZHV_U,E’IV_| ay—1 (Hy—1,6t) X P (Hv,i,j‘Hv—l,s,t) x P (ov‘Hv,i,j) Vi, j.

The transition probabilities are computed as described above, except for
transitions from the start state to all states in the first column, which we assume
to have uniform probabilities. Backward probabilities are computed in a similar
manner. We set:

Py (end) = 1.
For v = 1, .., M — 1, we compute them as:
By (Hvij) =

ZHV+1,S,:€'7V+1 Py (Hogrse) X P (Hv+1,s,L|Hv)i)j) X P (Oy41|Hyg1,50) Vi, j.

Finally, posterior probabilities for the states can be computed:

av (Hyij) X B, (Huig)
P(H,;j|01,0,,...,0y) = —————.
( v,x,)l 1 2 M) Zhenv a, (h) ﬁv (h)

Several states at a bubble position v can correspond to the same genotype,
because different paths can cover the same allele. Also, the alleles in a genotype
are unordered, therefore states H,,; and H,;; always lead to the same genotype. To
compute genotype likelihoods, we sum up the posterior probabilities for all states
that correspond to the same genotype. In this way, we can compute genotype
likelihoods for all genotypes at a bubble position, based on which a genotype
prediction can be made.

Comparison to existing genotyping methods. We conducted a ‘leave-one-out’
experiment to mimic a realistic scenario in which we genotyped variants detected
from haplotype-resolved assemblies of a set of known samples in a new, unknown
sample. We collected variants called across all but one sample and used them as
input for genotyping the left-out sample (we refer to this set as known variants

in the following). We used the set of variants called from the assemblies of the
left-out sample for evaluation (evaluation variants). We ran this experiment
twice, removing samples NA12878 and NA24385, respectively. As input for
PanGenie (commit 1£3d2d2 (ref. ©*)), BayesTyper (v.v1.5) and Paragraph (v.2a), we
constructed a pangenome graph representation based on the known variants in the
same way as described in Constructing a pangenome reference. We kept track of
which variant alleles each resulting bubble consists of, so that genotypes derived
for all bubbles can later be converted back to the original variant representation.
For the other genotypers tested (GATK 4.1.3.0, Platypus 0.8.1, GraphTyper 2.7.1
and Giraffe v.1.30.0), we directly used the set of known variants as input, without
generating the graph representation first, because we observed that these tools
could better handle variants represented in this way. As a result of running all
genotypers, we had one VCF file per tool containing genotypes for all our known
variants. We used the evaluation variants to evaluate the genotype predictions

of all tools. Extended Data Fig. 2 provides an illustration of the leave-

one-out experiment.

Note that re-genotyping a set of known variants in a new sample is different
from variant detection. Variants present in the new sample that have not been seen
in the callset samples can thus not be genotyped because genotypers can genotype
only variants that they have seen before. We provide the number of unique
variants of each panel sample in Supplementary Table 3. Most genotyping metrics
(weighted genotyping concordance, adjusted precision/recall) explained in detail in
Supplementary Note exclude these variants.
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Besides re-genotyping our callset variants, we additionally ran GATK and
Platypus in discovery mode to detect and genotype their own variants. We
evaluated the results by computing precision/recall based on our ground-truth
variants (Supplementary Figs. 10 and 11).

Evaluation regions. Some genomic regions are more difficult to genotype than
others, such as SV that tend to be located in repetitive and more complex regions
of the genome. Therefore, we looked at variants located inside and outside of
STR/VNTR regions which we obtained from the UCSC genome browser (Simple
Repeats Track for GRCh38)*. In addition, we classified the genome into ‘complex’
and ‘biallelic’ regions based on the bubble structure of our pangenome graph: all
variants located inside of complex bubbles, that is, bubbles with more than two
branches, fell into the first category, and the remaining regions into the second.
Consider Extended Data Fig. 1 for an example: the first and third bubbles are
complex, thus all variants contained inside these bubbles fall into the category
‘complex. The second bubble is biallelic and therefore the corresponding SNP
variant is considered ‘biallelic’.

For our ‘leave-one-out’ experiment for sample NA12878, we show the number
of variants falling into the different categories in Fig. 3, Extended Data Figs. 3-8
and Supplementary Table 4. It can be observed that most complex bubbles are
located inside STR/VNTR regions (Supplementary Table 4). In addition, more than
half of all midsize and large variants are located in these repetitive regions.

Genotyping larger cohorts. We randomly selected 100 trios (20 of each
superpopulation: AFR, AMR, EAS, EUR, South Asian (SAS)) that are part of

the 1000 Genomes Project and genotyped all our variant calls across these 300
samples. We used our pangenome graph representation containing all 11 assembly
samples as an input for PanGenie, genotyped all bubbles and later converted the
resulting genotypes back to obtain genotypes for the individual callset variants.
Our callset might contain variants that are difficult to genotype correctly. To
identify a high-quality subset of variants that we could reliably genotype, we
defined different filters based on the predicted genotypes that we list below. One
metric used for defining filters is the Mendelian consistency. We computed the
Mendelian consistency for each variant by counting the number of trios for which
the predicted genotypes are consistent with Mendelian laws. We considered

only trios with at least two different genotypes, that is, we excluded a trio if all
three genotypes were 0/0, 0/1 or 1/1. This resulted in a more strict definition of
Mendelian consistency (Supplementary Fig. 14). In addition to genotyping all 300
trio samples, we also genotyped all 11 panel samples using the full input panel.
Genotyping samples that are also in the panel helped us to find cases where panel
haplotypes and reads disagreed and thus was another useful filter criterion. We
defined filters as follows: (1) acO-fail: a variant fails this filter if it was genotyped
with AF 0.0 across all samples; (2) mendel-fail: a variant fails this filter if the
fraction of Mendelian consistent trios was <90% (our definition of Mendelian
consistency excludes all trios with all 0/0, all 0/1 or all 1/1 genotypes and only
considers such with at least two different genotypes); (3) gq-fail: a variant failed
this filter if it was genotyped with a genotype quality <200 in >5 samples; (4)
self-fail: in addition to the 100 trios, we also genotyped the 11 panel samples; a
variant failed this filter if the genotype concordance across all panel samples was
<90%; and (5) non-ref-fail: the variant was genotyped as 0/0 across all

panel samples.

For all combinations of filters, we show the number of large deletions
and large insertions in each category in Supplementary Fig. 15. To define a
strict, high-quality set of variants, we selected all that passed all five filters
(Supplementary Table 7).

For quality control, we analyzed allele frequencies and the fraction of
heterozygous genotypes for all variants contained in our unfiltered and strict sets
(Supplementary Figs. 16 and 17). In addition, we used VCFTools™ (v.0.1.16) to test
the genotype predictions of all variants typed with an AF > 0.0 for conformance
with the HWE and corrected for multiple hypothesis testing by applying the
Benjamini-Hochberg correction” (a¢=0.05).

In addition to defining a strict set, we constructed a more lenient set for our
SV calls (>50bp) using a machine-learning approach based on support vector
regression. We used the strict set as a positive set and defined a negative set
consisting of all variants that were typed with an AF> 0.0 and failed at least three
filters. For large insertions, the negative set contained 2,611 variants, and for large
deletions 1,125. The model then predicted scores between —1 (worst) and 1 (best)
for all variants that were in neither the positive nor the negative set. We show the
distribution of scores for our variant calls in Supplementary Fig. 18. The lenient set
was then constructed by adding all variants with a score >—0.5 to our strict SV set
(Supplementary Table 8 and Supplementary Fig. 18).

LD analysis. We performed an LD analysis based on the genotypes we obtained
across all 200 unrelated samples. We used gatk4 (ref. '°) (v.4.1.9.0) to annotate
the calls with variant IDs from dbSNP (build 154)7°. We selected variants that are
contained in the NHGRI-EBU GWAS catalog™ and used p1ink’ (v.190b618)

to determine SV that are in LD with the GWAS variants (7> >0.8). For
comparison with other nonhuman primates, human genomic sequence (GRCh38;
chr9:133278657-133279020) corresponding to 50 bp flanking the annotated
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LTR10B2 VNTR was used to retrieve the corresponding orthologous sequence
from primate genomes®” or HiFi PacBio sequence data from nonhuman primates®.
Multiple sequence alignments were constructed using MAFFT and manually
inspected for VNTR copy number.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Illumina short reads for NA24385 were downloaded from: https://ftp-trace.ncbi.
nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_
son/NIST_Illumina_2x250bps/reads. For 1000 Genomes samples, Illumina short
reads were downloaded from the National Center for Biotechnology Information’s
Search Read Archive (BioProject, accession no. PRJEB31736). For syndip, reads

were downloaded from ftp://ftp.sra.ebi.ac.uk/voll/fastq/ERR134/006/ERR1341796.
The GIAB small variant benchmark was downloaded from ftp://ftp-trace.ncbi.nlm.

nih.gov/giab/ftp/release/NA12878_HGO001/NISTv3.3.2. GIAB medically relevant
SVs were obtained from ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
data/AshkenazimTrio/analysis/NIST_HG002_medical_genes_SV_benchmark_
v0.01. The syndip benchmark variants were downloaded from https://github.
com/Ih3/CHM-eval/releases (v.20180222). GnomAD variants were downloaded
from https://gnomad.broadinstitute.org/downloads (v.2). Haplotype-resolved
assemblies, variant calls and genotypes produced in the present study are
available from: https://doi.org/10.5281/zenodo.5607680 (ref. ”*). For generating
haplotype-resolved assemblies, we used sequencing data published in ref. *.

Code availability

The implementation of PanGenie is available at: https://github.com/eblerjana/
pangenie. Code to reproduce the data and rerun the analysis is available at:
https://bitbucket.org/jana_ebler/genotyping-experiments/src/master. The versions
used for the experiments in this report are additionally available at https://doi.org/
10.5281/zenodo.5767765 and https://doi.org/10.5281/zenodo.5864867.
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Extended Data Fig. 1| Variant calling and graph construction. a) Shown are haplotype-resolved assemblies for three samples and corresponding variant
calls made relative to a reference genome. On the right, we show how these variants are represented in a VCF file (simplified). The VCF file is biallelic and
contains one record per (distinct) variant allele detected across the assemblies. b) Shown is the pangenome representation of the variants detected in
panel a). Variants are represented as bubble structures. Sets of overlapping variants are merged into a single multi-allelic bubble (see first and last bubble
for examples). Each haplotype can be represented as a path through the graph. We represent the pangenome in terms of a VCF file containing a record
for each bubble and alleles corresponding to the branches of the bubble (right). We keep track of which callset variants each branch of the bubble was
constructed from as illustrated in the VCF representation. In this way, we can later convert genotypes derived for a bubble back to genotypes for each
individual variant inside of a bubble. Note that our VCFs contain the actual allele sequences in their ‘ALT' column, we replaced them by their IDs in this
figure for simplicity.
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Extended Data Fig. 2 | Leave one out experiment. We illustrate the leave-one-out experiment using three samples. Variants are called for all samples
based on haplotype-resolved assemblies. For evaluation, we construct a callset containing all variants called in samples 1and 3, and a truth set containing
all variants called in the left out sample (sample 2). The former set of variants is used for genotyping, the latter for evaluation. When running PanGenie,
BayesTyper and Platypus, we first convert the variant calls into a pangenome graph representation (stored as VCF) and genotyped the corresponding
bubbles (A). We keep track of which bubbles consist of which variant alleles so that genotypes can later be converted back to the original variant
representation. For the other tools tested (GATK, Platypus, GraphTyper, Giraffe), we directly used the callset variants as input, without creating the graph
(B). The genotypes predicted by each tool are then compared to the variants detected in the left out sample for evaluation. Variants unique to the left out

sample cannot be genotyped correctly by any re-genotyping approach (marked in red). We exclude such variants when computing weighted genotype
concordances and adjusted precision/recall/Fscore metrics.
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Extended Data Fig. 3 | Weighted genotype concordance for NA12878 (non-repetitive regions). Weighted genotype concordance at different coverages
for sample NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides
not applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq’ filtering
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 4 | Weighted genotype concordance for NA12878 (STR/VNTR regions). Weighted genotype concordance at different coverages for
sample NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides
not applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using 'high-gq' filtering
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Adjusted precision/recall for NA12878 (non-repetitive regions). Adjusted precision/recall at different coverages for sample
NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not
applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using 'high-gq' filtering
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Adjusted precision/recall for NA12878 (STR/VNTR regions). Adjusted precision/recall at different coverages for sample
NA12878. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not
applying any filter on the reported genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using 'high-gq' filtering
(genotype quality 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Extended Data Fig. 7 | Adjusted Fscore for NA12878 (non-repetitive regions). Adjusted Fscore at coverage 30x for sample NA12878. We ran PanGenie,
BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported
genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gqg' filtering (genotype quality 200). SNPs, insertions
and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant alleles falling into regions with complex
bubbles in the pangenome graph representation.
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Extended Data Fig. 8 | Adjusted Fscore for NA12878 (STR/VNTR regions). Adjusted Fscore at coverage 30x for sample NA12878. We ran PanGenie,
BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported
genotype qualities (‘all’), we additionally report genotyping statistics for PanGenie when using ‘high-gq' filtering (genotype quality 200). SNPs, insertions
and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant alleles falling into regions with complex
bubbles in the pangenome graph representation.
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Extended Data Fig. 9 | HLA genotyping. Weighted genotype concordances for samples NA12878, NA24385 and HGOO731 resulting from a
‘leave-one-out’ experiment for HLA genes, as well as the average weighted genotype concordance across all three samples (red). For each gene, we
separately computed concordances for the simpler, ‘biallelic’ regions, as well as the more difficult ‘complex’ regions.
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of our variant callset (left), as well as heterozygosities and allele frequencies observed across all 200 unrelated trio samples in our lenient set (right).
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in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|Z| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No specific software for data collection was used.

Data analysis Software and workflows developed for this study (PanGenie, Snakemake workflows for evaluation) are available under MIT licence from the
respective public repositories (https://github.com/eblerjana/pangenie, (version: commit 1f3d2d2), https://bitbucket.org/jana_ebler/
genotyping-experiments/src/master/). Assemblies were generated using the PGAS pipeline (https://github.com/ptrebert/project-diploid-
assembly, parameter settings: v13), hifiasm (v0.15.2) and the SaaRclust package (version #6cb8c96). In our evaluation experiments, we
additionally used the following publicly available tools: minimap2 (https://github.com/lh3/minimap2, version 2.17), paftools (https://
github.com/Ih3/minimap2/tree/master/misc), jellyfish (version 2.2.10), BayesTyper (https://github.com/bioinformatics-centre/BayesTyper,
version v1.5), GATK (version 4.1.3.0), Paragraph (https://github.com/Illlumina/paragraph, version v2a ), Platypus (https://github.com/
andyrimmer/Platypus, version 0.8.1), GraphTyper (https://github.com/DecodeGenetics/graphtyper, version 2.7.1), VG/Giraffe (https://
github.com/vgteam/vg_snakemake, VG version: v1.30.0), VCFTools (v0.1.16), UCSC liftOver (https://genome.ucsc.edu/cgi-bin/hglLiftOver),
plink (v190b618) and RTG vcfeval (version: v3.9.1). Experiments were run with Snakemake (version: 5.30.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Illumina short reads for NA24385 were downloaded from: https://ftp-trace.ncbi.nIm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/
NIST_Illumina_2x250bps/reads/. For 1000 Genomes samples, Illumina short reads were downloaded from NCBI SRA (BioProject PRIEB31736). For syndip, reads
were downloaded from ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR134/006/ERR1341796/. The GIAB small variant benchmark was downloaded from ftp://ftp-
trace.nchi.nlm.nih.gov/giab/ftp/release/NA12878_HGO01/NISTv3.3.2/. GIAB medically relevant SVs were obtained from ftp://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_medical_genes_SV_benchmark_v0.01/. The syndip benchmark variants were downloaded

from https://github.com/Ih3/CHM-eval/releases (version 20180222). GnomAD variants were downloaded from https://gnomad.broadinstitute.org/downloads/ (v2).

Haplotype-resolved assemblies, variant calls and genotypes produced in this study are available from: 10.5281/zenodo.5607680. For generating haplotype-resolved
assemblies, we used sequencing data published in (Ebert et al. 2021).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Variant calls were made based on all assembly samples (HG00731, HG0O0732, HG00512, HGO0513, NA19238, NA19239, NA12878, HG02818,
HG03125, NA24385 and HG03486). HG00733, HGO0514 and NA19240 were used for evaluation.

Data exclusions  No data was excluded.
Replication Not applicable. No data was generated, all computational analyes can be replicated using the provided pipelines.
Randomization  Not applicable. Sample were not assigned to groups.

Blinding Not applicable. All experiments were done computationally and do not involve a human experimenter.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.qg. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.
Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
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Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale | /ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work?  [_|Yes [ |No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  gme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

|:| Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

OO0oofds

Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.
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Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.
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Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).




Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).
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Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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