Skip to main content
. 2022 Apr 11;8:20552076221092543. doi: 10.1177/20552076221092543

Table 5.

Results (%) comparison between the proposed CAD framework and other related studies based on SARS-COV-2 CT scan dataset.

Article Method SP SE Acc Precision F1-score
75 Customized CNN - 96 95 - 95
23 CoviDenseNet 85.92 87.41 86.88 85.92 89.53
21 x-DNN3 - 95.53 97.38 - 97.31
76 Customized Simple CNN 95.56 96 95.78 95.56 -
22 Bi-LSTM - 98.87 98.37 - 98.14
77 VGG-16 + ResNet-50 + Xception + Majority voting 98.79 98.79 98.79 98.79 98.79
78 Fuzzy Ranking + VGG-11, ResNet-50-2, and Inception v3 99 99.08 98.93 99 98.93
79 Customized CNN + Genetic Algorithm + Xboost - 99 99 - 99
33 ResNet18 + ShuffleNet + AlexNet + GoogleNet + DWT + GLCM + Statistical features + PCA + SVM 99 99 99 99 99
Proposed CAD framework 99.72 99.47 99.60 99.72 99.60

Bi-LSTM: bidirectional long short-term memory; CT: computed tomography; CNN: convolutional neural network; CAD: computer-assisted diagnostic; DWT: discrete wavelet transform; GLCM: gray-level covariance matrix; PCA: principal component analysis; SVM: support vector machine; SARS-CoV-2: severe respiratory syndrome coronavirus 2.