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Pulmonary arterial hypertension (PAH) is a rare disease associated with abnormally elevated

pulmonary pressures and right heart failure resulting in high morbidity and mortality. Although

the prognosis for patients with PAH has improved with the introduction of pulmonary vasodi-

lators, disease progression remains a major problem. Given that available therapies are inad-

equate for preventing small-vessel loss and obstruction, there is active interest in identifying

drugs capable of targeting angiogenesis and mechanisms involved in the regulation of cell

growth and fibrosis. Among the mechanisms linked to PAH pathogenesis, preclinical studies

have identified promising compounds that are currently being tested in clinical trials. These

drugs target seven of the major mechanisms associated with PAH pathogenesis: bone

morphogenetic protein signaling, tyrosine kinase receptors, estrogen metabolism, extracellular

matrix, angiogenesis, epigenetics, and serotonin metabolism. In this review, we discuss the

preclinical studies that led to prioritization of these mechanisms, and discuss completed and

ongoing phase 2/3 trials using novel interventions such as sotatercept, anastrozole, rodatristat

ethyl, tyrosine kinase inhibitors, and endothelial progenitor cells, among others. We anticipate

that the next generation of compounds will build on the success of the current standard of care

and improve clinical outcomes and quality of life for patients with PAH.
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The annual incidence of PAH is estimated at
7 to 10 individuals per million people, with a
prevalence of up to 50 cases per million.
Current treatments are based on the premise
that an imbalance of vasoactive mediators
results in inappropriate pulmonary
vasoconstriction that can be addressed by
the use of drugs with vasodilatory properties.
PAH therapies target three key pathways
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and, depending on their activity, are classified into four
distinct classes: endothelin receptor antagonists,
phosphodiesterase type 5 inhibitors, soluble guanylate
cyclase stimulators, or prostacyclin analogs. However,
despite the availability of 14 US Food and Drug
Administration-approved drugs, PAH remains a
progressive disease; the 5-year survival for patients with
PAH is approximately 57%, and lung transplantation
remains the only treatment option for end-stage
disease.3 Given that available therapies are inadequate to
halt disease progression, there is widespread consensus
that the next generation of PAH-specific therapies
should target the genetic and molecular mechanisms
behind small-vessel loss and obstructive vascular
remodeling.

Tremendous advances have been made in understanding
the biological basis of PAH. As a result, PAH is now
recognized as a disease state dominated by a complex
interplay of dysfunctional angiogenesis, smooth muscle
hypertrophy, inappropriate inflammation, metabolic
derangements, and many other processes working in
concert to create a phenotype of vessel loss and
obstruction.4 With the availability of omics technologies,
human tissue biobanks, molecular tools, and multiple
in vivo models, it is now possible to carry out
comprehensive preclinical studies to validate
mechanisms of disease and to screen drugs to gauge
their clinical potential. This translational approach has
accelerated the rate at which compounds move to
clinical trials to test whether their addition to the
standard of care can reduce morbidity and improve
quality of life for patients with PAH.

In this review, we focus on drugs that are currently in
phase 1-3 clinical trials and discuss the preclinical
studies that provide the rationale for their use in PAH.
These drugs target five of the major mechanisms linked
to PAH pathogenesis: bone morphogenetic protein
(BMP) signaling, tyrosine kinase receptors, estrogen
metabolism, extracellular matrix, and angiogenesis. For
readers interested in expanding their knowledge on
PAH pathobiology and preclinical studies beyond the
topics discussed here, we recommend excellent
translational reviews by Dunmore et al,5 Gajecki et al,6

and Xiao et al.7
Tyrosine Kinase Receptor Inhibition
Vascular remodeling in PAH is characterized by the
presence of highly proliferative and apoptosis-resistant
endothelial and smooth muscle cells within the
chestjournal.org
pulmonary arterial wall.4 This aberrant behavior is
partly driven by inappropriate growth factor signaling
activity resulting from the increased expression of
several growth factors, including platelet-derived growth
factor (PDGF), epidermal growth factor, and vascular
endothelial growth factor, and their corresponding
receptors.8-10 These growth factors signal through
tyrosine kinase receptors, a class of receptors involved in
mediating cell-to-cell communication and regulating a
wide range of complex biological functions, including
cell growth, motility, differentiation, and metabolism
(Fig 1). In 2005, Ghofrani and colleagues11 reported
their experience in treating a 61-year-old man with end-
stage PAH, receiving standard triple combination
therapy, with imatinib mesylate, an oral tyrosine kinase
receptor inhibitor approved for use in the treatment of
chronic myeloid leukemia. Over the course of 3 months,
the patient’s clinical condition improved along with
evidence of improved hemodynamics and right
ventricular function. The same group also carried out
preclinical studies using two animal models of PAH and
demonstrated that treatment with imatinib mesylate
could reverse established pulmonary vascular
remodeling and improve right ventricular function,12

thus providing a solid rationale for pursuing clinical
trials with imatinib mesylate and other tyrosine kinase
receptor inhibitors for PAH.

Since the first report by Ghofrani and colleagues, clinical
trials of imatinib mesylate in patients with PAH have
produced the full gamut of effects, ranging from
beneficial to harmful. The IMPRES [Imatinib (QTI571)
in Pulmonary Arterial Hypertension] study was a stage 3
multinational, multicenter, double-blind, placebo-
controlled trial evaluating the safety and efficacy of
imatinib.13 The trial was designed to evaluate the
primary outcome of 6-min walk distance at 24 weeks,
with an extension period of 144 weeks. It included
patients in World Health Organization (WHO)
functional classes II to IV, receiving two or more
therapies for PAH, and targeted a dose of 400 mg once
daily from an initial dose of 200 mg. After 24 weeks, a
mean difference of 32 m in 6-min walk test (6MWT)
distance was achieved between the imatinib and placebo
groups (P ¼ .002), as well as a 31.8% decrease in PVR,
but no change in first clinical worsening event.13

Interestingly, the benefits trended toward being more
dramatic for patients already taking three agents for
PAH. Unfortunately, imatinib mesylate was poorly
tolerated by the experimental group with 27% of patients
discontinuing because of adverse effects, consistent with
1061
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Figure 1 – Tyrosine kinase inhibitor signaling, inhibition, and relevant pathways to pulmonary arterial hypertension pathogenesis. CSF1R ¼ colony-
stimulating factor 1 receptor; MAP ¼ mitogen-activated protein; PDGF-R ¼ platelet-derived growth factor receptor.
trials involving the use of imatinib mesylate for other
diseases. Most concerning, eight patients in the imatinib
group receiving concomitant systemic anticoagulation
experienced a subdural hematoma compared with none
in the placebo group. Given the competing safety
concerns but dramatic hemodynamic improvements in
certain patient groups from imatinib therapy, a new
phase 2 clinical trial, Positioning Imatinib for
Pulmonary Arterial Hypertension (PIPAH), is currently
recruiting.14 This trial will look to determine a tolerable
dose of imatinib mesylate by administering daily doses
ranging from 100 to 400 mg and evaluating
discontinuation of the drug for more than 5 consecutive
days due to side effects as a primary end point for
12 months, in addition to change in PVR at 24-month
follow-up. The trial will exclude patients receiving
anticoagulation, looking to mitigate the occurrence of
subdural hematoma as seen in IMPRES. Besides oral
formulations, imatinib can also be aerosolized and
delivered by inhalation, an approach that could bypass
many of the systemic side effects associated with the oral
drug.15 This version of imatinib (AER-901; Aerami
Therapeutics) is currently being prepared for phase 1
studies to start in 2021.

Another approach being investigated is the development
of more specific tyrosine kinase inhibitors that can bind
1062 CHEST Reviews
to the PDGF receptors, a major driver of smooth muscle
cell proliferation, motility, and survival in PAH.9

Seralutinib (GB002; Gossamer Bio) is a highly potent
inhaled tyrosine kinase inhibitor that specifically targets
the colony-stimulating factor 1 receptor (CSF1R), c-Kit,
and PDGF receptors and also increases bone
morphogenetic protein receptor type 2 (BMPR2)
signaling activity in the pulmonary circulation.
Compared with imatinib mesylate, inhaled seralutinib
has shown 10-fold greater potency for PDGFa/b
receptor inhibition while achieving sustained lung
concentrations with minimal systemic exposure.
Seralutinib is being manufactured as a dry powder
inhaler to be used twice daily and has moved to a phase
2 clinical trial in patients with PAH with the Torrey
Study,16 a 24-week double-blind placebo-controlled
study in which the primary end point will be change in
PVR and the secondary end point will be change in
6MWT distance.
Modulators of BMP Signaling
Heterozygous mutations in the gene encoding BMPR2
are the most common genetic causes of PAH,
accounting for 53% to 86% of familial cases and 14% to
35% of idiopathic cases.17-20 Within this signaling
pathway, large whole-genome sequencing studies of
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heritable PAH have shown evidence for additional
causal mutations—including a mutation in GDF2
(which encodes bone morphogenetic protein 9
[BMP9]).21 This was later independently replicated in a
whole-exome sequenced Chinese PAH cohort, and
found to account for 6.7% of idiopathic PAH cases.22

BMPR2 forms a signaling complex with activin
receptor-like kinase 1 (ALK-1) and signals specifically in
response to BMP9 and BMP10 in microvascular
endothelial cells.23 GDF2 mutations result in BMP9 loss
of function as well as reduced circulating levels of both
BMP9 and BMP10.24 BMP9 circulates in serum at
detectable levels and acts as a vascular quiescence factor,
blocking angiogenesis in vitro and in vivo, making it a
candidate for therapeutically targeting the dysfunctional
pulmonary endothelium.25,26 BMP9 prevents apoptosis
and angiogenesis while promoting monolayer integrity
in pulmonary arterial endothelial cells. In animal
studies, systemic administration of BMP9 prevented and
reversed established PAH in the BMPR2 mutant knock-
in mouse, monocrotaline rat, and Sugen-hypoxia rat
models of PAH by enhancing endothelial BMPR2
signaling.27 On the basis of these preclinical studies,
United Kingdom-based biotechnology company
Morphogen-IX (now part of Centessa) announced in
2018 their intention to develop MGX292—an
engineered variant of BMP9—as a therapeutic candidate
for PAH. Clinical trials are expected to begin in 2021.

Other components of the BMPR2 signaling pathway
have presented themselves as appealing targets for
new therapies for PAH. A consequence of BMPR2
insufficiency is loss of downstream SMAD1/5/8
activation in favor of SMAD2/3/4 activation by the
activin receptor type IIA (ACTRIIA). The overall
result is that BMPR2/SMAD1/5/8 antiproliferative
signaling is reduced, favoring pulmonary vascular
remodeling driven by augmented ACTRIIA/SMAD2/
3.28 Sotatercept (ACE-011) is a fusion protein of
activin receptor type IIA linked to the Fc domain of
human IgG1. It functions by sequestering free
activins, the ligands for ACTRIIA/B, and thus serves
to rebalance SMAD signaling, and proliferative
behavior (Fig 2). These hypothesized changes were
observed in both cultured endothelial and smooth
muscle cells as well as in animal model pathologic
vascular lesions associated with PAH. When
combined with sildenafil in rat models, the effect of
combination therapy was superior to sildenafil
monotherapy in improving right ventricular
hemodynamics and hypertrophy.28 In light of these
1064 CHEST Reviews
encouraging preclinical data, phase 2 clinical trials
were started in 2018 to test the efficacy of sotatercept
for improving hemodynamics (PULSAR)29 and
exercise capacity (SPECTRA)30 in patients with PAH.
Of these two trials, the results of PULSAR were
recently reported and are discussed in detail below.31

PULSAR (A Study of Sotatercept for the Treatment of
Pulmonary Arterial Hypertension) was a phase 2,
double-blind, randomized, placebo-controlled, parallel-
group study of sotatercept plus standard of care
vs placebo plus standard of care in patients in WHO
group 1 functional class II or III. A total of 106 adults
receiving background PAH therapy were randomized to
receive subcutaneous sotatercept (0.3 or 0.7 mg/kg body
weight every 3 weeks) for 24 weeks, with the primary
end point being the change in PVR from baseline and
the secondary end point being changes in 6MWT
distance and N-terminal pro-B-type natriuretic peptide
(NT-proBNP), a surrogate marker of right ventricular
dysfunction.32 Compared with the placebo group,
sotatercept-treated patients demonstrated significant
improvements in PVR (–145.8 dyn$s$cm–5 in the 0.3-
mg group and –241 dyn$s$cm–5 in the 0.7-mg group),
6MWT distance (29.4 m in the 0.3-mg group and 21.4 m
in the 0.7-mg group), and NT-proBNP. It is pertinent to
point out that these changes were seen in the context of
background monotherapy (9%-10% of patients), double
combination therapy (33%-34% of patients), and triple
combination therapy (56%-57% of patients) including
prostacyclin infusion. In addition, a dose-dependent
response (0.3 vs 0.7 mg/kg) was not observed. Adverse
events were reported in 81% to 91% of patients receiving
either dose of sotatercept, which included headache,
diarrhea, and edema. Specific to sotatercept, the most
common adverse event was thrombocytopenia without
bleeding complications. In addition, it was recently
reported that telangiectasias developed in approximately
10% of patients taking sotatercept. Increases in
hemoglobin were seen in one patient (3%) in the 0.3-mg
group and in seven patients (17%) in the 0.7-mg group,
which resulted in withdrawal from the trial per protocol.
In light of these promising results, sotatercept is moving
to phase 3 clinical trials (STELLAR),33 which will
evaluate sotatercept plus standard of care vs placebo plus
standard of care with the primary end point of 6MWT
distance at 24 weeks.

Besides the development of novel compounds, another
strategy that has helped accelerate drug discovery and
clinical trials in PAH is the repurposing of existing drugs
being used for other indications.34 Through high-
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throughput screening of small-molecule chemical
compound libraries, Spiekerkoetter and colleagues35

identified tacrolimus, a calcineurin inhibitor used for
immunosuppression in solid-organ transplant patients,
as an activator of BMPR2 signaling. Independent of the
cause of BMPR2 insufficiency, low-dose tacrolimus can
increase BMPR2-dependent SMAD1/5 activation and
transcriptional activity by removing the inhibitory effect
of the FK-binding protein 2 (FKBP12) on the BMPR2
receptor. In preclinical studies, low-dose tacrolimus led
to increased expression of BMPR2 target genes (ID1 and
apelin) in pulmonary endothelial cells with BMPR2
insufficiency and reversal of pulmonary vascular
remodeling in two rat models of PAH and in a murine
model of endothelial-specific BMPR2 knockout.
Following these studies, the investigators reported their
experience with compassionate use of low-dose
tacrolimus in three patients with end-stage PAH
receiving background therapy. In all three patients,
tacrolimus treatment reduced symptomatic burden and
improved exercise capacity in the context of increased
expression of BMPR2 mRNA and several target genes in
peripheral blood mononuclear cells.36 More recently,
results of a 16-week phase 2a randomized controlled
trial of tacrolimus at three different target serum levels
An
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(< 2, 2-3, and 3-5 ng/mL) were reported.37 Compared
with placebo (n ¼ 6), there were no significant
differences in 6MWT and right ventricular (RV)
function in the 14 patients with PAH treated with
tacrolimus. Interestingly, individuals who demonstrated
an increase in BMPR2 expression also tended to display
greater improvement in 6MWT and RV function by
echocardiography. Although the study results were
negative, it must be recognized that the small patient
number and heterogeneity of response across the study
populations were significant limitations to the analysis.
Despite these results, a phase 2 study is being planned to
provide a definite answer on the usefulness of tacrolimus
for the treatment of PAH.
Estrogen Modulators
Elucidating the role of estrogen in PAH pathogenesis
has been of great interest given the high incidence of
PAH in women (3-4:1) and evidence that certain
estrogen metabolites can predispose to PAH by
promoting cell growth and pulmonary vascular
remodeling. The link between estrogen and PAH is
not limited to women because men with higher
circulating levels of estradiol and lower
drostenedione
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dehydroepiandrosterone have been shown to have a
greater risk of PAH and more severe right ventricular
dysfunction.38,39 Human cell culture and animal
models have demonstrated that estrogen signaling
decreases BMPR2 expression.40 Also in cell culture,
estrogen receptor a is highly expressed in female
pulmonary artery smooth muscle cells (PASMCs) (Fig
3). Signaling via this receptor increases PASMC
proliferation, whereas estrogen receptor a antagonism
increased BMPR2 expression—and in a mouse model
reversed pulmonary hypertension (PH).41 Although
the true role of estrogen in PAH remains a hotly
debated topic (see Lahm et al,42 Morris et al,43 and
Tofovic and Jackson44 for more detailed reviews),
investigators have posited that inhibition of estrogen
production and signaling could serve as a rationale for
novel PAH therapies.

As part of the efforts to test this hypothesis, clinical
trials are being conducted with repurposed
antiestrogen drugs currently in use for the treatment
of breast cancer: anastrozole and tamoxifen.
Anastrozole is an inhibitor of aromatase, an enzyme
that catalyzes the formation of estradiol from
testosterone. In preclinical studies, female mice treated
with anastrozole and exposed to chronic hypoxia
demonstrated reduced pulmonary vascular remodeling,
lower right ventricular systolic pressure (RVSP), and
decreased right ventricular hypertrophy compared with
male mice.45 Together with fulvestrant, a selective
estrogen receptor degrader, anastrozole was shown to
increase insulin sensitivity and peroxisome
proliferator-activated receptor g (PPARg) and CD36
in BMPR2 mutant mice, and reduced the percentage
of muscularized pulmonary vessels and RVSP.46 On
the basis of these preliminary data, a randomized
double-blind placebo-controlled clinical study was
carried out to test the safety and efficacy of
anastrozole (1 mg/d) in 18 male and female patients
with PAH. Over the course of 12 weeks, anastrozole
significantly decreased 17b-estradiol levels and
increased 6MWT distance by 26 m compared with
placebo. However, there was no improvement in RV
function and quality of life, and this trial did not
assess invasive hemodynamics. Importantly, there were
no differences in the occurrence of adverse side effects
between anastrozole- and placebo-treated patients.
PHANTOM (Pulmonary Hypertension and
Anastrozole)47 is a multicenter double-blind, placebo-
controlled phase 2 randomized clinical trial evaluating
the safety and side effects of anastrozole in patients
1066 CHEST Reviews
with PAH receiving background therapy for a period
of 12 months. The 6-month change in 6MWT
distance will be evaluated as the primary end point, in
addition to several secondary end points including
time to clinical worsening, RV function, bone mineral
density, among others.

Another approach being tested in a single-center,
double-blind randomized, placebo-controlled phase 2
trial is the efficacy and safety of the estrogen receptor
blocker tamoxifen in PAH.48 This ongoing study is
recruiting patients diagnosed with various forms of
PAH, in functional class 1 to 3, and receiving
background therapy who will be randomized to receive
either tamoxifen (20 mg, 3 times/d) or placebo for
24 weeks with the primary end point being change in
tricuspid annular plane systolic excursion measurement,
and changes in 6MWT distance and quality of life as
secondary end points. It is important to recognize that
there are complexities of estrogen signaling and the
“estrogen paradox” that these pharmacologic
investigations do not necessarily address, but they are
important steps to gain further insight into estrogen
signaling as a therapeutic target in PAH.

Elafin
Increased elastase activity and fragmented elastin are
common pathologic features of vascular lesions in
patients and animal models of PAH.49 Elastase activity is
a driver of pulmonary vascular remodeling by degrading
the extracellular matrix and releasing elastin peptides
and growth factors that promote cell proliferation,
survival, and motility.50 Elafin is a potent antimicrobial
and antiinflammatory agent that can be produced by
many cell types, including cells of the pulmonary
vasculature.51 It inhibits elastases such as neutrophil
elastases, decreases the activity of matrix
metalloproteinases, and prevents the degradation of
elastin and extracellular matrix, thus helping to maintain
the vascular structure. In animal models of PH,
heightened elastase activity was observed in wild-type
mice exposed to hypoxia, leading to elevated matrix
metalloproteinase-9 as well as increased muscularity and
loss of distal arteries in these mice. However, these
changes were not seen in elafin-overexpressing hypoxic
mice, supporting a protective role in the pulmonary
circulation.52 When treated with elafin, pulmonary
artery endothelial cells derived from patients with PAH
demonstrate improved tube formation, as well as
increased downstream BMP signaling.53 Elafin
administration reverses vascular remodeling and
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decreases RVSP in the Sugen-hypoxia rat model of PH.53

Interestingly, the elafin-treated rats demonstrated
increased expression of apelin, a transcriptional target of
BMPR2-mediated signaling, suggesting that elafin could
also serve to amplify the BMPR2 signaling cascade.

Given the evidence favoring a potential therapeutic role
for elafin in PAH, a phase 1, staggered multiple-
ascending dose clinical trial to evaluate the safety,
tolerability, pharmacokinetics, and pharmacodynamics
of elafin in healthy adult subjects54 has been completed.
Ascending doses of elafin were administered
subcutaneously daily for 7 days in normal healthy
subjects monitored over a 28-day time period to
document incidence of treatment-emergent adverse
events (primary outcome) and pharmacokinetic/
pharmacodynamic and immunogenicity parameters in
blood (secondary outcome). A phase 2 proof-of-concept
clinical trial in severe PAH is currently being planned.
Endothelial Progenitor Cells/Endothelial Nitric
Oxide Synthase
Endothelial cell injury and apoptosis are two of the
major pathologic findings in PAH tissues, resulting from
a complex combination of underlying genetic and
molecular mechanisms.55 Endothelial cells are central to
the regulation of pulmonary vascular tone through the
production and release of nitric oxide (NO), a potent
vasodilator and a key player in the regulation of vascular
homeostasis. Evidence of reduced NO production has
served as the rationale for the use of phosphodiesterase
type 5 inhibitors and soluble guanylate cyclase
stimulators in the treatment of PAH.2,56 The basis of NO
deficiency in PAH is reduced synthesis by endothelial
nitric oxide synthase (eNOS), an enzyme that is subject
to complex regulation by transcriptional and
posttranslational mechanisms. Studies have shown that
eNOS expression is significantly reduced in PAH
endothelial cells and that restoration of eNOS could
serve as the basis for novel therapeutics.7,57 One
approach to deliver eNOS to the pulmonary circulation
of patients with PAH is through autologous
administration of patient-derived endothelial progenitor
cells transfected with the eNOS gene (EPC-eNOS).

EPCs are bone marrow-derived cells that serve a key role
in promoting endothelial homeostasis and angiogenesis
in the context of injury.58 The rationale for the use of
EPCs in PAH is based on multiple studies that have
shown the capacity of these cells to repair damaged
vessels by restoring endothelial function and
chestjournal.org
angiogenesis through vessel repair and secretion of
proangiogenic factors.59,60 Two studies by Zhao and
colleagues61,62 demonstrated that administration of
EPCs transduced with eNOS in monocrotaline-treated
rats not only improved hemodynamics and RV function
but also improved vascular remodeling and regenerated
lost pulmonary arteries. These preclinical studies
prompted the investigators to carry out a phase 1 dose
escalation study (Pulmonary Hypertension and
Angiogenic Cell Therapy [PHACeT])63 on seven
patients receiving conventional therapy for severe PAH,
using autologous EPCs transduced with eNOS ex vivo
followed by patient administration. Although there were
no sustained hemodynamic improvements over the 3-
month period, 6MWT distance significantly improved at
1, 3, and 6 months.64 It is important to point out that,
although the treatment was tolerated by most of the
patients, one patient with a history of recurrent
presyncope and multiple hospitalizations for right heart
failure died of cardiac arrest soon after receiving the cell
infusion. It should be noted that, when this patient was
autopsied, there was no evidence of emboli; however,
interstitial fibrosis and honeycombing were revealed,
raising questions regarding the clinical classification of
this patient.

On the basis of these promising results, the SAPPHIRE
(Study of Angiogenic Cell Therapy for Progressive
Pulmonary Hypertension: Intervention with Repeat
Dosing of eNOS-enhanced EPCs)65 trial was initiated in
2016 to test the efficacy of EPC-eNOS administration for
improvement of exercise capacity and hemodynamics in
patients with PAH who are in functional classes 2 to 4
and receiving conventional therapy. This is a three-arm
phase 2 randomized double-blind placebo-controlled
trial in which the primary outcome measure will be
change in 6MWT distance over a 6-month period and
secondary outcomes will be changes in RV function,
hemodynamics, and number of deaths/clinical
worsening.

Apabetalone
One of the major areas of research interest in PAH has
been elucidating the role of epigenetics and DNA
damage in the disruption of gene expression and
phenotypic changes found in PAH cells.66,67

Bromodomain-containing protein 4 (BRD4), a
bromodomain and extra-terminal domain (BET) protein
family member, is a protein that binds acetylated histone
tails, and regulates the transcription of genes involved in
the pathogenesis of PAH.68 In cancer biology, these
1067
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histone interactions promote the oncogenic activity of
genes such as BCL2, c-Myc, and many others that work
to promote cell survival and apoptosis resistance.69

Specific to PAH, BRD4 has been shown to be
significantly upregulated in human-derived PAH
PASMCs, as well as in lung extracts and distal
pulmonary arteries. In a multicenter preclinical study,
investigators tested the potential of oral apabetalone, a
clinically available BET inhibitor that binds specifically
to the protein domain of BET proteins responsible for
recognizing the N-terminal tails of histones, to improve
cellular responses and cardiopulmonary function in four
animal models of PAH.70 In a series of elegant and
comprehensive studies, the investigators showed that
treatment with apabetalone was capable of reversing
abnormal responses in PAH pulmonary endothelial cells
and smooth muscles cells in vitro. Moreover, oral
administration of apabetalone improves hemodynamics
and right ventricular function in all four animal models,
including a rat model of pulmonary arterial banding. On
the basis of these exciting results, the 16-week
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Pilot Study (APPRoAcH-p)71 was initiated in 2018 to
test the safety and hemodynamic effects of oral
apabetalone in patients with PAH who are in functional
class 2 or 3 and receiving conventional therapy.
Bardoxolone Methyl
Bardoxolone methyl is a promising potential therapy for
PAH which decreases oxidative stress and NF-kB
activation. Mechanistically, bardoxolone activates
nuclear factor erythroid 2-related factor 2 (Nrf2), which
reduces reactive oxygen species via promotion of
antioxidant gene transcription, repletion of ATP
reserves, and more efficient oxidative phosphorylation.72

In addition, when activated, Nrf2 acts in multiple ways
to decrease NF-kB transcriptional activity.73 The
LARIAT phase 2 clinical trial demonstrated interim
improvement in the connective tissue disease-associated
pulmonary arterial hypertension (CTD-PAH) patient
subset.74,75 This has led to two follow-up clinical trials, a
phase 3 clinical trial CATALYST and RANGER, which
have both been terminated because of the dangers of in-
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TABLE 1 ] Overview of Novel Therapeutics in Pulmonary Arterial Hypertension Under Investigation

Treatment Mechanism Clinical Trial Status or Results

Imatinib Tyrosine kinase inhibitor; multiple targets to attenuate pro-
proliferative, promigratory, and apoptosis-resistant cell behavior
(not currently approved for the treatment of PAH)

IMPRES: Imatinib (QTI571) in Pulmonary Arterial Hypertension
(NCT00902174)

PIPAH: Positioning Imatinib for Pulmonary Arterial
Hypertension (NCT04416750)

Phase 3:
Published13

Phase 2: Active;
recruiting

Seralutinib Tyrosine kinase inhibitor; multiple targets to attenuate pro-
proliferative, promigratory, and apoptosis-resistant cell behavior
with increased specificity for CSF1R and c-KIT inhibition with
BMPR2 modulation

GB002 in Adult Subjects With Pulmonary Arterial Hypertension
(NCT04456998)

Phase 2: Active;
recruiting

BMP9 Direct BMPR2 agonist Announced, not yet enrolling Not yet enrolling

Sotatercept Activin sequestration and rebalancing of SMAD signaling leading to
decreased pro-proliferative behavior

PULSAR: A Study of Sotatercept for the Treatment of
Pulmonary Arterial Hypertension (NCT03496207)

SPECTRA: A Study of Sotatercept for the Treatment of
Pulmonary Arterial Hypertension (NCT03738150)

STELLAR: A Study of Sotatercept for the Treatment of
Pulmonary Arterial Hypertension (NCT04576988)

Phase 2:
Published31

Phase 2: Active;
not recruiting

Phase 3: Active;
not recruiting

Tacrolimus Calcineurin inhibitor; increased BMPR2-dependent SMAD 1/5
activation and transcriptional activity

Single-Center Randomized Controlled Phase II Study of Safety
and Efficacy of FK-506 (Tacrolimus) in Pulmonary Arterial
Hypertension (NCT01647945)

Phase 2a:
Published37

Phase 2: Planned;
not recruiting

Anastrozole Aromatase inhibitor PHANTOM: Pulmonary Hypertension and Anastrozole
(NCT03229499)

Phase 2: Active;
not recruiting

Tamoxifen Estrogen receptor blocker T3PAH: Tamoxifen Therapy to Treat Pulmonary Arterial
Hypertension (NCT03528902)

Phase 2: Active;
recruiting

Elafin Serine elastase inhibitor, which maintains extracellular matrix
integrity

Subcutaneous Elafin in Healthy Subjects (NCT03522935) Phase 1:
Completed

Endothelial
progenitor
cells

Direct administration of endothelial nitric oxide synthase (eNOS)-
enhanced endothelial cells

PHACeT: Pulmonary Hypertension: Assessment of Cell Therapy
(NCT00469027)

SAPPHIRE: Study of Angiogenic Cell Therapy for Progressive
Pulmonary Hypertension: Intervention With Repeat Dosing of
eNOS-Enhanced EPCs (NCT03001414)

Phase 1:
Published64

Phase 2: Active;
recruiting

Apabetalone Bromodomain-containing protein 4 (BRD4) inhibitor APPRoAcH-p: Apabetalone for Pulmonary Arterial
Hypertension: A Pilot Study (NCT03655704)

Phase 1: Active;
not recruiting

Rodatristat
ethyl

Tryptophan hydroxylase inhibitor, which decreases peripheral
serotonin production

ELEVATE 2: A Study of Rodatristat Ethyl in Patients With
Pulmonary Arterial Hypertension (NCT04712669)

Phase 2: Active;
recruiting

BMP9 ¼ bone morphogenetic protein type 9; BMPR2 ¼ bone morphogenetic protein receptor type 2; CSF1R ¼ colony-stimulating factor 1 receptor; EPC ¼ endothelial progenitor cell; PAH ¼ pulmonary arterial
hypertension.
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person clinic visits in the setting of the COVID-19
pandemic.76,77 Further studies are needed to identify the
therapeutic role of bardoxolone in CTD-PAH, and
possibly other forms of PAH as well.

Rodatristat Ethyl
Serotonin is a neurotransmitter of the CNS that is
synthesized from L-tryptophan through tryptophan
hydroxylase, the enzyme responsible for peripheral
serotonin generation. Compared with healthy
individuals, patients with PAH have a significantly
higher concentration of free serotonin in the blood,
associated with increased pulmonary vasoconstriction
and obstructive remodeling via excess smooth muscle
cell proliferation (Fig 4). Rodatristat ethyl is an orally
bioavailable, direct and reversible tryptophan
hydroxylase inhibitor that suppresses peripheral
serotonin production without CNS effects, as the drug
does not cross the blood-brain barrier.78 Rodatristat
ethyl for PAH is being evaluated in ELEVATE 2,79 an
ongoing placebo-controlled, randomized controlled
clinical trial designed to test rodatristat ethyl at 300 mg
and 600 mg twice daily for a period of 24 weeks.80 The
primary end point is to measure the change in
pulmonary vascular resistance from baseline, at the time
of initiation, to week 24 of treatment through right heart
catheterization. Secondary end points measured from
initiation to week 24 of treatment include, but are not
limited to, measuring the cardiac index, mean
pulmonary artery pressure, and RV fractional area
change. The combination of rodatristat’s novel
mechanism of action, peripheral specificity, and good
tolerability make it an exciting new prospective
treatment for the management of PAH.

Conclusion
This review has focused on active clinical trials with a
strong foundation in preclinical science and that target
genetic and molecular mechanisms associated with PAH
progression (Table 1). The ultimate goal is to
demonstrate that this novel treatment paradigm can
increase the benefits of the current standard of care
while slowing or halting disease progression. Besides the
compounds discussed, there are many more at various
stages of development that are expected to move to
clinical trials soon. Although there is no shortage of
novel drug targets of potential therapeutic interest, the
main challenge will be to prioritize candidates based on
expected benefits, cost-effectiveness, and side effect
profile. As we enter the age of precision medicine, it is
1070 CHEST Reviews
expected that health care providers will have the
opportunity to offer more treatment options and have a
more sustained impact on the quality of life and clinical
evolution of their patients with PAH.
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