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A B S T R A C T   

As a cost-effective and objective population-wide surveillance tool, wastewater-based epidemiology (WBE) has 
been widely implemented worldwide to monitor the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) RNA concentration in wastewater. However, viral concentrations or loads in wastewater often correlate 
poorly with clinical case numbers. To date, there is no reliable method to back-estimate the coronavirus disease 
2019 (COVID-19) case numbers from SARS-CoV-2 concentrations in wastewater. This greatly limits WBE in 
achieving its full potential in monitoring the unfolding pandemic. The exponentially growing SARS-CoV-2 WBE 
dataset, on the other hand, offers an opportunity to develop data-driven models for the estimation of COVID-19 
case numbers (both incidence and prevalence) and transmission dynamics (effective reproduction rate). This 
study developed artificial neural network (ANN) models by innovatively expanding a conventional WBE dataset 
to include catchment, weather, clinical testing coverage and vaccination rate. The ANN models were trained and 
evaluated with a comprehensive state-wide wastewater monitoring dataset from Utah, USA during May 2020 to 
December 2021. In diverse sewer catchments, ANN models were found to accurately estimate the COVID-19 
prevalence and incidence rates, with excellent precision for prevalence rates. Also, an ANN model was devel-
oped to estimate the effective reproduction number from both wastewater data and other pertinent factors 
affecting viral transmission and pandemic dynamics. The established ANN model was successfully validated for 
its transferability to other states or countries using the WBE dataset from Wisconsin, USA.   
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1. Introduction 

Wastewater-based epidemiology (WBE) was mostly used to monitor 
the human use or exposure to chemicals by analyzing marker com-
pounds in influents of wastewater treatment plants (WWTPs) or sewer 
catchments (Choi et al., 2020; EMCDDA, 2016; Gao et al., 2018; Gon-
zalez-Marino et al., 2020; He et al., 2021; Li et al., 2019; van Nuijs et al., 
2011; Zheng et al., 2019; Zuccato E, 2005). It has also been developed 
and applied as a population-wide surveillance tool for estimating the 
prevalence of infectious diseases such as poliovirus and hepatitis A virus 
(Asghar et al., 2014; Hellmér et al., 2014). During the coronavirus dis-
ease 2019 (COVID-19) pandemic, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) was shed into sewers from feces, urine, 
saliva, sputum, and other potential sources (Li et al., 2022; Li et al., 
2021c; Pan et al., 2020; van Doorn et al., 2020). Thus, WBE found its 
ideal application as an efficient approach to identify COVID-19 preva-
lence in communities connected with sewer systems. 

At different stages of the COVID-19 outbreak, WBE has been widely 
used to provide early warning or estimate the community prevalence or 
incidence of COVID-19 (Acosta et al., 2021; Agrawal et al., 2021; 
D’Aoust et al., 2021; Gibas et al., 2021; Kitamura et al., 2021; Li et al., 
2021b; Medema et al., 2020; Nemudryi et al., 2020; Róka et al., 2021; 
Rusiñol et al., 2021; Scott et al., 2021; Sherchan et al., 2020; Westhaus 
et al., 2021). Through quantifying SARS-CoV-2 RNA in wastewater, 
estimation of individuals shedding the virus was conducted in different 
WWTPs, sewer catchments, university campuses, buildings, and trans-
portation vessels (Ahmed et al., 2020a; Betancourt et al., 2021; Rusiñol 
et al., 2021; Wong et al., 2021; Zhang et al., 2022). As a cost-effective, 
objective and population-wide surveillance tool, the advantage of 
WBE is its capability in capturing asymptomatic and presymptomatic 
patients no matter whether they are tested for COVID-19 infection or 
not. 

The quantification of COVD-19 case numbers through WBE involves 
five steps: 1) virus shedding by ill individuals; 2) evaluation of virus loss 
or dilution from in-sewer processes; 3) sample collection, transport, and 
storage; 4) analysis of SARS-CoV-2 RNA concentrations; and 5) back- 
estimation of case numbers. For the last step, it is usually conducted 
using equation 1 by taking into consideration of viral shedding, in-sewer 
decay, and wastewater flow. 

PCOVID =
CRNA × Q × ek×t

Pop × CS × QS × PS
(1)  

where, PCOVID is the number of COVID-19 cases within the sewer or 
WWTP catchment boundary and CRNA is viral RNA copies per liter of 
wastewater sample (gene copies/L). Among others, there are parameters 
related to shedding, in-sewer decay, and catchment properties. CS is 
viral shedding per gram of feces (gene copies/g). QS is the daily shedding 
amount of feces of an individual (g/(day∙person)); and PS is the shed-
ding probability in feces from an infected person (unitless). k is the in- 
sewer decay rate constant (day− 1) and t is the hydraulic retention time 
or in-sewer travel time (day). Q is the daily wastewater flow rate (L/ 
day); and Pop is the population of the WWTP or sewer catchment 
(person). Some WBE programs reported the normalized viral concen-
tration CRNA×Q

Pop as the per capita viral load (gene copies/(day∙person)). 
The accuracy of WBE in quantifying COVID-19 case numbers can be 

assessed based on the correlation between CRNA (or viral load) and 
clinically confirmed cases (Nemudryi et al., 2020; Róka et al., 2021). 
However, to inform the pandemic management and policymaking, 
different parameters of prevalence or incidence, i.e. daily new cases, 
future daily new cases, rolling average cases, future average cases, total 
active cases, and effective reproductive number (also known as effective 
reproduction rate, Ri) etc., were adopted and the WBE performance in 
estimating these epidemiological parameters varied greatly in different 
studies (D’Aoust et al., 2021; Huang et al., 2021; Huisman et al., 2021a; 
Huisman et al., 2021b; Róka et al., 2021; Weidhaas et al., 2021). The 

usually conflicting and variable observations in literature imply extra 
factors need to be considered in addition to the CRNA and those pa-
rameters as dictated in conventional WBE back-estimation (Eq.1). 

Although there are advances in improving the sampling and storage, 
concentration, RNA extraction and qPCR analysis, the accurate back- 
estimation of COVID-19 case numbers from CRNA or viral load is still a 
big challenge. Many WBE studies only captured a subset of all the pa-
rameters required for Eq. 1. Catchment parameters such as sewer hy-
draulic retention time (HRT) can have a big impact on the decay of 
SARS-CoV-2 and its RNA in wastewater, and hence on its concentra-
tion in the downstream sampling points (Ahmed et al., 2020b; Bivins 
et al., 2020; Shi et al., 2021). It is challenging to calculate the HRT of a 
catchment. Alternative metrics linked to the catchment size (and 
consequently HRT), such as population and daily wastewater flow rate, 
should be adopted in the WBE back-estimation of COVID-19 infections. 
With the fast evolution and mutation of SARS-CoV-2, the shedding 
pattern and magnitudes of distinct current variants can change as well 
(Despres et al., 2021). Meanwhile, the progressive expansion of vacci-
nation coverage can also add uncertainty to the back-estimation. Envi-
ronmental and weather conditions such as precipitation and air 
temperature have been shown to play a role in the WBE back-estimation 
of COVID-19 case numbers (Li et al., 2021b). 

Previous WBE studies correlated CRNA with the clinically confirmed 
COVID-19 case numbers, because the actual number of infections was 
not available. However, clinical testing is known to only capture a 
fraction of the infections as it is nearly impossible to achieve a 100% test 
rate (Fernandez-Cassi et al., 2021; Reese et al., 2020). This makes it 
challenging to validate the WBE estimated case numbers, which were 
intrinsically objective and not impacted by clinical testing rate. The 
clinical testing rate could not be included in the traditional WBE. There 
is an urgent need to improve the WBE back-estimation for the inclusion 
of more parameters, which are relevant and specific to the COVID-19 
clinical testing, viral transmission, and vaccination rollout. 

However, the current understanding about the impacts of these 
factors on the WBE estimation is limited. Our recent study identified and 
quantified various uncertainties associated with the WBE application for 
COVID-19 monitoring (Li et al., 2021c). Due to the lack of deterministic 
models to simulate the complex processes involved in WBE, black-box or 
data-driven models were proposed to be used to obtain estimates of 
COVID-19 case numbers with reasonable accuracy (Li et al., 2021b). The 
artificial neural network (ANN) modelling approach, inspired by bio-
logical neural systems, is an effective modelling tool (Krogh, 2008). ANN 
models are trained with past data to learn the patterns of the underlying 
process and generalize mathematical relationships between input and 
output data. It has the potential to predict any complex system with high 
precision provided its architecture and parameters are properly set. 

Machine learning, including ANN models, has found many different 
applications in studies of the COVID-19 pandemic, including the clinical 
diagnosis using blood test and chest X-ray (Brinati et al., 2020; Brunese 
et al., 2020; Mohammad-Rahimi et al., 2021), interactions of human 
mobility (transportation), air quality and COVID-19 transmission (Asad 
et al., 2021; Rahman et al., 2021), the forecast or early detection of 
outbreaks and pandemic dynamics (Allam et al., 2020; Braga et al., 
2021; Shawaqfah and Almomani, 2021; Wieczorek et al., 2020). The 
applications of machine learning and artificial intelligent for the 
COVID-19 pandemic were reviewed for their potentials in treatment, 
medication, screening, prediction, forecasting, contact tracing, clinical 
trials, and drug/vaccination process (Lalmuanawma et al., 2020; Mot-
taqi et al., 2021). A recent study used random forest method to predict 
the daily COVID-19 cases based on square root of viral concentration in 
wastewater, with or without normalization to chemical oxygen demand, 
for two wastewater treatment plants (Koureas et al., 2021). The machine 
learning models showed improvement in comparison to linear regres-
sion models, which also have high correlation coefficients between 
wastewater measurements and cumulative cases around 0.8-0.9 in this 
study. The wider uses and benefits of various machine learning 
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techniques in WBE was proposed in anticipation of providing accurate 
viral outbreaks detection and early warning of hotspots (Abdeldayem 
et al., 2022; Matheri et al., 2022). Among different machine learning 
techniques, ANN can provide both regression (continuous quantity) and 
classification (discrete class label) predictions. Thus, ANN regression 
models are suitable for the prediction of COVID-19 case numbers. 
However, there is still a lack of artificial intelligence models developed 
using large datasets obtained from a number of diverse WWTPs or 
catchments. 

This study aims to use ANN as an alternative to the conventional 
WBE back-estimation, because no deterministic association can be 
established based on existing limited understanding of COVID-19. WBE 
has been widely implemented worldwide in many countries, and there is 
a large and exponentially increasing dataset available for the training of 
ANN-based WBE estimation models. However, not all WBE programs 
determine and record all crucial and relevant data required as inputs for 
the WBE back-estimation, including conventional WBE data and those 
linked to catchment, weather, clinical testing and vaccination. As a 
result, we chose to collect all relevant data over 1.5 years (May 2020 – 
December 2021) using the Utah state, USA as a case study. Subse-
quently, we utilized this extensive dataset to build ANN models for the 
accurate estimation of COVID-19 case numbers in a WBE approach. The 
performance and application of the proposed ANN model were also 
thoroughly evaluated for the estimation of different epidemiological 
parameters including prevalence rate, incidence rate, and effective 
reproduction rate. 

2. Materials and methods 

2.1. Wastewater monitoring program in Utah, USA 

Wastewater samples were collected by Utah Department of Envi-
ronmental Quality (DEQ) at 47 wastewater treatment plants (WWTPs) 
statewide in Utah (Table SI-1), representing approximately 80% of the 
state’s population. These treatment plants were selected by Utah’s DEQ 
and Department of Health (DOH) by considering the facility size, com-
munity susceptibility to new infections and the community Health 
Improvement Index. The number of treatment plants monitored has 
changed over time due to funding availability and willingness of the 
utilities to collect and ship samples. Some of the remote or less popu-
lated sites were dropped over time. In other cases, smaller communities 
were put back into the sampling plan if they were tourist destinations 
and during summer or winter vacation time. 

Wastewater was collected weekly at 47 WWTPs as 24-hr flow 
weighted composite samples. If results indicated a sharp increase, 
additional follow-up samples were collected within the constraints of 
sample capacity. The SARS-CoV-2 RNA was extracted from 100 mL of 
pasteurized wastewater collected in May 2020 to July 2021 by a uniform 
method developed by the University of Utah, Utah State University, and 
Brigham Young University (Weidhaas et al., 2021). The SARS-CoV-2 
RNA extracted from 40 mL of pasteurized wastewater collected from 
July 2021 to December 2021 by the Utah Department of Public Health 
Laboratory. The 40 mL wastewater samples were concentrated and 
extracted using the Promega Wizard ® Enviro TNA Kit following the 
manufacturer’s instructions. All samples from May 2020 to December 
2021 included, recovery controls added prior to RNA concentration, 
replicate sample extractions, replicate qPCR runs, and positive and 
negative qPCR controls. Additional details on quality control and quality 
assurance samples were previously reported (Weidhaas et al., 2021). 
Raw virus concentrations, after being normalized to the number of 
people living in the sewer catchments and wastewater flow rates, were 
reported as per capita viral load (SARS-CoV-2 gene copies per person per 
day). 

2.2. Data collection for the ANN model development 

The full dataset includes parameters related to viral load, catchment, 
weather, clinical testing, vaccination, case numbers and transmission as 
shown in Table 1. The catchment data (location, population, wastewater 
flow rates) of the sampling sites were provided on the SARS-CoV-2 
Sewage Monitoring website by the Utah Department of Environmental 
Quality (https://deq.utah.gov/water-quality/sars-cov-2-sewage-monit 
oring). The viral load in wastewater together with the daily COVID-19 
new case number were downloaded from the same website for each 
sampling site till the most recent date (6 December 2021). The rolling 
and future averages of 3-day, 7-day and 14-day were calculated for each 
wastewater sampling date, considering the case identification lead time 
by clinical test, wastewater sampling frequency and the duration of viral 
shedding. The daily new cases within the coming 7 days of the waste-
water sampling date were also extracted to evaluate the early-warning 
capacity of WBE. The daily new cases and rolling or future averages 
represent the COVID-19 incidence (new cases) and prevalence (accu-
mulated cases) rates of the sampled sewer catchments, respectively. 

Corresponding to each wastewater sampling date, the historical 
weather data of the sampling location was obtained from https://www. 
wunderground.com/ to determine the precipitation and various air 
temperatures (daily average, monthly average, and yearly range). Using 
the air temperatures and wastewater flow rate, the wastewater tem-
perature on the sampling day was calculated according to the method by 
Hart and Halden (2020). Briefly, the soil temperature was first calcu-
lated based on the air temperature and time of the year. Wastewater 
temperature was then calculated from soil and air temperature for an 
initial estimate of domestic wastewater discharge temperature 
(17.8–31.2◦C) based on an assumed range of 25–75% hot water and 
temperatures of 13◦C and 50◦C for unheated and heated indoor water. 
The clinical test rates were obtained from Utah governmental COVID-19 
data website (https://coronavirus.utah.gov/). Other COVID-19 related 
parameters for clinical test positive rate, vaccination ratios, and effec-
tive reproduction rate (effective reproduction rate) were extracted from 
https://covidactnow.org. 

2.3. Statistical data analysis 

The full dataset was first checked for its consistency based on general 
knowledge of wastewater systems and WBE. Then, it was analyzed for its 
basic statistics such as minimum, maximum, mean, and standard devi-
ation to identify any suspicious data for each parameter listed in Table 1. 
Statistical Analysis of the data was performed using R (ver 4.1.2, http:// 
www.R-project.org/). Histograms of each parameter were plotted to 
check the data distribution. Box plots of each parameter were plotted to 
check the symmetricity or skewness of the distribution of each param-
eter. Irregularly distributed parameters were identified as potential 
sources for low model quality. Following that, scatter plots between all 
feature and target parameters were plotted to identify the dependencies 
of the targets with the features as inputs. 

The inputs and inputs-targets correlations were calculated to identify 
the relationship between all parameters. Specifically, the correlation 
coefficients between all inputs and all targets indicate dependencies 
between single input and single target in the dataset. Multiple linear 
regression analysis was then performed on the COVID-19 case numbers 
(ANN targets), with WBE relevant factors (ANN features). The co-
efficients for each of the ANN features were determined together with 
the standard error and significance value. 

2.4. Artificial neural network models 

The ANN model was designed with three layers: input, hidden layer 
and output layers. The neural network modelling process used in this 
study may be described in three steps: (i) pre-processing of the original 
data set (determination of test positive ratio, calculation of prevalence 
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rates and wastewater temperature from raw data, and identification of 
outliers); (ii) partitioning of the pre-processed data set into learning, 
validation, and test sets; (iii) ANN model architecture setting, training, 
testing and validation. 

In the first stage the pre-processed data set was sorted by location 
and sampling date, and the training, validation, and test data were 
constructed using a randomization procedure. The percentage of ob-
servations per data set was assigned to be 70%, 15% and 15%, for the 
training, validation and test sets, respectively. The training data set was 
used to train the ANN in Matlab R2021b. The validation data set was 
used in conjunction with the learning data set to determine when to stop 
the training process such that the resulting model exhibited good 
generalization properties. The test data set allows the assessment of the 
prediction capabilities of the ANN model. 

Step 3 involves the ANN architecture setting and optimization. The 
nodes/neurons for the ANN input and output layer were set by the 
number of inputs and targets (Table 1), respectively. The number of 
neurons in the hidden layer was established before the ANN model ar-
chitecture was completed. The optimal number of neurons in the hidden 
layer was determined using the exhaustive search function with test 
error as the fitness criteria in Alyuda NeuroIntelligence ver 2.2. The best 
architecture was then constructed for the training and validation anal-
ysis using Matlab R2021b. The ANN model was systematically evaluated 
for their performance in predicting incidence, prevalence, and effective 
reproduction rate as described in Section 2.5. 

2.5. Evaluation of ANN model performance and transferability 

To determine how the ANN-based WBE back-estimation can predict 
the daily new cases (up to 7 days from the wastewater sampling date), 7 
testing scenarios (ANN-IR, as shown in Table 2) for incidence rates, i.e., 
P1, P2, …, P7, respectively, were evaluated by comparing their ANN 
performance using the correlation coefficients (R) and mean squared 
error (MSE) between ANN model predictions and targets (i.e., clinical 
testing confirmed case numbers). The R and MSE were calculated for the 
whole dataset incorporating training and test groups, which showed 
similar results as overfitting was avoided by using the Bayesian regu-
larization as the optimization procedure. As each training session starts 
with different initial weights and biases, and different divisions of data 

into training, validation, and test sets, ten ANN models were trained to 
ensure a well generalized network was achieved. The ten networks were 
used to obtain the average and 95% confidence interval of R and MSE for 
each scenario. The same was applied for all the other evaluation sce-
narios described in Table 2. 

Six more scenarios (ANN-PR) were tested for the ANN performance 
in predicting the 3d, 7d and 14d rolling average (P3d, P7d, P14d) and 
future average (P3dF, P7dF, P14dF) of daily new cases of the wastewater 
sampling date. These case numbers represent the COVID-19 prevalence 
rate. In addition, one ANN model (ANN-Ri) was trained for the predic-
tion of effective reproduction rate. Finally, to determine the contribu-
tion of clinical test positive ratio, vaccination coverage and weather data 
to improve the ANN model for WBE back-estimation, eight more sce-
narios were tested to identify the improvement of ANN performance. 

Table 1 
Parameters of collected COVID and WBE data from the Utah state (USA), and their use in the ANN models.  

Category Symbol Type ANN 
use* 

Definition Units 

Wastewater 
analysis 

Date Date/time - Wastewater sampling date dd/mm/yyyy 
VL Numeric F SARS-CoV-2 viral load in wastewater MGC/person/ 

day 
ST Categorical - Wastewater sampling technique - 

Catchment Loc Categorical - The sewer or wastewater treatment plant for wastewater sampling - 
Pop Numeric F population person 
ADWF Numeric F Average dry weather flow ML/day 

Weather Prain Numeric F Daily precipitation at the sampling location mm 
Tair Numeric F Average daily air temperature oC 
Twater Numeric F Average daily wastewater temperature oC 

Clinical test TR Numeric - Ratio of population being tested clinically on the sampling date Δ - 
TPR Numeric F Positivity ratio of clinical tests - 

Vaccination Vcr Numeric F The ratio of completed vaccination (2 injections) - 
Vir Numeric F The ratio of initiated vaccination (1 injection) - 

Case numbers P1, P2, P3, …, P7 Numeric T Daily new cases per 100, 000 population for the WWTP on the 1st, 2nd, 3rd, …, 7th day 
since the wastewater sampling date 

Case/100,000 
person 

P3d, P7d, P14d, 
P3dF, P7dF, P14dF 

Numeric T 3-day, 7-day and 14-day rolling and future average of daily new cases per 100, 000 
population of the wastewater sampling date 

Case/100,000 
person 

Effective 
reproduction rate 

Ri Numeric T The COVID-19 effective reproduction rate, which represents how fast COVID is spreading 
in a given area by estimating the number of people that a newly infected person goes on 
to eventually infect. 

-  

* F and T indicate the data were used as features (input) and targets (response) of the ANN models, respectively. Some reserved parameters are indicated as “-”. 
Δ Two sets of test ratios and test positive ratios were collected, one for the Utah state and one for the counties. The state-level data is applied when the county-level 

data is not available. The clinical test ratio and positive ratio of specific wastewater catchment was determined by its overlapping with the county boundaries if 
possible. 

Table 2 
ANN model structures for the evaluation of different capacities in estimating the 
COVID-19 epidemiological parameters.  

Group No. of 
scenarios 

ANN features ANN targets 

Prediction of 
incidence rate 
(ANN-IR) 

7 Pop, ADWF, VL, Twater, 
Prain, Tair, TPR, Vcr, Vir 

P1, P2, P3, …, 
P7 

Prediction of 
prevalence rate 
(ANN-PR) 

6 Pop, ADWF, VL, Twater, 
Prain, Tair, TPR, Vcr, Vir 

P3d, P7d, P14d, 
P3dF, P7dF, 
P14dF 

Prediction of 
effective 
reproduction rate 
(ANN-Ri) 

1 Pop, ADWF, VL, Twater, 
Prain, Tair, TPR, Vcr, Vir 

Ri 

Contributions of 
inputs 

8 All represents the 
complete sets of input 
data. Different 
combinations among the 
categories of weather (W), 
clinical testing (T), and 
vaccination (V). 

Incidence, 
prevalence rate 
and Ri   

The eight scenarios are 
All, All-V, All-T, All-W, 
All-V-T, All-V-W, All-T-W, 
All-V-T-W.   
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To demonstrate the transferability of the established ANN model, 
similar WBE dataset as that from Utah, USA was collected from Wis-
consin, USA (https://www.dhs.wisconsin.gov/covid-19/wastewater. 
htm). The same ANN model was employed in estimating COVID-19 
incidence, prevalence and effective production rate. The model perfor-
mance was thus determined using the same procedures for Utah dataset, 
as described above. Also, the developed ANN models were further 
validated with literature data and some data collected from different 
countries through the WATMOC network (Asia-Pacific Network for 
Wastewater Monitoring of COVID-19, www.watmoc.com). 

3. Results and Discussion 

3.1. Statistical analysis of ANN inputs 

Histograms and box plots of the Utah dataset, both ANN features and 
targets, were plotted to check the data distribution (Figure SI-1 and SI- 
2). Some of the feature data is non-symmetric, including Pop, Flow, VL, 
and case numbers (P1, P2, …, P7 and P3d, P7d, P14d, P3dF, P7dF, 
P14dF). Their distributions are skewed with high distribution towards 
the low range and some outliers in the high range. In contrast, weather 
(Tair, Twater and Prain), clinical test positive ratio (TPR), vaccination 
rates (Vcr, Vir) and effective reproduction rate (Ri) showed more sym-
metric distributions. No outliers were eliminated as the distribution is 
intrinsic due to the nature of the data. Instead, the irregularly distributed 
parameters were identified as potential sources for reduced ANN model 
quality and poor estimates. 

Scatter plots (Figure SI-3) and correlation matrix between all ANN 
features and representative targets (P4, P14d and Ri) were used to 
identify the dependencies of the targets with the inputs. There are some 
obviously high positive correlations between Flow and Pop, Twater and 
Tair, Vir and Vcr, and pairs of prevalence rates (P3d, P7d, P14d, P3dF, 
P7dF and P14dF) (Fig. 1). All correlations of single feature parameter 
with incidence rate (P4) are significant, and in the rank of TPR, Twater, 

Tair, VL, Vcr, Vir, Flow, Pop and Prain. For prevalence rate, all corre-
lations of single features are significant except Prain, and the absolute 
correlation coefficients are in the same order as that for incidence rate. 
For the effective reproduction rate (Ri), vaccination rates showed the 
highest correlation, i.e., 0.51 and 0.5 for Vcr and Vir, respectively. The 
weather, i.e., Tair and Twater (as it is mostly determined by Tair), also 
showed correlation at 0.29 and 0.33, respectively. This confirmed the 
relationship of the COVID-19 dynamic of case numbers with vaccination 
rollout and the weather. The results confirmed the selected features are 
relevant and contribute to the prediction of targets. Thus, no feature 
selection or reduction is needed, and the ANN models were developed 
using the full set of features as inputs. Instead, a thorough evaluation of 
contribution from different categories of features was conducted as 
described in Section 2.5. 

Multiple linear regression analysis indicated a limited performance 
for prevalence rate (r2=0.63) and fairly poor performance for incidence 
rate and effective reproduction rate, with r2 of 0.31 and 0.42, respec-
tively (Table SI-2). The results imply that only 63%, 31% and 42% of the 
variability in incidence (P4), prevalence (P14d) and effective repro-
duction rate (Ri), respectively, could be captured and explained by the 
multiple linear models. The low r2 values suggest that the relationship 
between the features and targets is unlikely linear. 

3.2. Back-estimation of various COVID-19 case numbers using WBE 

Following the statistical analysis of the COVID-19 dataset, including 
data of wastewater, catchment, weather, clinical testing and vaccina-
tion, ANN models were trained using the same dataset for its perfor-
mance in back-estimate COVID-19 case numbers, including both 
prevalence and incidence rates. The final structure of the ANN model has 
the hidden layer with its number of neurons determined by architecture 
search (SI Table x). The activation functions for the hidden and output 
layers of the ANN model were hyperbolic tangent and logistic function, 
respectively. Sum of squares was used as the error function for the 
output layer. The training process was conducted using the Bayesian 
regularization as the optimization procedure to avoid overfitting. The 
ANN was trained to a converged state when the sum-squared error, the 
sum-squared weights, and the effective number of parameters reached 
constant values. 

Using the full set of input parameters, ANN models showed accept-
able performance in determining the COVID-19 incidence rate, i.e. daily 
new cases within one week of the wastewater sampling date. The cor-
relation coefficients (R) and MSE between ANN estimates and clinical 
tested positive cases were between 0.61 and 0.79, 524 and 1056, 
respectively (Fig. 2A). Especially, it is clear that ANN-IR models gave 
the best estimates of case numbers for P4, with a high R and a low MSE 
among all scenarios of P1 to P7. This indicates that WBE approach likely 
allows about 4 days of early predication of future daily new cases, for the 
Utah sewage monitoring program. The reported early prediction ca-
pacity of WBE was between 2-24 days (Ai et al., 2021; Barrios et al., 
2021; Nemudryi et al., 2020; Róka et al., 2021; Rusiñol et al., 2021; 
Sangsanont et al., 2021). However, the leading time of prediction 
identified in this study by a modelling approach is more reliable as it was 
determined based on nearly 1.5 years of data from a comprehensive 
sewage monitoring program covering sewer catchments of various sizes, 
in comparison to other reports based on very limited data from few 
catchments. It is also noted that the ANN estimations are relatively 
scattered due to the various conditions affecting the daily new cases 
reported by clinical testing (Fig. 2B). As shown in Fig. 3, the ANN-IR 
model mostly underestimated the case numbers when they are in the 
high ranges (peaks). In contrast, the estimations were close to clinically 
reported cases when the COVID-19 cases were in the medium or low 
range, i.e. <100 per 10,000 people. This also leads to the relatively 
limited performance of the ANN-IR model in predicting COVID-19 
incidence rates. The reason is probably due to the intrinsically skewed 
input data of case numbers, as discussed in Section 3.1, being used to 

Fig. 1. Correlations between all ANN input features and targets (P4 and P14d, 
representing incidence and prevalence rate, respectively, and Ri) in the WBE 
datasets obtained in Utah, USA. The numbers and circle sizes indicate the 
correlation coefficient; and blank cells indicate insignificant correlations by a 
cut-off p=0.01. 
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train the ANN-IR model. 
For the estimation of prevalence rates by ANN-PR models, P14d 

showed the highest R of 0.92 and lowest MSE of 150, among rolling 
averages (P3d, P7d, P14d) and future averages (P3dF, P7dF, P14dF) 
(Fig. 2A). The accuracy of ANN-PR models is higher than ANN-IR 
models, as confirmed by the lower scatteredness of ANN estimations 
(Fig. 2C). The range of R for prevalence estimations is between 0.81- 
0.92, which is much higher than the range of 0.61-0.78 for incidence 
estimations. As shown in Fig. 3, the ANN-PR model showed excellent 
performance in estimating 14-day rolling average to a very high accu-
racy, for different catchments with a population ranging from six 
thousand to half a million. The ANN-PR model captured the P14d trend 
accurately with only some peaks being underestimated. It is also noted 
that the accuracy for smaller WWTPs was lower due to the reduced 
representativeness of wastewater samples. 

The back-estimation of COVID-19 case numbers using a WBE 
approach is largely based on the assumption of viral shedding into 
sewers. Viral shedding (via feces, saliva, and/or sputum) varies by in-
dividual and through time after infection, from the pre-symptom onset 
till after the recovery. The temporal dynamics of shedding, the total 
amount of virus shed by an infected individual and the ratio of shedding 
patients may be responsible for the observed different performances in 
estimating incidence or prevalence rates. Currently, excretions and 
bodily fluids including feces, urine, blood, saliva, serum, sputum, etc. are 
regarded as the major shedding source of SARS-CoV-2 RNA in waste-
water (Kim et al., 2020; Lo et al., 2020; Peng et al., 2020). Our previous 

meta-analysis revealed that the mean shedding magnitude was 104.52 

±0.13 gene copies/g feces, and the mean shedding probability was 0.54 
±0.09 (Li et al., 2021c). It is also possible other shedding sources such as 
sputum may be a major contributor to the viral load in wastewater (Li 
et al., 2021a). It is known that COVID-19 patients continue to shed virus 
even after recovery of symptoms (Sun et al., 2020; Tao et al., 2021; Wu 
et al., 2020a). Thus, all active COVID-19 cases (prevalence), not just new 
cases (incidence), contribute to the measured viral load in wastewater. 

The shedding load in sputum and throat swab samples peaked in the 
first week following the symptom onset and then decreased to 1% of the 
peak load after three weeks, while the fecal shedding loads remained 
high until five weeks after the symptom onset (Jones et al., 2020). Fecal 
shedding was reported to peak at 0.34 day after the symptom onset, with 
a shedding concentration about 103 times higher than the median con-
centration over the whole shedding period (Miura et al., 2021). As a 
result, our ANN models generated reasonable estimates of incidence 
rates, reflecting the fact that daily new cases are expected to play a major 
role in the total SARS-CoV-2 RNA loads from patients in the wastewater. 

It is also observed that the ANN model performance was in the 
ascending order of P3d, P7d and P14d. This is likely related to the re-
covery time of COVID-19 patients. An Indian study in early 2020 (March 
to April) reported average recovery times of 221 patients as 25 days 
(95%CI: 16-34 days) (Barman et al., 2020). In New South Wales, 
Australia, among 2904 cases confirmed between January to May 2020, 
20% recovered by 10 days, 60% by 20 days, and 80% by 30 days (Liu 
et al., 2021). In the UK, the mean disease duration in the first phase of 

Fig. 2. (A) Box plots of the correlation coefficient (R) and estimation error (MSE) of ANN models being trained to predict incidence rates, i.e., P1, P2, …, P7 (ANN-IR) 
and prevalence rates, i.e., P3d, P7d, P14d and P3dF, P7dF and P14dF (ANN-PR) in Utah, USA. (B) ANN outputs vs. clinical testing reported incidence rate, i.e. case 
numbers on the 4th day of the wastewater sampling date. (C) ANN outputs vs. the prevalence rate reported by clinical test, i.e., the 14-day running average of the 
wastewater sampling date. 
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the pandemic (January to June 2020) was estimated to be 23.5 ± 9.9 
days (n=2045), while children have a significantly shorter recovery 
time compared to adults (p=0.04) (Mizrahi et al., 2020). Considering the 
ongoing shedding of viruses by COVID-19 patients, WBE approach tends 
to capture prevalence rates within the time window of the average re-
covery time, especially in the early stages of infection. 

3.3. Estimation of COVID-19 effective reproduction number 

For the prediction and management of COVID-19 outbreaks, effec-
tive reproduction rate (infection rate) is an important indicator showing 
the increasing (Ri>1) or decreasing (Ri<1) trend of case numbers. This 
study managed to collect the effective reproduction rate for all the Utah 

WWTP catchments on wastewater sampling days. The data shows how 
fast COVID-19 was spreading in a WWTP catchment by estimating the 
number of people that a newly infected person goes on to eventually 
infect. The effective reproduction rate was initially calculated by a 
mathematical model which combines trends in daily new cases from 
approximately the last 14 days, with estimates for other variables, such 
as how many days on average occur between infection and transmission. 

This study developed an ANN model (ANN-Ri) to predict the Ri with 
the same inputs used for the case number estimation. As shown in Fig. 4, 
the ANN-Ri model showed a good performance with a correlation co-
efficient R =0.72 ± 0.003 and MSE = 0.007 ± 0.0001 (values with 95% 
confidence interval) in predicting Ri. In general, the ANN-Ri model 
slightly underestimated the Ri, likely due to the viral load in wastewater 

Fig. 3. Daily new cases (green circles) on the 4th day (A) and 14-day running average (B) case numbers of wastewater sampling date and ANN estimated cases (lines) 
for selected wastewater treatment plants with different populations, i.e., 500, 250, 100, 25, and 6 thousand people in Utah, USA. 

G. Jiang et al.                                                                                                                                                                                                                                    



Water Research 218 (2022) 118451

8

reflects more about prevalence rate, instead of incidence rate while Ri 
was primarily calculated from new case numbers. For only a few days 
with high reported effective reproduction rate >1.2, ANN models tend 
to underestimate the Ri at a ceiling level around 1.1. This is likely caused 
by the limited amount of data during those days with Ri>1.2 to train the 
ANN model adequately. Other models suitable for small dataset might 
be employed to provide predictions in this range. 

The effective reproductive number Ri of COVID-19 in each WWTP 
catchment is dynamic and affected by regional pandemic management, 
policies, and the effectiveness of interventions such as vaccination. A 
recent study reported a wastewater estimated Ri through optimizing the 
fit to the clinical case-based Ri by changing the viral shedding load 
distribution (Huisman et al., 2021a). The approach is based on the 
inferred COVID-19 incidence rate from viral RNA concentrations in 
wastewater. It is thus susceptible to the correlation between viral con-
centration and incidence rate, which was shown to be lower than that of 
the prevalence rate in this study. In comparison, our ANN approach 
combined the wastewater data with other factors such as weather, 
vaccination rates and clinical testing coverage to generate the estima-
tion of Ri. To our knowledge, this is the first time Ri is estimated from 
both viral concentrations in wastewater and other factors affecting the 
viral transmission and pandemic dynamics. 

3.4. Contributions of ANN model inputs: vaccination, clinical testing and 
weather 

A systematic evaluation was conducted by developing ANN models 
with complete and partial input data to determine their capacity in 
predicting the COVID-19 incidence and prevalence rates. It is clear that 
partial inputs decreased the ANN performance to various degrees 
(Table 3). The full input always generated the highest R and lowest MSE 
for both the estimation of incidence and prevalence rates. Inputs without 
vaccine (V), or clinical testing (T) or weather (W) data slightly reduced 
the ANN model performance. The contribution of single input was in the 
order of weather > clinical testing > vaccination. When two types of 
parameters were removed from the inputs, the combination of vacci-
nation and clinical testing data showed the highest contribution to P4 
estimation, in comparison to the combination of clinical testing and 
weather data for P14d estimation. When only wastewater and catch-
ment data were used to train the ANN model, it didn’t give any reliable 
predictions of incidence rate (R=0.43 ± 0.04, MSE=877 ± 37) and a 

barely acceptable prevalence rate (R=0.57 ± 0.01, MSE=499 ± 19). 
Table 3A also shows that vaccination and weather are important input 
variables for the estimation of Ri, while clinical testing only slightly 
contributed to the better estimation. The R of the ANN model was only 
0.31±0.05 when both vaccination and weather data were excluded as 
inputs. Overall, the analysis demonstrated that vaccination data 
contributed the most, followed by weather and clinical testing, to the 
ANN estimation of COVID case numbers and effective reproduction rate. 

Our previous studies have identified that, in addition to CRNA, the in- 
sewer decay of viral RNA and weather (temperature and precipitation) 
contribute to a better estimation of COVID-19 case numbers (Li et al., 
2021b). This paper, for the first time, included vaccination and clinical 
testing coverage (positive ratio) in the WBE back-estimation of case 
numbers. The actual COVID-19 case number is usually unknown as 
clinical testing is known to only capture a portion of the total infections 
(Vallejo et al., 2020). The USA Centre for Disease Control and Preven-
tion (CDC) estimated that only 1 in 4.3 (95% CI 3.7-5.0) of total 
COVID-19 infections were reported through clinical testing (Reese et al., 
2020). Higher clinical testing coverage tends to capture a higher pro-
portion of the total ‘true’ infections. This makes the clinical testing 
coverage critical for developing an ANN model to quantify the correla-
tions between CRNA and clinically confirmed case numbers. 

COVID-19 vaccines are effective in alleviating the symptoms and the 
viral shedding from patients, which is a critical process in the WBE back- 
estimation (Eq. 1). Vaccination provides protection by preventing the 
infection of humans and minimizing transmission through reducing 
viral shedding (Bartsch et al., 2020). In preclinical nonhuman primate 
challenge experiments, several vaccines successfully prevented disease 
and prevented or reduced nasal shedding and virus replication in the 
lower respiratory tract depending on the vaccine dose (Corbett et al., 
2020; van Doremalen et al., 2020). Also, many vaccine breakthrough 
infections (infection of a person after receipt of all recommended doses 
of authorized COVID-19 vaccine for ≥14 days) have been reported 
worldwide. However, the clinical report of viral shedding from fully or 
partially vaccinated COVID-19 patients is still lacking, thereby the po-
tential impacts of vaccination on viral RNA shedding and WBE 
back-estimation remains unclear due to limited clinical data. The ANN 

Fig. 4. The regression plot of the ANN estimated effective reproduction rate vs. 
the reported effective reproduction rate determined in conventional approach 
in Utah, USA. 

Table 3 
The correlation coefficient (R) and estimation error (MSE) of the ANN-IR, ANN- 
PR and ANN-Ri models being trained with complete or partial inputs to predict 
incidence rate P4, prevalence rate P14d and effective production rate Ri, 
respectively.    

R MSE  
Inputs Average 95% CI Average 95% CI 

P4 All 0.72 0.002 525.7 3.02 
All-V 0.68 0.009 583.3 13.70 
All-T 0.69 0.003 572.9 4.61 
All-W 0.68 0.008 587.5 12.48 
All-V-T 0.55 0.021 765.4 25.24 
All-V-W 0.62 0.007 677.4 9.30 
All-T-W 0.60 0.021 699.0 31.96 
All-V-T-W 0.44 0.046 921.6 136.41 

P14d All 0.89 0.004 151.4 5.76 
All-V 0.87 0.005 184.6 6.92 
All-T 0.86 0.011 199.5 15.77 
All-W 0.85 0.005 209.6 6.76 
All-V-T 0.78 0.012 290.5 14.40 
All-V-W 0.82 0.004 243.0 4.51 
All-T-W 0.76 0.008 313.1 9.98 
All-V-T-W 0.58 0.027 501.5 34.72 

Ri All 0.85 0.003 0.0072 0.0001 
All-V 0.78 0.007 0.0104 0.0003 
All-T 0.83 0.016 0.0086 0.0008 
All-W 0.82 0.002 0.0090 0.0001 
All-V-T 0.72 0.025 0.0128 0.0010 
All-V-W 0.71 0.003 0.0134 0.0001 
All-T-W 0.78 0.004 0.0104 0.0002 
All-V-T-W 0.67 0.005 0.0148 0.0002  
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model addressed the issue by including both ratios of initiated (1st dose) 
and completed (both doses) vaccinated population as input parameters, 
which indeed improved the ANN performance. 

Weather conditions (air temperature and precipitation) improved 
the ANN performance (Table 3). Our previous study also observed 
contributions of air temperature and daily precipitation on estimating 
COVID-19 prevalence using data-driven models (Li et al., 2021b). 
Generally, a higher air temperature is associated with a higher waste-
water temperature (Hart and Halden, 2020), which facilitated the 
in-sewer decay of SARS-CoV-2 RNA, leading to a lower CRNA in waste-
water (Ahmed et al., 2020b; Bivins et al., 2020). Also, warmer weather 
likely reduced the transmission of COVID-19 as individuals were outside 
more than inside. Significant dilution of SARS-CoV-2 concentration in 
combined sewers has been observed due to the storm water or precipi-
tation inflow (Chavarria-Miró et al., 2020). Furthermore, an increase of 
COVID-19 incidences in 4-8 days after flooding events were observed in 
some metropolitan regions (Han and He, 2021). This is likely related to 
increased chance of exposure to overflowed sewage, fresh human 
excreta, sewage-contaminated surfaces or aerosols, in areas with human 
activities and receiving sewage overflows during urban flooding events. 
In addition, studies from China and Bangladesh and a meta-study of 166 
countries all revealed that higher temperature and relative humidity 
reduced the transmission of COVID-19 in the community, leading to 
lower incidences and deaths (Haque and Rahman, 2020; Qi et al., 2020; 
Wu et al., 2020b). Thus, the improved performance of ANN with the 
inclusion of weather conditions (air temperature and precipitation) 
might also be related to the variations of COVID-19 transmission caused 
by storm water and air temperature. 

3.5. Transferability, implications, and limitations 

The established ANN models established above was further assessed 
for its transferability to a different WBE program in Wisconsin, USA. The 
dataset was obtained from 66 WWTPs between August 2020 and 
December 2021. Both incidence and prevalence rates were successfully 
estimated by the models with excellent accuracy as shown in Fig. SI-4 
and SI-5. However, the early warning lead time was determined as 2 
days (Fig. SI-4A), with the highest R and lowest MSE. For prevalence 
estimation, the 3-day running average was shown with the best accu-
racy. These differences are likely due to the higher sampling frequency 
in Wisconsin (about twice a week) comparing to Utah (weekly). The 
effective reproduction rate Ri was also estimated with high accuracy 
(Fig. SI-6). Overall, the ANN models were successfully transferred to a 
different WBE program with the same inputs/outputs, neural network 
structure and training strategies. 

For WBE sites or programs using consistent sampling and analytical 
procedure, the current ANN models can be successfully used to generate 
case numbers and Ri. However, input variables related to sampling or 
analytical approaches were not included in the ANN models. When 
trained ANN models were directly used to estimate case numbers in 
different WBE programs, the actual estimates would be shifted by 
different sampling and analytical practices. This is confirmed when ANN 
models trained with Utah dataset gave matching trends but not accurate 
estimates for WBE data collected from Canada, Japan, and India through 
the WATMOC network (www.watmoc.com). 

Analytical approaches including sample preparation, concentration, 
RNA extraction, and RT-qPCR detection introduced a great amount of 
uncertainties to the CRNA, where up to seven orders of magnitude dif-
ference were observed with the recovery efficiency using 36 standard 
operating procedures (Pecson et al., 2021). There was less than a 0.5-log 
difference in the interlaboratory and intra-laboratory results when the 
same procedure was applied to replicate samples. Conflicting results 
were also reported from different studies regarding the sampling tech-
niques. Curtis et al. (2021) observed negligible impacts of sampling 
technique on CRNA, where a good agreement was achieved between most 
grab samples and their respective composite. In contrast, Gerrity et al. 

(2021) reported a 10-fold increase in CRNA from composite samples than 
that of corresponding grab samples. To build a universal ANN model 
utilizing datasets from WBE campaigns using different sampling and 
analytical approaches, input variables representing the analytical and 
sampling approaches are essential. 

During the wastewater surveillance in Utah, various variants of 
SARS-CoV-2 have been detected including Alpha, Beta, and Delta vari-
ants (University of Utah Health Communications, 2021). However, as 
the identification of the variants requires sequencing approaches, which 
are more costly and time-consuming than the current clinical testing 
approach (RT-qPCR), the proportion of each variant among the popu-
lation was not determined. Recent clinical studies revealed higher viral 
titers in swab samples of the Delta than that of the Alpha and Beta 
variant of SARS-CoV-2 (Despres et al., 2021). To date, the shedding 
dynamics of these variants in feces, sputum, or other bodily fluids have 
not been reported yet. Our study revealed that the contribution of 
multiple strains/mutants can be handled together through ANN models 
for the incidence or prevalence estimations. However, extra attention 
shall be paid if a sudden outbreak or peak of a new variant with different 
shedding dynamics occurs. Furthermore, the recent emerging Omicron 
variant was also found to be more transmissible and partially resistant to 
existing vaccines based on currently limited knowledge (Karim and 
Karim, 2021). The clinical testing and coverage of vaccines played 
important roles in the incidence, prevalence, and Ri estimations using 
ANN models in this study. Emerging of variants with higher trans-
missivity and vaccine resistance might affect the accuracy of the ANN 
model. However, the architecture and inputs of the established ANN 
model can be retained but will need to be retrained when new data 
becomes available. 

Although ANN or other machine learning models hold great promise 
for their application in WBE, only one previous study compared the 
effectiveness of random forest method with linear regression (Koureas 
et al., 2021). The study focused on case numbers and both methods 
provide very high-level accuracy, likely due to the small dataset ob-
tained from two WWTPs. This study not only obtained a large dataset 
but critically identified features/inputs for such WBE models. Clinical 
testing, vaccination and weather data were indispensable for the pre-
diction in diverse catchments. In addition, other machine learning or 
artificial intelligence models should be evaluated using the collected 
datasets for a comprehensive comparison of different data-driven tech-
niques. Especially, the performance in predicting incidence rates needs 
to be improved by adopting other modeling algorithms. 

4. Conclusions 

This study for the first time developed an ANN-based back-estima-
tion method for WBE in calculating the COVID-19 case numbers and 
effective reproduction rate from wastewater analysis and other sup-
porting input data including vaccination rate, clinical testing positive 
rate and weather data. The conclusions are:  

• Using a wastewater-based epidemiology approach, ANN models 
were shown to estimate the COVID-19 prevalence and incidence 
rates accurately in diverse sewer catchment. The prevalence rates 
were estimated more accurately than the incidence rates. WBE likely 
provided the upcoming COVID-19 incidence 2-4 days ahead the 
wastewater sampling date, depending on sampling frequency.  

• The correlation between SARS-CoV-2 RNA concentration or viral 
load in wastewater with COVID-19 case numbers is limited. It needs 
to be used in conjunction with weather, clinical testing, and vacci-
nation rates for accurate ANN predictions of COVID case numbers.  

• A unique approach to estimate effective reproduction rate using both 
wastewater data and other parameters affecting viral transmission 
and pandemic dynamics was devised for the first time using an ANN 
model. 
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• ANN models have a huge potential and is practical with the current 
limited knowledge and many uncertainties to achieve the WBE back- 
estimation of COVID case numbers. The model is transferable for 
different WBE sites or programs. 
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Pintó, R., Bosch, A., 2020. Sentinel surveillance of SARS-CoV-2 in wastewater 
anticipates the occurrence of COVID-19 cases. medRxiv. 

Choi, P.M., Bowes, D.A., O’Brien, J.W., Li, J., Halden, R.U., Jiang, G., Thomas, K.V., 
Mueller, J.F, 2020. Do food and stress biomarkers work for wastewater-based 
epidemiology? A critical evaluation. Sci. Total Environ. 736, 139654. 

Corbett, K.S., Flynn, B., Foulds, K.E., Francica, J.R., Boyoglu-Barnum, S., Werner, A.P., 
Flach, B., O’Connell, S., Bock, K.W., Minai, M., 2020. Evaluation of the mRNA-1273 
vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383 (16), 
1544–1555. 

Curtis, K., Keeling, D., Yetka, K., Larson, A. and Gonzalez, R. 2021. Wastewater SARS- 
CoV-2 RNA Concentration and Loading Variability from Grab and 24-Hour 
Composite Samples. medRxiv: the preprint server for health sciences, 
2020.2007.2010.20150607. 

D’Aoust, P.M., Mercier, E., Montpetit, D., Jia, J.J., Alexandrov, I., Neault, N., Baig, A.T., 
Mayne, J., Zhang, X., Alain, T., Langlois, M.A., Servos, M.R., MacKenzie, M., 
Figeys, D., MacKenzie, A.E., Graber, T.E., Delatolla, R., 2021. Quantitative analysis 
of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 
incidence and prevalence. Water Res 188, 116560. 

Despres, H.W., Mills, M.G., Shirley, D.J., Schmidt, M.M., Huang, M.-L., Jerome, K.R., 
Greninger, A.L. and Bruce, E.A. 2021. Quantitative measurement of infectious virus 
in SARS-CoV-2 Alpha, Delta and Epsilon variants reveals higher infectivity (viral 
titer:RNA ratio) in clinical samples containing the Delta and Epsilon variants. 
medRxiv: the preprint server for health sciences, 2021.2009.2007.21263229. 

EMCDDA, 2016. Assessing Illicit Drugs in Wastewater Advances in Wastewater-Based 
Drug Epidemiology, Luxembourg. 

Fernandez-Cassi, X., Scheidegger, A., Bänziger, C., Cariti, F., Tuñas Corzon, A., 
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Hellmér, M., Paxéus, N., Magnius, L., Enache, L., Arnholm, B., Johansson, A., 
Bergström, T., Norder, H., 2014. Detection of pathogenic viruses in sewage provided 
early warnings of hepatitis a virus and norovirus outbreaks. Appl. Environ. 
Microbiol. 80 (21), 6771–6781. 

Huang, Y., Johnston, L., Parra, A., Sweeney, C., Hayes, E., Hansen, L.T., Gagnon, G., 
Stoddart, A., Jamieson, R., 2021. Detection of SARS-CoV-2 in wastewater in Halifax, 
Nova Scotia, Canada, using four RT-qPCR assays. Facets 6, 959–965. 

Huisman, J., Scire, J., Caduff, L., Fernandez-Cassi, X., Ganesanandamoorthy, P., Kull, A., 
Scheidegger, A., Stachler, E., Boehm, A., Hughes, B., Knudson, A., Topol, A., 
Wigginton, K., Wolfe, M., Kohn, T., Ort, C., Stadler, T. and Julian, T. 2021a 
Wastewater-based estimation of the effective reproductive number of SARS-CoV-2, 
medRxiv. 

Huisman, J.S., Scire, J., Caduff, L., Fernandez-Cassi, X., Ganesanandamoorthy, P., Kull, 
A., Scheidegger, A., Stachler, E., Boehm, A.B., Hughes, B., Knudson, A., Topol, A., 
Wigginton, K.R., Wolfe, M.K., Kohn, T., Ort, C., Stadler, T. and Julian, T.R. 2021b. 
Wastewater-based estimation of the effective reproductive number of SARS-CoV-2. 
medRxiv, 2021.2004.2029.21255961. 

Jones, D.L., Baluja, M.Q., Graham, D.W., Corbishley, A., McDonald, J.E., Malham, S.K., 
Hillary, L.S., Connor, T.R., Gaze, W.H., Moura, I.B., Wilcox, M.H., Farkas, K., 2020. 
Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person 
transmission and the environment-based spread of COVID-19. Sci. Total Environ. 
749, 141364. 

Karim, S.S.A., Karim, Q.A, 2021. Omicron SARS-CoV-2 variant: a new chapter in the 
COVID-19 pandemic. Lancet 398 (10317), 2126–2128. 

Kim, J.-M., Kim, H.M., Lee, E.J., Jo, H.J., Yoon, Y., Lee, N.-J., Son, J., Lee, Y.-J., Kim, M. 
S., Lee, Y.-P., Chae, S.-J., Park, K.R., Cho, S.-R., Park, S., Kim, S.J., Wang, E., Woo, S., 
Lim, A., Park, S.-J., Jang, J., Chung, Y.-S., Chin, B.S., Lee, J.-S., Lim, D., Han, M.-G., 
Yoo, C.K, 2020. Detection and Isolation of SARS-CoV-2 in Serum, Urine, and Stool 
Specimens of COVID-19 Patients from the Republic of Korea. Osong Public Health 
Res. Perspect. 11 (3), 112–117. 

Kitamura, K., Sadamasu, K., Muramatsu, M., Yoshida, H., 2021. Efficient detection of 
SARS-CoV-2 RNA in the solid fraction of wastewater. Sci. Total Environ. 763, 
144587. 

Koureas, M., Amoutzias, G.D., Vontas, A., Kyritsi, M., Pinaka, O., Papakonstantinou, A., 
Dadouli, K., Hatzinikou, M., Koutsolioutsou, A., Mouchtouri, V.A., Speletas, M., 
Tsiodras, S., Hadjichristodoulou, C., 2021. Wastewater monitoring as a 
supplementary surveillance tool for capturing SARS-COV-2 community spread. A 
case study in two Greek municipalities. Environ. Res. 200, 111749. 

Krogh, A., 2008. What are artificial neural networks? Nat. Biotechnol. 26 (2), 195–197. 
Lalmuanawma, S., Hussain, J., Chhakchhuak, L., 2020. Applications of machine learning 

and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos 
Solitons Fractals 139, 110059. 

Li, J., Gao, J., Thai, P.K., Shypanski, A., Nieradzik, L., Mueller, J.F., Yuan, Z., Jiang, G., 
2019. Experimental investigation and modeling of the transformation of illicit drugs 
in a pilot-scale sewer system. Environ. Sci. Technol. 53 (8), 4556–4565. 

Li, X., Kulandaivelu, J., Guo, Y., Zhang, S., Shi, J., O’Brien, J., Arora, S., Kumar, M., 
Sherchan, S.P., Honda, R., Jackson, G., Luby, S.P., Jiang, G., 2022. SARS-CoV-2 
shedding sources in wastewater and implications for wastewater-based 
epidemiology. J. Hazard. Mater., 128667 

Li, X., Kulandaivelu, J., Guo, Y., Zhang, S., Shi, J., O’Brien, J., Luby, S.P., Jackson, G., 
Jiang, G., 2021a. Potential role of sputum as a critical SARS-CoV-2 virus shedding 
source in the back-estimation of COVID-19 prevalence through wastewater-based 
epidemiology. EST Water. Under Review.  

Li, X., Kulandaivelu, J., Zhang, S., Shi, J., Sivakumar, M., Mueller, J., Luby, S., 
Ahmed, W., Coin, L., Jiang, G., 2021b. Data-driven estimation of COVID-19 
community prevalence through wastewater-based epidemiology. Sci. Total Environ. 
789, 147947. 

Li, X., Zhang, S., Shi, J., Luby, S.P., Jiang, G., 2021c. Uncertainties in estimating SARS- 
CoV-2 prevalence by wastewater-based epidemiology. Chem. Eng. J. 415, 129039. 

Liu, B., Jayasundara, D., Pye, V., Dobbins, T., Dore, G.J., Matthews, G., Kaldor, J., 
Spokes, P., 2021. Whole of population-based cohort study of recovery time from 
COVID-19 in New South Wales Australia. Lancet Reg. Health West Pac. 12, 100193. 

Lo, I.L., Lio, C.F., Cheong, H.H., Lei, C.I., Cheong, T.H., Zhong, X., Tian, Y., Sin, N.N, 
2020. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical 
characteristics of 10 patients with COVID-19 in Macau. Int. J. Biol. Sci. 16 (10), 
1698. 

Matheri, A.N., Belaid, M., Njenga, C.K., Ngila, J.C, 2022. Water and wastewater digital 
surveillance for monitoring and early detection of the COVID-19 hotspot: industry 
4.0. Int. J. Environ. Sci. Technol. 

Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., Brouwer, A., 2020. Presence of 
SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 
prevalence in the early stage of the epidemic in the Netherlands. Environ. Sci. 
Technol. Letters 7 (7), 511–516. 

Miura, F., Kitajima, M., Omori, R., 2021. Duration of SARS-CoV-2 viral shedding in 
faeces as a parameter for wastewater-based epidemiology: Re-analysis of patient 
data using a shedding dynamics model. Sci. Total Environ. 769. 

Mizrahi, B., Shilo, S., Rossman, H., Kalkstein, N., Marcus, K., Barer, Y., Keshet, A., 
Shamir-Stein, N.a., Shalev, V., Zohar, A.E., Chodick, G., Segal, E., 2020. Longitudinal 
Symptom Dynamics of COVID-19 Infection, p. 6208. 

Mohammad-Rahimi, H., Nadimi, M., Ghalyanchi-Langeroudi, A., Taheri, M., Ghafouri- 
Fard, S., 2021. Application of machine learning in diagnosis of COVID-19 through X- 
Ray and CT images: a scoping review. Front. Cardiovasc. Med. 8. 

Mottaqi, M.S., Mohammadipanah, F., Sajedi, H., 2021. Contribution of machine learning 
approaches in response to SARS-CoV-2 infection. Inform. Med. Unlocked 23, 
100526. 

Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., 
Vanderwood, K.K., Wilkinson, R., Wiedenheft, B., 2020. Temporal detection and 
phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Rep. Med. 1 
(6), 100098. 

Pan, Y., Zhang, D., Yang, P., Poon, L.L., Wang, Q., 2020. Viral load of SARS-CoV-2 in 
clinical samples. Lancet Infect. Dis. 20 (4), 411–412. 

Pecson, B.M., Darby, E., Haas, C., Amha, Y., Bartolo, M., Danielson, R., Dearborn, Y., Di 
Giovanni, G., Ferguson, C., Fevig, S., 2021. Reproducibility and sensitivity of 36 
methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from 
an interlaboratory methods evaluation in the US. Environ. Sci. 

Peng, L., Liu, J., Xu, W., Luo, Q., Chen, D., Lei, Z., Huang, Z., Li, X., Deng, K., Lin, B., 
2020. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal 
swabs specimens. J. Med. Virol. 

Qi, H., Xiao, S., Shi, R., Ward, M.P., Chen, Y., Tu, W., Su, Q., Wang, W., Wang, X., 
Zhang, Z., 2020. COVID-19 transmission in Mainland China is associated with 
temperature and humidity: a time-series analysis. Sci. Total Environ. 728, 138778. 

Rahman, M.M., Paul, K.C., Hossain, M.A., Ali, G.G.M.N., Rahman, M.S., Thill, J.-C, 2021. 
Machine learning on the COVID-19 pandemic, human mobility and air quality: a 
review. IEEE Access 9, 72420–72450. 

Reese, H., Iuliano, A.D., Patel, N.N., Garg, S., Kim, L., Silk, B.J., Hall, A.J., Fry, A., 
Reed, C., 2020. Estimated incidence of coronavirus disease 2019 (COVID-19) illness 
and hospitalization—United States, February–September 2020. Clin. Infect. Dis. 
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