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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition with early childhood onset 

and high heterogeneity. As the pathogenesis is still elusive, ASD diagnosis is comprised of a 

constellation of behavioral symptoms. Non-invasive brain imaging techniques, such as magnetic 

resonance imaging (MRI), provide a valuable objective measurement of the brain. Many efforts 

have been devoted to developing imaging-based diagnostic tools for ASD based on machine 

learning (ML) technologies. In this survey, we review recent advances that utilize machine 

learning approaches to classify individuals with and without ASD. First, we provide a brief 

overview of neuroimaging-based ASD classification studies, including the analysis of publications 

and general classification pipeline. Next, representative studies are highlighted and discussed in 

detail regarding different imaging modalities, methods and sample sizes. Finally, we highlight 

several common challenges and provide recommendations on future directions. In summary, 

identifying discriminative biomarkers for ASD diagnosis is challenging, and further establishing 

more comprehensive datasets and dissecting the individual and group heterogeneity will be critical 

to achieve better ADS diagnosis performance. Machine learning methods will continue to be 

developed and are poised to help advance the field in this regard.
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1. Introduction

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous 

neurodevelopmental disorder, which encompasses a set of early-appearing social 

communication deficits and restricted, repetitive sensory-motor behaviors(Lord et al., 2020). 

ASD affects about 1% of the world population, and males are around 4 times more 

susceptible than females (Elsabbagh et al., 2012). As the social abilities of individuals with 

ASD are impaired to some degree, lifelong supports are usually necessary for most patients, 

which place huge extra burdens on families and societies (Lord et al., 2018). Precise and 

efficient diagnosis is important for the early interventions of ASD, which may significantly 

improve the daily living skills and social abilities of patients (Elder et al., 2017). However, 

due to the elusive pathogenesis and mechanisms, there is no objective biomarker for ASD 

diagnosis. Currently, the ASD diagnosis is primarily based on clinical interviews and direct 

behavior observations (Lord et al., 2018), which may often lead to misdiagnosis of children 

with ASD, thus miss the optimal intervention chances (Mazefsky and Oswald, 2006). 

Therefore, there is an urgent need to develop an objective, neuroimaging-based diagnosis 

system of ASD.

Magnetic resonance imaging (MRI) techniques have paved an exciting path towards non-

invasive objective measurements of the human brain. Generally, MRI can be divided into 

structural MRI (sMRI), diffusion MRI (dMRI), and functional MRI (fMRI). sMRI can 

provide static anatomical information of the brain, includes T1-weighted (T1w) and T2-

weighted imaging (T2w), usually with high spatial resolution in research. dMRI makes 

it possible to localize the subtle white matter fiber tract abnormalities through features 

like fractional anisotropy (FA), mean diffusivity (MD) etc. By contrast, fMRI, including 

resting-state fMRI (rsfMRI) and task fMRI, detects the dynamic physiological information, 

mainly reflecting the changes of blood oxygenation level (Ogawa et al., 1990), which can 

illustrate the metabolism of the brain at different states (resting-state or task-evoked), and 

reveal the abnormalities of functional network connectivity (Arbabshirani et al., 2017).

These non-invasive imaging techniques are promising tools for investigating the 

neurological underpinnings of ASD, which are essential for developing discriminative 

neuroimaging biomarkers for clinical diagnosis. By comparing the functional connectivity 

(FC) of ASD subjects with healthy controls using statistical methods, dysfunction of task-

negative networks and task-positive networks in ASD have been revealed across many 

studies (Cherkassky et al., 2006; Kennedy and Courchesne, 2008; Kennedy and Courchesne, 

2006; Nomi and Uddin, 2015). Other studies have found differences in gray matter volume 

(McAlonan et al., 2005; Rojas et al., 2006) and white matter volumes (Herbert et al., 

2004). In recent years, various machine learning approaches have been applied in ASD 

classifications. Compared with traditional univariate group-level studies, machine learning 

approaches can extract more informative features in a data-driven manner, and facilitate 

exploring more complex abnormal imaging patterns for individual-level diagnosis (Sui et al., 

2020).

In this survey, we concentrate on ASD classification methods and applications based on 

different modalities of MRI. First, by utilizing a specific screening method, 119 related 
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articles are selected, which are then summarized in several aspects, such as classification 

method, feature type, sample size and accuracy. Second, we highlight some representative 

studies to show the existing efforts in imaging-based diagnosis. Finally, the opinions on 

current challenges and future directions in ASD researches are provided. We hope the 

review will offer comprehensive views and developing trends of this field, and inspires the 

subsequent researchers to develop more robust and accurate ASD diagnosis tools.

2. Research overview

2.1. Screening method

Studies on identifying or predicting the ASD clinical diagnostic status either cross-

sectionally or longitudinally based on MRI using machine-learning methods were included 

in this review. Fig. 1a shows the literature screening process. Relevant articles were collected 

by keyword searching in Web of Sciences and Pubmed covering publications between 

January 2010 and December 2020 based on the following formula: autis* AND (imaging 

OR MRI OR DTI) AND (machine Learning OR classif* OR predict*). 1146 articles were 

identified. By reviewing the title and abstract, we manually removed 954 articles focusing on 

other diseases, without imaging analysis, not classification studies, or based on non-human 

species. Review articles and conference articles were also excluded. We further reviewed the 

full text in detail, resulting in the exclusion of another 73 non-eligible articles. Totally 119 

articles are included in this survey, and Table 1 lists all of these studies in terms of employed 

imaging modalities, demographic information of samples, classification methods and model 

performances.

2.2. Key aspects of the ASD survey

As we can see in Fig. 1c, the number of papers published on this topic every year from 2010 

to 2020 is growing. Before 2015, most publications are based on structural imaging, whereas 

studies based on functional imaging are increasing more sharply in recent 5 years, as do 

classification combined with multimodal imaging. With the public data sharing, especially 

the Autism Brain Imaging Data Exchange (ABIDE, tinyurl.com/fcon1000-abide) dataset (Di 

Martino et al., 2014), recent ASD classifications incline to use relatively larger samples. 

However, the overall classification accuracy exhibits significant negative correlations with 

the sample sizes used in these studies (Fig. 1d). In terms of classification methods, SVM and 

neural network (NN) are the most prevalent choices (Fig 1e). Other ML methods, such as 

decision tree (DT), logistic regression classifier (LRC), linear discriminative analysis (LDA) 

and ensembled classifier, are also applied in some studies. Fig. 1f and g summarize the 

accuracy distributions based on different methods with different imaging modalities. On the 

whole, classification based on fMRI data can achieve relatively higher accuracy than other 

modalities.

2.3. Machine learning pipeline

In brain imaging studies, machine learning approaches can automatically extract 

representative multivariate patterns from the neuroimaging data and help make decisions. 

Fig. 1b presents a general pipeline for developing neuroimaging-based ASD diagnosis. 

Although detailed implementations of ASD classification vary across studies, these can be 
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grouped into four components which include: (a) feature extraction, selection/reduction, (b) 

model training, (c) model testing and (d) performance evaluation.

2.4. Feature extraction, selection/reduction

A feature refers to any measurable property with information about the class ownership 

extracted from raw data. Transforming the neuroimaging data into reliable and biologically 

relevant features plays an important role in the ASD diagnosis system and substantially 

determines the data separability (Wolfers et al., 2019). As different MRI modalities 

have unique advantages in assessing the biological states of brains, feature engineering 

should fully leverage the characteristics of different imaging modalities. For structural 

imaging-based diagnosis, anatomical features, such as gray matter volume (GM) and 

white matter volume (WM), cortical morphological features, such as cortical thickness and 

surface area, and geometric features such as convexity and curvature, are widely used to 

delineate the possible subtle structural changes of ASD (Ecker et al., 2010a, 2010b; Jiao 

et al., 2010; Uddin et al., 2011). Metrics that describe the white matter microstructure, 

such as fractional anisotropy (FA) and mean diffusivity (MD), are also applied in ASD 

classifications (Ingalhalikar et al., 2010; Lange et al., 2010). For functional imaging-based 

classification, FC is the most common feature used in machine learning studies (Anderson 

et al., 2011; Kazeminejad and Sotero, 2019; Plitt et al., 2015). Other temporal statistics, 

such as regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF), 

network metrics, such as nodal degree and clustering coefficients, may also contribute to 

the ASD diagnosis (Thomas et al., 2020). Considering the spatial scale of features, feature 

construction approaches can be divided into three categories: voxel-based, region-based, 

and network-based. Voxel-based approaches calculate the feature at voxel level, while 

region-based approaches calculate the feature based on several predefined region-of-interests 

(ROIs). Network-based approaches extract interaction profiles of multiple voxels or regions 

as features. Independent component analysis (ICA) is one of the representative methods to 

construct network-based features (J. Zhao et al., 2020).

Feature reduction is a fundamental and critical step for neuroimaging studies, because of 

curse-of-dimensionality (Mwangi et al., 2014), where the feature dimensionality largely 

exceeds the number of samples, which is quite common in medical imaging analysis 

(Jiang et al., 2020b). Suitable feature reduction can not only reduce the feature redundancy 

and noise, but also facilitate the understanding of neural substrates of a disease, as the 

most group-discriminant feature can be retained, while improving model accuracy and 

generalizability (Plitt et al., 2015).

Feature reduction methods can be divided into two categories: supervised and unsupervised 

respectively. Supervised feature reduction methods require the training label to select 

informative and discriminative feature dimensions, and they can be further subdivided 

into three classes: filter, wrapper and embedded. Filter methods usually rank the features 

based on simple statistical measures, and each feature is treated independently (Zhang et 

al., 2020b). Although they are computationally efficient and robust, multiple comparison 

issues are often inevitable. Wrapper methods use greedy forward, backward or combined 

search strategies to find a feature subspace that can optimize a given objective function. 
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Representative wrapper methods include the recursive feature elimination (RFE) (Guyon et 

al., 2002; Ingalhalikar et al., 2010) and the searchlight method (Kriegeskorte et al., 2006; 

Uddin et al., 2011). Embedded methods, such as LASSO (least absolute shrinkage and 

selection operator) (Duchesnay et al., 2011; F. Zhao et al., 2020) and elastic net, unify the 

feature reduction and classification by plugging “penalties” to enforce the learning algorithm 

finding sparse feature representations. In contrast, unsupervised feature reduction methods 

typically construct low-dimensional feature representations based on linear or non-linear 

combinations of the original features, such as principal component analysis (PCA) and ICA, 

and the training label is not required.

2.5. Classifier training

During the training phase, the parameters of classifiers are optimized based on the training 

dataset to find better representations of the class boundary or decision rule. Various 

classifiers have been used in ASD diagnosis, and we provide a brief review of the most 

representative algorithms in the following.

A linear discriminative classifier (LDC) is a simple linear model to separate classes by 

maximizing the between-class to within-class variance ratio. LDC is sensitive to outliers, 

and it assumes that the data is normally distributed. A logistic regression classifier is close to 

LDC, but it models the log-odd ratio as a linear function.

Decision tree classifier (DTC) is another commonly used machine learning approach, in 

which class labels are modeled as leaves, and branches represent the subset of features that 

lead to the labels. DTC is capable to approximate complex decision regions by the collection 

of simpler decision rules, thus owning good interpretability. However, evidence has shown 

that the efficiency and accuracy of DTC cannot be optimized simultaneously (Safavian 

and Landgrebe, 1991). Applying pruning methods on DTC and ensembles of DTCs often 

gain better discriminative power, particularly in situations with relatively small sample sizes 

compared to the dimensions of features.

Support vector machine is a supervised machine learning algorithm with solid mathematical 

foundations, which aims at finding a decision boundary that could maximize the margin 

between two categories in a high dimensional space. SVM has good generalizability and 

robustness, as the final discriminant function of SVM only depends on the data points that 

are located nearest to the decision boundary, which is known as support vectors. By using 

kernel tricks, SVM can easily handle nonlinear classification problems. However, non-linear 

kernel functions often make the final SVM model lack interpretability. According to our 

survey, SVM is the most common classifier used in ASD diagnosis.

Deep learning classifiers are a family of classification algorithms that use a hierarchy of 

non-linear layers to automatically discover the representations with strong discriminating 

power from the input data, they have received considerable attention in recent years as 

it out-performs conventional methods in many fields (Abrol et al., 2021; LeCun et al., 

2015; Plis et al., 2014). Deep learning methods applied in ASD diagnosis can be divided 

into three categories: autoencoder (AE)-based, convolutional-based, and recurrent neural 

network (RNN) -based methods (Zhang et al., 2020a). AE-based methods are able to 
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learn highly discriminative and low-dimensional feature representations, but the spatial 

structure of data is often discarded. Convolution-based methods, on the other hand, can 

better leverage the spatial information of MRI data. Three-dimensional convolutional neural 

network (3D-CNN) (Khosla et al., 2018) and graph convolutional network (GCN) (Parisot 

et al., 2018) are representative methods. Different from convolutional-based models which 

focus on embedding spatial information of MRI, RNN-based methods are proposed to 

leverage characteristic temporal patterns from the fMRI time-series data (Dvornek et al., 

2017).

2.6. Classification and performance evaluation

One important aspect of classification is unbiased cross-validation (CV). Namely, after 

training, parameters of a classifier have been adjusted and can usually perform well on 

the training set, but whether it is generalizable should be further validated on a testing 

set. To avoid bias, the testing data should never appear in the training process, but the 

preprocessing procedures should keep consistent with the training set. As dividing an 

independent dataset from the limited samples for evaluation might lead to an insufficient-

trained model, k-fold cross-validation is often performed for evaluation of the model 

effectiveness in neuroimaging analysis. The entire dataset is randomly divided into k nearly 

equal-size subsets, one of the subsets is picked as the testing set, and the rest k-1 subsets 

are treated as the training set. This process executes k times so that each of the subsets is 

used as a testing set once, and will guarantee that no overlap between the training set and 

the testing set at each run. Some variants of the conventional k-fold CV, including stratified 

k-fold CV and leave-one-out CV (LOOCV) are more suitable to handle special cases, such 

as imbalanced dataset and small-size dataset (Japkowicz and Shah, 2015).

To quantitively evaluate the model performance, confusion matrix-based metrics, including 

accuracy, sensitivity and specificity, are commonly utilized. Accuracy is the ratio of 

correctly identified samples to the total samples, which intuitively indicates the ability for 

classifying patients and controls. Sensitivity is the proportion of identified true positive 

samples to the total positive samples, and specificity is the proportion of true negative 

samples to the total negative samples, both of which describe different aspects of the 

discriminate ability of the model. The area under the receiver operating characteristic (ROC) 

curve is another commonly used metric to evaluate the overall performance of a model. ROC 

curve regards sensitivity as a function of 1-specificity, the closer the curve to the top-left 

corner, the better the performance of the classifier.

A lot of available data associated with model performance can be obtained by metrics 

calculation and CV method, thus statistical testing can be performed based on these data 

to give more convincing evidence of the model reliability and superiority. For example, 

McNemar’s test can compare the performance of two algorithms in one dataset, while 

Friedman’s test can compare the performance of multiple algorithms in multiple datasets 

(Japkowicz and Shah, 2015).
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3. Highlighted research

Structural abnormal variations in frontal, parietal and limbic regions have been reported in 

many ASD studies (McAlonan et al., 2005; Waiter et al., 2004), which indicate the diagnosis 

value of brain morphology. Ecker and colleagues used linear kernel SVM to classify adult 

ASD patients based on morphological features derived from sMRI (Fig. 2a and b), and 

obtained promising accuracies (Ecker et al., 2010a, 2010b). They also found GM map and 

cortical thickness measures were more discriminative compared to the WM map. In terms 

of fMRI, Anderson et al. (2011) performed early explorations for classifying adolescent and 

young adult ASD patients based on whole-brain FC by using a data-driven method, and 

found the most discriminative connections mainly locate at DMN (default mode network), 

superior parietal lobule, fusiform gyrus and anterior insula (Fig. 2c). Uddin and colleagues 

further examined the functional and structural alterations on children with ASD (Fig. 2d), 

and gave a critical insight into the early neural signatures of ASD (Uddin et al., 2011, 2013). 

Studies based on dMRI are relatively small but are still noteworthy. Specifically, Ingalhalikar 

et al. (2011) extracted regional features from dMRI data, and created a classifier based on 

a dataset consisting of 45 ASD children and 30 healthy controls. They found several brain 

structures with altered FA and MD values contributed to ASD discrimination, showing the 

great potential of dMRI in ASD diagnosis.

At the early stage, the sample sizes of ASD diagnosis studies based on MRI are small, 

and mainly focused on a specific cohort, such as a specific age group or high-functioning 

patients (Ecker et al., 2010b). The manual stratification of patients based on demographic 

information to some extent dissects the heterogeneity of ASD, but may also sacrifice the 

generalizability for other cohorts (Ecker et al., 2010b). The establishments of large-scale 

datasets are critical for addressing these problems. However, later large sample classification 

studies utilized ABIDE have relatively lower classification accuracies. Sabuncu et al. (2015) 

constructed different structural feature sets and tested the performance of different classifiers 

on a subset comprising of 325 ASDs and 325 healthy controls from ABIDE, the highest 

accuracy was 60%. By performing extensive validations on different methods, Abraham et 

al. (2017) classified the patients from healthy controls selected from ABIDE dataset based 

on fMRI at an accuracy of 67%, and illustrated that different process pipelines would impact 

the model performances (Fig. 2e).

Based on large public datasets, some promising results for ASD classification have been 

obtained by employing DL algorithms. To minimize the impacts of some subjective 

prior hypothesis on feature selection, Heinsfeld et al. (2018) used two stacked denoising 

autoencoders for unsupervised feature extraction at the pre-training stage, and transferred the 

encoders wights to a multilayer perceptron (MLP) for supervised learning. They achieved 

70% accuracy by 10-fold CV on the dataset composed of 530 healthy controls and 503 

ASDs selected from ABIDE. Based on the same dataset, Z.-A. Huang et al. (2020) proposed 

a graph-based feature selection strategy to find more informative representations of the FC 

network, and then employed a three-layer deep belief network (DBN) model to perform 

classifications, achieving 76.4% accuracy.
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Different modalities of MRI can provide distinct discriminative information for ASD 

identification, but only limited classification studies are based on multimodal imaging 

features. Deshpande et al. (2013) combined the features of fMRI and dMRI to classify 

15 high-functioning ASD patients and 15 typical developing controls, and successfully 

uncovered some distinctive connectivity path abnormalities of adults with ASD. Zhou et al. 

(2014) analyzed the T1w MRI and fMRI collected from 127 children with ASD and 153 

typically developing controls, and further generated multimodal features, including GM of 

local subcortical regions, FC of ROIs, and fALFF values. They trained RF and classified two 

groups at an accuracy of 70%. Sen et al. (2018) constructed two feature learners for sMRI 

and fMRI respectively, then combined the extracted features to train an SVM to classify 573 

healthy controls and 538 ASDs selected from ABIDE, and obtained 64.3% accuracy.

On the other hand, compared to most ASD classification studies based on DSM labels, 

a few studies attempted to identify early brain metrics to predict the later ASD diagnosis 

longitudinally. As it is difficult to diagnose ASD 24 months ahead of the conventional DSM 

criteria, such studies show more translational medical impact. For example, Hazlett et al. 

(2017) used the longitudinal sMRI data comprising 318 infants, and systematically analyzed 

the timing of brain morphological aberrations. A deep neural network classifier was trained 

to use brain surface area information of individuals at 6- and 12-month-old to predict their 

risks to have ASD at 24 months old, suggesting that early, post-natal hyper-expansion of the 

cortical surface played an important role in ASD development (Fig. 2f). Another study (Fig. 

2g) examined longitudinal fMRI data of 59 infants, similarly, the FC data in 6-month-old 

infants were used to predict the diagnosis at 24 months, with 96.6% accuracy achieved 

(Emerson et al., 2017).

3.1. Challenges in machine-learning-based ASD diagnosis

Despite that machine learning approaches are gaining more and more applications in 

automated ASD diagnosis, we must notice that great challenges still exist in the way of 

translating classification outcomes to clinical practice. Current large samples mainly come 

from retrospective data aggregation, and from prospective multicenter collections, such as 

ABIDE (Di Martino et al., 2017; Di Martino et al., 2014) and EU-AIMS LEAP (Charman 

et al., 2017), however, the biological diversity of patients is still not optimally reflected. 

Specifically, first, most ASD classification models are established based on male-biased 

samples. The male bias in ASD prevalence has been reported in many epidemiology 

studies (Lai et al., 2015), and indicates that the risk for ASD may be affected by factors 

related to gender, thus the disproportional representation of female individuals may hamper 

investigations of sex-related imaging differences. Second, considering the compliance 

requirements for data collection, less cognitively capable individuals and patients with 

severe ASD behaviors are often excluded, which may constrain the generalizability of 

findings. In addition, individuals with ASD often meet the criteria for diagnosis of 

other comorbid conditions, including attention-deficit/hyperactivity disorder and anxiety in 

various forms (Lord et al., 2018). On the one hand, co-occurring psychiatric disorders and 

a high degree of symptom overlaps increase the risk for misdiagnosis and thus hinder the 

improvement of model performance; on the other hand, delicately parsing the atypicality 

associated with different comorbid conditions may reveal the pathology underlying ASD 
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heterogeneity. However, most classification models are trained on binary samples, and 

individuals with comorbid conditions are generally excluded. In the future, developing 

data collection protocols that are applicable for all subjects and recruiting more female 

subjects are potential for reducing the sample bias, and will facilitate identifications of ASD 

biomarkers with high generalizability.

Additionally, data aggregation often induces domain shift problems (Li et al., 2020; J. Wang 

et al., 2020). For example, the scanners employed in different sites may be from various 

manufacturers, and the parameter configurations and data acquisition protocols may have 

huge differences, which will impact the data quality and result in nuisance noise for data 

analysis. Besides, the participant recruitment criteria and the status during the acquisition 

process may be also different. These above-mentioned issues are usually hard to control, and 

may lead to more heterogeneities in aggregated datasets.

Proper feature reduction methods are critical for improving the model performance. It is 

worth noting that any feature reduction should be implemented in a non-biased manner. Test 

data should not be involved in any steps of feature reduction, or the model performance 

will be manually amplified, and may induce overfitting (Arbabshirani et al., 2017). An 

effective feature reduction method should eliminate artifacts and retain reliable information 

as much as possible, and it usually runs inside the CV framework to find feature subset 

with relatively high generalizability. However, different feature subsets may be selected 

in each iteration of CV, which may impact the feature interpretation (Castellanos et al., 

2013). Additionally, different feature subsets may be derived from different feature reduction 

methods, and the performances of feature reduction methods are usually not consistent 

across datasets (Wang et al., 2008), which induces a grand challenge for robust and 

reproducible feature identification.

3.2. Future directions

Classical binary classification assumes that both cases and controls are well-defined entities. 

However, it becomes problematic in ASD, where the diagnostic criteria are composed of 

behavioral symptoms that overlap with other mental disorders (Marquand et al., 2016), 

and the behavioral presentations of individuals with ASD manifest high variability. The 

current large-scale datasets manifest great gender bias, and are mainly composed of high-

functioning patients, the comorbidity information is also missed. It would be potential to 

reveal the intrinsic heterogeneity of ASD by constructing a more comprehensive dataset. 

As the underlying heterogeneity of ASD is often ignored in traditional binary classification. 

Developing a new methodology that could achieve cutting across diagnostic classifications 

and identify biological homogeneous ASD subgroups based on imaging has been motivated, 

as the underlying heterogeneity of ASD is often ignored in traditional binary classification. 

Such methods are often named as stratification or subtyping (Hong et al., 2020; Wolfers 

et al., 2019), and are supposed to not only deepen the understanding of neurobiological 

heterogeneity in ASD, but also potentially facilitate the development of personalized 

therapies.

Furthermore, combining multimodal brain imaging data could give comprehensive views of 

brain organizations, and facilitate to reveal complex, cross-modal alterations associated with 
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the intrinsic pathology of disorders (Jiang et al., 2020a, 2020c; Qi et al., 2020a). However, 

in the surveyed articles, the number of studies using multimodal imaging is still very limited, 

and the performance improvements based on multimodal data are also not significant 

enough, especially in large datasets. One reason could be that most studies achieve 

multimodal classification by simply concatenating brain features extracted from different 

modalities or ensemble the results of different models, thereby the intrinsic complementary 

information among different modalities may not be fully utilized. By contrast, multimodal 

fusion techniques are effective tools for uncovering the joint information (Calhoun and 

Sui, 2016; Sui et al., 2012). By applying symptom-guided multimodal fusion methods, 

Qi et al. (2020b) evaluated ASD heterogeneity across ASD subtypes, suggesting that 

ASD has a common neural basis that is consistent with the core deficits, however, every 

different ASD subtype is also strongly linked to unique multimodal covarying brain systems. 

More interestingly, the identified subtype-specific patterns are only predictive for ASD 

symptoms particularly manifested in the corresponding subtype, but not the other subtypes. 

Considering the exciting advances in recent data fusion studies, we believe that the adoption 

of multimodal fusion in ASD classifications will further improve the performance and 

enable the identification of more robust diagnosis markers.

Moreover, researches of genetic disorder with high penetrance of ASD give a critical insight 

into the neural circuitry underlying behavior symptoms of autism, and hold significant 

potential in disentangling the heterogeneity of ASD (Sahin and Sur, 2015). Various 

genetically manipulated animal models have been employed to study the neurobiological 

foundations of aberrant connectivity observed in ASD (Cai et al., 2020; Liska et al., 2018; 

Pagani et al., 2019), but whether the brain dysfunction patterns captured in an animal model 

can direct the ASD diagnosis in human is rarely be investigated. A representative cross-

species machine-learning study is performed by Zhang and colleagues (Zhan et al., 2020). 

They analyzed the fMRI of transgenic monkeys and identified nine core brain regions. 

Further, these regions were one-to-one mapped to the human brain and used as seeds to 

construct a sparse logistic regression classifier for patient classification. They achieved an 

accuracy of 82% in ABIDE I. The cross-species machine-learning framework provides an 

innovative way to build biomarkers for psychiatric disorders, and the identified cross-species 

markers may be potential for drug discovery and assessment.

To date, the majority of ASD classification studies are based on cross-sectional data. As 

a life-long neurodevelopmental condition, the symptoms of ASD are not static within 

individuals across development and the long-term outcomes are also varied (Lord et al., 

2015; Szatmari et al., 2015). The heterogeneous trajectories of ASD underscore the need 

of a developmental perspective in imaging analysis. The classification model established on 

longitudinal datasets enables to the identification of biomarkers that present before symptom 

onset, which is critical for early interventions (Hazlett et al., 2017; Sui et al., 2020; H. Wang 

et al., 2020). In addition, longitudinal datasets allow researchers to assess the stability of 

the classifier over time, which is another essential dimension that should be encouraged to 

dissect the heterogeneity and further improve the clinical practice.

Finally, considering the strong capability to identify subtle and complex patterns from large 

data, deep learning has recently become a promising tool in ASD classification based on 
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brain imaging. Compared with traditional machine learning methods, deep learning can 

implement data-driven automatic feature learning without any prior knowledge, and the 

stacked nonlinear layers allow it to represent very complex decision rules (Arbabshirani 

et al., 2017; Rashid and Calhoun, 2020). Nevertheless, some limitations and challenges of 

deep learning should also be noticed. Generally, the performance of deep learning model 

highly depends on the data volume and quality. A small sample with high noise may 

result in overfitting and poor feature learning, whereas such conditions are quite common 

in neuroimaging data (Rashid and Calhoun, 2020; Zhang et al., 2020a). Moreover, deep 

learning models are often treated as a black-box system that lacks transparency, which may 

limit the interpretability in practical use, though there are methods to visualize deep learning 

models which should be further emphasized (Abrol et al., 2021; Zhang et al., 2020a).

4. Conclusion

To summarize, this review offers a comprehensive survey on ASD classification methods in 

the recent 10 years. Although various classification approaches have been widely applied in 

MRI researches of ASD, and have achieved improved accuracy while revealing multimodal 

brain impairments, more dedicated experimental design, training and validations are still 

required to construct a generalizable and reliable classification model, especially considering 

the high heterogeneity of ASD. Even though this field is still far from clinical use, we 

believe that with the development of new powerful mathematical tools and the closer 

interdisciplinary cooperation, imaging-based diagnosis of ASD is promising and will be 

eventually achieved.
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Fig. 1. 
Literature search results and general machine-learning pipeline. (a) Literature search results 

for each step. (b) Summery of machine learning pipelines. (c) The number of publications 

based on different imaging modalities per year. (d) Scatter plot of the classification accuracy 

vs. sample size (articles without specific accuracy are excluded in Fig. 1d–g, resulting in 

105 left papers). (e) Proportions of machine learning methods used for classification. Pie 

of other methods mainly includes sporadically used methods, such as Gaussian process 

classification and leave-one-out classifier etc. (f) Distributions of classification accuracy for 
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different methods. Box of other methods includes ensemble learning based methods and 

sporadically used methods. (g) Distributions of classification accuracy for different imaging 

modalities.
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Fig. 2. 
Representative classification studies in ASD. (a) Gray matter maps that carry out the most 

discriminative information for adult ASD classification (Ecker et al., 2010b), and most 

clusters are located in parietal-frontal regions. (b) The regions where cortical thickness has 

relatively high contributions to the adult ASD classification (Ecker et al., 2010a). (c) Brain 

regions that involve in discriminative connectivity for ASD classification (Anderson et al., 

2011). (d) Relatively high classification accuracies for children with ASD were obtained 

from gray matter in PCC and MPFC (Uddin et al., 2011). (e) Impact of pipeline steps on 

Xu et al. Page 24

J Neurosci Methods. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ASD classification based on ABIDE data (Abraham et al., 2017). (f) cortical regions with 

surface area measurements at 6 and 12 months contributing to the prediction of 24 months 

diagnosis (Hazlett et al., 2017). (g) FCs that show abnormal alterations in 6-month children 

who developed ASD at 24 months (Emerson et al., 2017).
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