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Abstract

Cytometric immunophenotyping is a powerful tool to discover and implement T-cell biomarkers 

of type 1 diabetes (T1D) progression and response to clinical therapy. Although many discovery-

based T-cell biomarkers have been described, to date, no such markers have been widely 

adopted in standard practice. The heterogeneous nature of T1D and lack of standardized 

assays and experimental design across studies is a major barrier to the broader adoption 

of T-cell immunophenotyping assays. There is an unmet need to harmonize the design of 

immunophenotyping assays, including those that measure antigen-agnostic cell populations, such 

that data collected from different clinical trial sites and T1D cohorts are comparable, yet account 

for cohort-specific features and different drug mechanisms of action. In these Guidelines, we 

aim to provide expert advice on how to unify aspects of study design and practice. We provide 

recommendations for defining cohorts, method implementation, as well as tools for data analysis 

and reporting by highlighting and building on selected successes. Harmonization of cytometry-

based T-cell assays will allow researchers to better integrate findings across trials, ultimately 

enabling the identification and validation of biomarkers of disease progression and treatment 

response in T1D.

Keywords

type 1 diabetes; flow cytometry; immune monitoring; biomarkers; T cells

Introduction

Immunophenotyping individuals with type 1 diabetes (T1D) is critical for understanding 

mechanistic links between immune cells and disease state, and for monitoring immune 

modulation in the growing number of interventional studies. T1D is a complex autoimmune 

disease with multiple disease endotypes related to stages of the disease process and 

variable ages of disease onset [1, 2]. Thus, the careful design of experiments with 

thoughtful sampling is critical for meaningful data collection and interpretation. In addition, 

technologies for immunophenotyping are rapidly advancing, and there is a need for data 

harmonization to effectively compare immunophenotyping data sets in multicenter trials 

and from trials testing different therapeutic agents. Here, we discuss factors and challenges 

related to study design, sample collection, and analysis that should be considered when 

conducting immunophenotyping in T1D for the purpose of robust biomarker measurement 

and discovery.

T-cell responses to self-antigens are widely thought to be pathogenic, conferring an 

autoimmune attack on the insulin producing β-cells in pancreatic islets, during the natural 

history of T1D [3-8]. Methods for effective enumeration and characterization of islet-

specific T cells are addressed in detail elsewhere [9, 10]. While these measures constitute an 
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important feature of tissue and beta-cell specificity, these measures still require specialized 

labs and reagents. Thus, we have chosen to discuss the measurement of antigen-agnostic 

T-cell features for broad adoption across multiple labs and countries. Many such features, 

including increased frequency of IL-17+CD4+ T cells [11-13], increased frequency of 

follicular helper T cells [14, 15], reduced function of Tregs [16, 17], “exhausted” CD8+ 

T cells [18-20], and functional CD4+ T-effector resistance to suppression [21-23], reviewed 

in [24] have been shown to distinguish T1D from healthy controls. However, many other 

studies linking T-cell phenotypes to disease state have not been replicated in independent 

cohorts. To validate these candidate biomarkers, standardized protocols must be developed 

to enable the future translation of results in the clinic.

Biological heterogeneity and the small cohort sizes of most studies present a persistent 

challenge to linking immune phenotypes with T1D progression and treatment response. 

When utilizing samples collected in clinical trials, design of experimental and analytical 

approaches must incorporate key aspects of the autoimmune process including stage 

of disease progression, heterogeneity between individuals, environmental factors, age of 

diagnosis, and the source of immune cell sampling as depicted in Fig. 1. T1D is a disease 

that progresses in stages (Fig. 1A) demarcated by the appearance of multiple autoantibodies 

(Stage 1), abnormal blood sugar (Stage 2), and clinical diagnosis (Stage 3) [2]. It is 

increasingly evident that some immune profiles are disease stage specific, whereas others 

may mark activation or rate of progression regardless of the stage of disease. These include 

not only lineage-defining, costimulatory, inhibitory, and cytokine signaling markers related 

to general immune function, but also islet antigen specificity. Sampling and analysis of 

the pancreas and proximal tissues is rarely feasible, making the immune cell source a 

key consideration for data interpretation (Fig. 1B). Age at T1D onset, in particular, is a 

known driver of both clinical and immune heterogeneity (Fig. 1C). Furthermore, immune 

profiles can be profoundly influenced by genetics (e.g., HLA and other susceptibility 

loci) and environmental factors (e.g., viral infection), which can also drive individual 

heterogeneity (Fig. 1D). Collectively, these characteristics contribute to heterogeneity in 

disease phenotypes, such that observed differences in immune phenotypes can be driven 

by both disease-dependent and disease-independent factors. Strategies for dealing with 

this heterogeneity include holding defined parameters constant (e.g., age matching) and/or 

utilizing multivariate modeling approaches that include age at sampling, age at diagnosis, 

and T1D disease stage (Fig. 1) to separate out sources of variability [25, 26].

Use of biomarkers can broadly be divided into two categories: immune monitoring and 

discovery. The majority of these Guidelines focus on strategies to improve robust immune 

monitoring and validation of biomarkers of disease state, progression, and response 

to therapy. The importance of continued discovery in this rapidly evolving field is 

obvious, given the increasing number of new therapies being tested. Therefore, we also 

address considerations for biomarker discovery. Validating biomarkers in large complex 

T1D populations, with the goal of assay reproducibility across cohorts and trials, will 

require coordinated efforts. These may include collecting shared biological sample sets, 

establishing the technical and biological variability of each assay, and coordinating efforts 

to unify standard operating procedures and analytical approaches. Subsequently, the research 

community must then commit to data sharing between laboratories within the T1D research 
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community. Through consortium efforts, the T1D community has already collaborated 

to define discrete disease stages preceding clinical diagnosis, marked by autoantibody 

production and metabolic changes (Fig. 1) [1, 2, 27, 28]. Collective efforts have also resulted 

in several workshops to advance the utility and multicenter reproducibility of immunoassays 

[29-37], and have driven groundbreaking studies to define the phenotype and function of T 

cells in the pancreas and LNs which can inform studies in the blood (Fig. 1) [7, 38-44).

The next step is to link these efforts, enabling consistent use of immunocytometry assays for 

use in clinical trials to measure and predict disease progression and/or response to therapy. 

In combination with biostatistical and unbiased discovery platforms, cytometric phenotyping 

makes biomarker discovery more tenable and serves as a feasible way to integrate biological 

mechanism with clinical response and disease progression. Here, we present practical 

considerations and examples for how to plan cytometry-based immune-cell profiling studies 

with recommendations on sample collection and appropriate controls, cytometry platform 

options, assay validation, data analysis tools, and subsequent interpretation including 

examples from the field of T1D. We then conclude with some additional considerations 

for biomarker discovery. The recommendations are in the context of T1D, but many are 

broadly applicable to any immune-mediated disease.

General approaches for cross-site and cross-study sample standardization

Clinical trials are now commonly conducted at more than one center to bolster the 

rate and feasibility of subject recruitment. Standardization of sample processing can 

be achieved in multicenter trials through the use of standard operating procedures and 

systematic training of each site by the coordinating center. Assay validation is a prerequisite 

for utilization of cytometry in the context of a clinical trial. This process assesses 

the precision, robustness, and stability of each technique, and allows the sensitivity of 

each assay to be defined, to ensure assessment of true biological differences, and not 

technical variability. Many well-defined guidelines for validation of cell-based assays have 

been published (https://members.aoac.org/AOAC_Docs/lptp/alacc_guide_2008.pdf, https://

www.ich.org/page/quality-guidelines, and Refs. [45-47]). However, recommendations on 

how to standardize these validated assays across different sites and clinical trials are less 

common [48-50]. This is especially true in the context of unique considerations for T1D 

research, as noted in Fig. 1. Although many of these considerations are discussed in detail 

in the aforementioned guidelines, we address those that remain challenging to standardize 

in T1D clinical trial design including specifics on sample collection and handling as well as 

appropriate controls and detailed documentation.

Sample collection, storage, and transportation

It is important to keep the type of anticoagulant in blood collection tubes consistent 

throughout trials and between sites, since the choice of anticoagulant tubes for blood 

collection can influence cell state and marker stability in downstream assays. For example, 

EDTA tubes are routinely used for general immunophenotyping, but as EDTA binds to 

divalent cations, they are not ideal for lymphocyte activation and cytokine measurements; 

sodium heparin tubes are better suited for functional assays. Accordingly, two ongoing, 
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collaborative international T1D clinical trials [UST1D2 and USTEKID] to assess safety 

and efficacy of ustekinumab, a monoclonal antibody that targets the IL-12/IL-23 

pathway in newly diagnosed subjects (https://clinicaltrials.gov/ct2/show/NCT03941132 and 

http://www.isrctn.com/ISRCTN14274380), utilize both EDTA and sodium heparin blood 

collection tubes. In these trials, EDTA tubes are used to measure general changes in 

frequencies and phenotypes of cell types of interest (e.g., subsets of B, T, and NK cells 

in peripheral blood), whereas sodium heparin tubes are being used to assess changes in 

cytokine production (e.g., IFN-γ and IL-17) and frequency of proinsulin-specific T cells 

using an activation-induced marker assay [51].

The temperature of sample storage and transportation can affect downstream assays and 

needs to be controlled to improve standardization. For example, transport of whole blood 

below ambient temperature (18–22°C) has been observed to compromise the PBMC 

function and yield, with an increase in granulocyte contamination (Supporting information 

Fig. S1A). While this granulocyte contamination can be eliminated with commercial 

kits (Supporting information Fig. S1B), phenotype and function of T cells, including 

the production of various T-cell cytokines upon short PMA and ionomycin stimulation, 

can still be affected when storage and transportation temperatures are below ambient 

temperature (Supporting information Fig. S1C). Indeed, a study by Westendorf et al. 

[52] showed a significant number of genes with altered expression after 2 h at ambient 

temperature as compared to 4°C. When cryopreservation is needed, the use of reagents, 

such as leucoSep (Greiner) or SepMate (STEMCELL Technologies) tubes and commercially 

available freezing medium, such as CryoStor, can simplify and harmonize cryopreservation 

at each center. Furthermore, shipment of cryopreserved samples to a single laboratory 

for processing can aid in standardization by decreasing variability in sample quality and 

viability.

It is well known that there are vast differences between the frequencies of many immune 

populations from different tissue sources [44] and that various factors, such as circadian 

rhythm [53], cryopreservation methods [54], and delays in processing time [33], can alter 

immune cell populations. It is also known that blood glucose levels may impact immune 

cell subsets and should be considered when taking samples from subjects with T1D [55]. 

Therefore, it is very important to keep these factors as consistent as possible throughout 

trials.

Appropriate controls and documentation

The inclusion of positive, negative, and quality controls (QC) is essential for standardizing 

assays across studies and sites. Using identical QC samples, such as cryopreserved PBMC 

aliquots from a single blood draw, across batches of experiments, and/or across sites, not 

only allows for the normalization of data across days or sites, but can also help control 

for batch effects, as further discussed in the “Analysis/reporting” section, and aid in the 

identification of batches of data that are affected by technical errors in procedure or reagent 

used.

It is important to define as many crucial parameters as possible before a trial and ensure 

that these are standardized throughout the trial. However, it is not always possible to 
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control all variables that may affect experimental readouts; thus, it is essential to document 

them at every step of sample collection and processing so they can be controlled during 

data analysis. Recommendations of parameters that would be useful to be documented 

include (but are not limited to) anticoagulant used, time of blood collection and sample 

processing, minimum and maximum transport and storage temperature of samples, name 

of operator/analyst and machine used, reagent lot number, and comments to document 

instances where procedure deviates from protocol. Such documentation will not ensure a 

precise and accurate outcome, but simply reflect variabilities inherent in protocol. However, 

a robustness study can be performed after standardization of critical parameters to ensure 

that the assay behaves similarly within the allowed variation limits. Examples of this include 

storage temperature testing and time in transit, described in the sample collection, storage 

and transportation section.

Defining the current state of fluorescence flow cytometry assay 

standardization

When biomarkers are defined for immune phenotyping, consistent and robust measurement 

can be improved with cytometry standardization [56]. Although state-of-the-art 

standardization for all aspects of a clinical trial is ideal, this is unlikely to be achieved 

in reality. Here, we have suggested three levels of rigor for fluorescence cytometric assay 

standardization (fundamental, desirable, and ideal) and applied these three levels to four 

important categories to consider with their specific challenges when designing cytometric 

experiments: (A) equipment, (B) antibody panel design, (C) antibodies/staining reagents, 

and (D) analysis/reporting (Table 1). With the exception of those related to spectral 

spillover, these strategies are also relevant for mass cytometry and oligonucleotide-based 

antibody barcoding facilitated biomarker discovery. We follow this with a case study 

that demonstrates how standardization for immune monitoring can result in successful 

harmonization of assays in T1D clinical trials.

Equipment

Cytometers resolve populations of interest differently due to instrument-specific filter 

configuration and instrument noise and sensitivity, even when acquiring the same samples. 

For this reason, it is ideal to use cytometers with identical configurations across all 

study sites. Furthermore, an identically configured back-up instrument on-site can prevent 

poor quality or missing data due to technical issues in primary cytometer performance. 

Cytometers should also be harmonized using target regions with fluorescence control beads, 

for example, Flow-Set Pro beads for Beckman Coulter machines, Cytometer Setup and 

tracking (CS&T) beads or Rainbow Calibration particles (eight-peak beads) for Becton 

Dickinson (BD) machines [57], and SpectroFlo QC beads for the Cytek Aurora (Fig. 2A).

In reality, it is rare that all study sites involved in a given trial have the same cytometer 

and configuration, and rarer still that this cytometer is present in duplicate at each study 

site. Assay qualification, however, can include more than one center, including the use of 

different instruments as exemplified by Ivison and colleagues who successfully compared 

data acquired on BD LSRFortessa and Beckman Coulter Navios machines [58].
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Antibody panel design

For each immune monitoring biomarker study, drug effects and marker detection should 

be considered when designing antibody panels (examples of published panels used in T1D 

studies and trials are shown in Supporting information Table S1). When studying subjects 

receiving biologics, the antibody clone used for staining should not block or interact with 

the therapeutic antibody clone. Monitoring immune populations that are directly related 

to the drug mechanism of action is crucial. For example, aldesleukin (recombinant human 

IL-2) enhanced CD25+FOXP3+ Treg frequency [59, 60]; ustekinumab (antagonist for IL-12 

and IL-23 binding to their respective receptors) reduced marker expression of IFN-γ and 

IL-17-producing T cells (UST1D: Clinical Trials.gov ID NCT02117765) [61, 62]; alefacept 

(LFA3-Ig) depleted CD4+ and CD8+ memory T cells in at-risk or T1D subjects [63]; and 

teplizumab (anti-CD3) augmented exhausted CD8+ T cells [20, 64, 65]. It is also important 

to include markers for immune populations that can help the interpretation of other clinical 

and mechanistic measures such as partnering B-cell phenotyping with autoantibody clinical 

readouts or islet antigen-specific T-cell analyses. Monitoring off-target populations may also 

be valuable, as shown with NK expansion in an IL-2/rapamycin trial [66]. Last, given the 

heterogeneity of T1D, it is advisable to include any populations previously associated with 

age, activation, rate of progression, or stage of disease.

It can be beneficial to include many of these parameters in a standardized base panel that 

can be used across different sites or between trials and leaving channels open for drop-ins. 

This allows the inclusion of study-specific markers of interest, while retaining the ability 

to compare basic immune parameters. One key example is the use of a T-cell panel across 

many Immune Tolerance Network T1D trials, along with others [20, 36, 63-65, 67], that 

reproducibly identifies T-cell differentiation, activation, and hyporesponsiveness (Supporting 

information Table S1).

One of the major limitations of conventional flow cytometry is the spectral overlap and 

spread of fluorochromes. Pairing bright fluorochromes with low-density target antigens 

and dim fluorochromes with high-density target antigens will limit unnecessary fluorescent 

spillover. Spectral compensation and spreading matrices are valuable tools that should be 

used to carefully and effectively design panels to ensure that all cell populations of interest 

can be resolved beyond the background signal [68]. Clones and fluorochromes are known to 

affect the level of antigen expression detected, so it is ideal to keep these consistent when 

designing panels for a clinical trial across different sites. At the very least, cell populations 

of interest should be identified using the same cell markers/antigens.

Antibodies/staining reagents

Titrations should be performed to ensure that the appropriate amount of antibody is used in 

each assay to improve the resolution of all of the parameters in the panel [69]. Since target 

antigen varies across samples, it is recommended to use an antibody titration just above 

target saturation levels. In instances where combinations of high antigen density paired 

with bright fluorochromes cannot be avoided, tittering using ratios of fluorochrome-labeled 

antibody with unlabeled antibody of the same clone may help to control fluorescence 

spillover. Antibody titration is particularly important as immune composition can vary 
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dramatically in T1D studies due to treatment and age. Wet antibodies often have lot-to-lot 

variation and can be subject to degradation over time, an attribute strongly influenced by 

the stability of the fluorochrome. Nevertheless, some of these effects can be controlled 

by performing lot-to-lot crossovers and performing stability testing. In addition, off-the-

shelf master mixes, which have been tested for antibody titration and stability, can aid 

in reproducibility, albeit at an increased cost. A more expensive alternative is the use of 

lyophilized antibody tubes that are much more stable than wet antibodies and can eliminate 

pipetting error. Upon standardization of the same machines at two trial sites (Fig. 2A) using 

same lot of custom-made lyophilized tubes, we observed similar levels of antigen-specific 

CD4+ T cells after stimulation of blood overnight (n = 5 age-matched samples; Fig. 2B). 

In comparison to fluorochrome-conjugated reagents, metal-tagged antibodies used for mass 

cytometry (CyTOF) studies can be frozen as master mixes that are stable and represent 

a more economical solution [70]. It is of utmost importance to perform full panel testing 

between sites to ensure similar staining quality. The choice of using samples from healthy 

controls versus individuals with T1D for panel testing should also be considered as some 

panels, such as those that detect frequencies or phenotypes of islet-specific cells, will be 

most effective if samples from individuals with T1D are used.

Analysis/reporting

For standardized immune monitoring in subjects with T1D, subtle changes in frequency of 

rare cells or incremental changes in the level of expression of markers are often observed. 

Use of standard staining controls, such as fluorescence minus one, to improve the accuracy 

of gating populations is a key. A predefined gating strategy and template is an effective 

way to streamline and standardize analysis for manual (Boolean) gating within and between 

study sites. Automatic gating also streamlines analysis and can minimize subjectivity and 

maximize reproducibility; however, it is less effective at identifying rare and “shoulder” 

populations. The importance of accurately capturing these rare/shoulder populations should 

be balanced with improved workflow and consistency when considering automated gating.

Analysis of large flow cytometry datasets can benefit from a standardized workflow that 

focuses on biologically relevant immune analytes within and between clinical trials. Critical 

to this process is using an internal control sample to parse technical from biological 

variability, the former generally arises when samples are divided into batches to manage 

sample processing. A standardized analysis workflow begins by compiling batch data, and 

limiting noise by removing redundant gates that can include negative populations or Boolean 

gate parents (Fig. 3A). The percent coefficient of variation (%CV) is determined per 

immune cell analyte within the compiled internal control (technical variability), and among 

donor samples (biological variability; Fig. 3B). The provided graphs represent a means of 

parsing technical from biological variation where high technical variation is defined here as 

more than 35% CV from the internal control. High technical variation often results from 

analytes with poor resolution between positive and negative populations or low frequency 

of detection (Fig. 3B, C) [47, 71, 72]. Biologically relevant immune subsets of interest are 

identified where biological variability exceeds that of technical variability. These subsets 

can be further explored for patient response via intratrial analyte comparisons (Fig. 3B). 

This same workflow can be used to explore autoimmune signatures across trials where trial 
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design incorporates the same antibody panel and immune cell readouts. In this example, we 

focus on analytes with CVs less than 35%; however, other CV cut-offs may be determined/

used on a per trial basis. A review by Hedley and Keeney discusses the number of flow 

events required for a given level of precision, a factor which is particularly relevant for rare 

subset analysis [72] and should be used to determine the lower limit of acquired events. 

Predefined criteria for how to exclude inaccurate data due to insufficient events are essential.

When comparing MFI of samples that are acquired across multiple days, it is worth 

noting that although machines may be calibrated prior to sample acquisition, day-to-day 

variation of machines is still observed. It may be useful to consider normalization of 

MFI to molecules of equivalent soluble fluorochrome by acquiring beads such as Rainbow 

Calibration particles (eight-peak beads), Bang beads, or other appropriate equivalents on 

each experimental day. This approach was successfully used to study the differences in 

CD25 expression on CD4+ conventional T cells and Treg cells in individuals with T1D [59, 

73]. In cases where different cytometers and fluorochrome combinations are used across 

centers, direct comparability of changes in MFI is a challenge.

To reiterate the importance of documentation, there are many variables that may affect the 

quality of flow cytometric data such as who processed the samples, time between collection 

and staining of samples, time between poststained and acquisition of samples, the rate and 

number of events that are recorded during sample acquisition, and importantly, the quality 

and viability of the cells.

Crucial aspects of data reporting are described in the Minimum Information about a Flow 

Cytometry Experiment criteria [74] and include location of data deposition, publication 

of full gating strategies used, labelling of flow plots, inclusion of all antibody clones, 

fluorochromes, antibody titrations, and associated reagents used. Many journals now require 

this information for publication including Research Resource Identifiers.

Case study: Standardization of a fresh whole blood flow cytometry assay 

across multiple sites

As part of a multicenter longitudinal sample collection initiative called INNODIA, blood 

samples from newly diagnosed T1D subjects (ND-T1D) were collected from several clinical 

sites in Europe and shipped to sites for sample processing. Samples were collected, mainly 

in the morning, in EDTA vacutainers from subjects recruited within 6 weeks since diagnosis, 

and shipped at ambient temperature (18–22°C) [75]. Upon use, viability and recovery of 

each sample was evaluated, in a similar manner as in other studies [65, 76].

Prior to the initiation of this study, three representative samples were stained using five flow 

panels in triplicate to assess technical reproducibility for a broad range of cell subsets, 

including T and B lymphocytes, NK cells, monocytes, DC, and granulocytes. Only 1 

out of 118 cell subsets measured, namely CD45RA+CCR7− Tregs, was excluded from 

further analyses due to technical variation over 35% CV (Fig. 4A). To assess stability of 

blood collected in EDTA tubes, samples were stained at different time points after sample 

collection. Samples stained within 6 h from blood draw were stable (within 20% difference 
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compared to fresh) while post-6 h, deviations from fresh were observed (Fig. 4B). The 

activation state of granulocytes and lymphocytes and the frequency of monocytes were 

increased and selected features of T-cell subsets and plasmablasts were decreased due to 

prolonged storage. A maximum of 6 h from blood drawn then defined the time frame criteria 

for performing flow staining at each site, which was similar to the criteria set for the ONE 

study [50].

All INNODIA sites used the same antibody clones, but there was variation in fluorophore 

combinations due to different BD LSRFortessa configurations. The protocol included the 

use of CS&T beads and application settings prior to samples acquisition. Unlike the use 

of batched, cryopreserved PBMCs, when using whole blood, it is more challenging to 

include a consistent sample for QC. Thus, for this study using machines with different 

configurations and antibody panels, the study opted to not use QC samples, and to only 

assess the frequency of cell subsets (determined using an identical gating strategy), and 

not MFIs. All gating and datasets were quality controlled by one operator to maintain data 

consistency. To investigate whether data obtained by different sites could be combined, both 

intra- (averaged variation across three time points within an individual) and interindividual 

CV (variation between individuals at baseline time point) were compared for each cell 

subset measured and observed both types of CVs were similar between sites (Fig. 4C). 

Principal component analysis (PCA) further confirmed the lack of site and operator-specific 

effects (Fig. 4D). Ideally the use of identical cytometer and flow panels across centers would 

improve this study further, but by focusing on the four categories listed above a desirable 

level of standardization was obtained despite differences in panels, machines, sites, and 

operators.

Integrating modern immunophenotyping platforms in T1D studies

Biomarker discovery shares many of the considerations discussed above for standardized 

immune monitoring, but also presents some additional concerns due to the exploratory 

nature of these studies that are often performed in specialized labs with continually evolving 

techniques and analysis platforms. There is an ever-increasing range of tools for measuring 

single-cell protein expression, many of which have specific strengths and weaknesses that 

make them well suited to tackle specific scientific challenges including those in the realm 

of T1D research and T1D trials (Table 2). These tools generally require trade-offs between 

the number of parameters that can be simultaneously analyzed on a single cell, throughput 

in terms of both the number of cells analyzed from a given biological sample and the 

total number of samples analyzed, and the cost of any given study. In this section, recent 

innovations in cytometry are summarized for three fundamental technologies (fluorescence-

based cytometry, mass cytometry, and oligonucleotide-based profiling), with the objective of 

informing decisions on platform selection and experimental design.

Innovations in fluorescence-based flow cytometry

Fluorescence-based flow cytometry continues to represent one of the most accessible, 

affordable, and high-throughput approaches for multiparameter single-cell analysis. It 

is also a rapidly growing technology, with modern spectral cytometers that may now 
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resolve over 40 markers in a panel [77, 78]. This is accomplished through improved 

resolution of fluorescence emission patterns, utilization of spectral unmixing algorithms, 

and fluorophore innovations. However, designing high-parameter fluorescence-based panels 

requires considerable investment in careful panel design, optimization, and an extensive 

number of controls relative to lower parameter flow cytometry. Further, panels designed 

for a single lineage are subject to increased spectral spill from coexpressed markers. 

Consequently, high-dimensional flow cytometry exploratory studies more typically leverage 

panels in the 20–30 marker range.

Mass cytometry

Mass cytometry overcomes the limitations of fluorescence spectral overlap by substituting 

fluorophore-conjugated antibodies with purified-isotope-conjugated antibodies, which can 

be detected using time-of-flight mass spectrometry (CyTOF). The technology has enabled 

detection of up to 47 antibodies with additional channels used for viability detection and 

sample multiplexing reagents [79]. This increased dimensionality comes at the cost of 

reduced throughput (<500 events/s vs. >10, 000 events/s for typical flow cytometers), lower 

recovery of quantifiable events as compared to flow cytometry, and reduced sensitivity for 

low abundance antigens. However, due to use of premixed antibody cocktails and internal 

bead and bar-coding controls [80], mass cytometry data often has increased reproducibility 

over time. A growing list of T1D-associated cellular features has been defined using mass 

cytometry including two recently identified exhausted-like subsets associated with response 

to therapy [81] and spatially distinct populations identified by imaging mass cytometry [82, 

83]. To date, the use of mass cytometry in T1D research has been somewhat circumscribed 

[84], but more wide-spread application (including pursuit of the TrialNet Key Question 

1, https://www.trialnet.org/researchers; Rahman and Homann, unpublished) of this mature 

technology platform is expected in the near future.

Oligonucleotide-based antibody profiling

The recent advent of oligonucleotide-based antibody profiling using approaches, such as 

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), presents a 

new frontier in high dimensional single-cell analysis [85, 86]. Antibodies are conjugated to 

oligonucleotides and detected using massively parallel single-cell sequencing approaches. 

Given that the potential range of oligonucleotide barcodes exceeds the number of existing 

commercial antibodies, the number of targets that can be simultaneously detected is 

technically limitless. While the development and optimization of large CITE-Seq panels can 

present significant practical challenges, the technology has enabled simultaneous profiling 

of 228 antibodies, coupled with concurrent detection of thousands of gene expression 

transcripts from the same cells [87]. Currently, the cost and complexity of the approach 

limits most studies to analyze a few thousand cells per sample in relatively small sample 

cohorts and, thus far, no T1D studies employing this technology have been published. 

That said, applications of this technology are underway, including the use of CITEseq 

labels to define donor or time point, as well as considerations of donor variants for sample 

demultiplexing [88].
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Choosing a platform

After discovery, most biomarkers transition to more traditional flow cytometers for 

validation and standard immune monitoring, as only limited flow cytometry panels have 

been validated in Clinical Laboratory Improvement Amendments certified diagnostic 

laboratories. However, multiple platforms should be considered for discovery. While no 

single platform stands out as optimally suited for T1D phenotyping per se, scalability, cost 

associated with custom conjugation, target cell frequency, and sample availability should be 

considered when selecting a platform (Table 2).

High parameter data analysis tools

The considerable increase of discrete single-cell parameters quantified by polychromatic 

and spectral flow cytometry, CyTOF, and CITE-Seq necessitates a structured parsing of 

the high-dimensional data space to permit systems-level analysis of immune cell subsets, 

their phenotypic properties, and functional capacities [89]. These advances have driven 

the field of computational flow cytometry, which is now focused on data processing and 

high-parameter data analysis in a way that accounts for both technical and biological 

variability [90]. With regard to T1D, analyses must also incorporate clinical stage, subject 

age, T1D duration or age at onset, and other study-related metadata. In this section, we 

highlight commonly used packages created to handle high-throughput sample handling, 

batch processing, and downstream data analysis, and discuss the various capabilities and 

ongoing needs while noting examples of usage in T1D.

Expanding horizons

The advancements in technology noted above have moved the 24 possible combinations in 

a simple four-color flow cytometry assay into what today could represent an astounding 

9157 possible combinations in a 100-parameter antibody panel. The net result is that data 

analysis, which was once a niche skill for a single individual, has now transformed into a 

complex and interactive discipline that often requires an integrated team including bench and 

data scientists with programming and biostatistical knowledge. This transition has also now 

mandated two dichotomous approaches to flow analyses: hypothesis-driven with manually 

supervised gating strategies and hypothesis generating with unsupervised or semisupervised 

sample analysis. The former is used in standardized immune monitoring and biomarker 

validation, where consistency and robustness are keys. In the latter approach, the goal is 

to distill complex high-parameter datasets in an unbiased manner to identify informative 

subsets and phenotypes. The data matrix output is refined using tools and packages to 

reduce dimensionality and display trends in a way that highlights reportable observations 

in an informative and user-friendly manner. Some examples of collaborative systems and 

cytometry discovery in T1D include phenotypes of rare cells identified using DISCOV-R 

(an extension of Phenograph) [19], unique subsets of exhausted-like cells associated with 

clinical response to treatment using FlowSOM cluster correlations with gene sets [81], and 

tempospatial relationships using SCORPIUS [82].
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Big data challenges

As the flow cytometry parameter space grows, so too does data file size. In the context 

of large trials and meta-analyses, data compilation becomes cumbersome due to lengthy 

transfer times, limitations of storage space, as well as potential problems with file name 

and feature name misalignment. Therefore, the handling of large datasets requires careful 

planning before the trial begins to negate the risk of data loss and compilation errors. A 

major challenge of big data analysis is maintaining standardized, reproducible data formats, 

and annotations between collaborating institutions, across individual analysts, and over 

the course of multiyear studies. Naming and formatting standards should be defined as 

part of the initial experiment design to ensure reproducibility. The challenges related to 

storage and direct transfer of large data files can overcome through cloud-based platforms 

like FlowRepository [91], ImmPort [92], or Cytobank. Cloud-based databases may be 

preferable to direct file transfer, as they generally require some degree of quality checks 

and annotation standards. For example, FlowRepository requires that FCS files and their 

associated annotation adhere to the Minimum Information about a Flow Cytometry standard 

[93].

Distilling meaning from the noise

Ultimately, the power of computational cytometry comes from the application of the 

knowledge gained in an unbiased manner, leading to biomarker discovery that can be further 

validated and applied to immune monitoring in interventional trials. This fundamental 

need for actionable insight includes the need to apply machine-learning algorithms to 

flow cytometric data. Examples of these approaches, as well as various advantages and 

disadvantages are summarized (Table 3). The main objective of these tools is to identify 

cell populations in exponentially growing parameter space using unsupervised clustering 

methods. This is followed by dimensionality reduction methods to allow two-dimensional 

visualization of population structure, usually as a tree or scatter plot. A number of these 

tools have been used to identify immune signatures, pathways, and therapeutic responses 

from high-parameter flow cytometry data sets in T1D studies [19, 81-83, 94-96].

Expanding data parameter space presents major challenges for biomarker identification and 

validation to avoid type I and II error. Thus, as the field of computational flow cytometry 

continues to evolve, it is increasingly important to implement data harmonization standards 

beginning with sample collection and processing, batch processing, and metadata standards, 

and robust systems for downstream data analytics and reporting. Equally as important, the 

field must plan for and follow through with data sharing as recommended by the Findable, 

Accessible, Interoperable, and Reusable data standards [97]. Ultimately, we expect the field 

to advance more rapidly when multiple groups can replicate observations. Together, these 

approaches will help move discovery of cell populations to validated T1D biomarkers [24].

Conclusions

Identification and validation of robust biomarkers is a critical next step to link immune 

mechanisms with T1D clinical measures that will guide development of therapeutic 

strategies and cohort selection criteria. Generation of relevant and potentially actionable 
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data requires an accurate biological knowledge of T1D to better anchor and leverage the 

interpretation of highly technical approaches for data acquisition and analysis, as well as 

careful study design and implementation. Our aim has been to provide a cogent overview 

that will serve as an effective starting point for further dialogue within the field, with the 

overarching goal of adopting “universal best practices” for immunophenotyping within the 

field of T1D. To that end, we have provided recommendations about study design, cytometry 

platform options, assay validation, data analysis tools, and subsequent data interpretation 

in the context of immune monitoring and biomarker discovery. Standardization of these 

elements of practice will be essential to allow data sharing between laboratories, effective 

multicenter data acquisition for multisite clinical trials, and integrated meta-analyses of 

findings across multiple studies to draw the high-level insights that will be crucial to drive 

the field forward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BD Becton Dickinson

CITE-Seq Cellular Indexing of Transcriptomes and Epitopes by Sequencing

CS&T cytometer setup and tracking
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%CV coefficient of variation

ND-T1D newly diagnosed T1D subjects

PCA principal component analysis

QC quality controls

T1D type 1 diabetes
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Figure 1. Considerations for assay and trial design in T1D.
When designing immunophenotyping assays, there are necessary considerations that depend 

on (A) the stages of T1D [those at-risk for T1D, those in the three progressive stages of T1D 

development, and those with long-standing T1D; https://www.trialnet.org/t1d-facts], (B) the 

sampling source, with peripheral blood being the most sampled in large trials, although other 

tissue sources may be sampled in other studies, (C) the impact of age of T1D onset on 

disease progression (with onset at young age associated with more rapid β-cell decline), and 

(D) individual heterogeneity influencing immunophenotypes. Red and blue boxes denote 

two sets of patients grouped together by subsets of an expression of a phenotype. Created 

with BioRender.com.
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Figure 2. Flow cytometer standardization using Flow-Set pro (FSP) beads at two study sites.
(A) FSP beads were used to set mean fluorescence intensity (MFI) target values (indicated 

by grey floating bars [target values±10%]) for all 10 fluorescence channels (FL1 to FL10) 

at Site A. The identical lot of FSP beads was used at Site B to match the target values. 

After machine standardization, the same lot of FSP beads was acquired prior to study 

sample acquisition at both sites (n = 4 for Site A; n = 11 for Site B), with the resulting 

MFI of values shown in (A). Data from each channel are in a different color; error bars 

indicate mean ± SD; percentages indicate CV. (B) Blood from 10 healthy subjects (n = 5 per 

site) was collected in sodium heparin tubes then stimulated with INFANRIX (pentavalent 

vaccine) vaccine or 1 μg/mL Staphylococcal enterotoxin B (SEB) or left unstimulated for 48 

h. Samples were stained using the same lot of custom-made Duraclone tubes to assess the 

frequency of antigen-induced CD25+OX40+ cells within gated CD4+ T cells. Samples were 

acquired on Navios machines at each site after machine standardization. Each individual is 

depicted by a color. Student’s unpaired t-tests were performed (ns = not significant).
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Figure 3. Using thresholds of technical variability to identify biologically informative cytometry 
data.
(A) Workflow for separating biological data and technical noise. Data are filtered to remove 

redundant or noninformative gates. Variability (%CV) is detected in immune populations 

within samples at baseline and internal batch controls. (B) Representative immune cell 

analytes (n = 39) from a published trial data set are simplified here as a workflow example. 

Each dot represents one immune parameter ranging in detection frequency from 0.8 to 93%, 

where dot size corresponds continuously with magnitude of detection from low to high and 

the minimum number of events acquired was 150 000 [98]. Samples to the right of the blue 

dotted line at 35% have high technical variability and often tend to be immune subsets or 

phenotypes with low frequency (smaller dots). Black diagonal lines indicate that variation 

in analyte detection is equivalent between technical reproducibility (internal control) and 

sample biology (top panel) or between longitudinal trial time points (bottom panel). The 

shaded area represents analytes with greater biological than technical variation. (C) Analytes 

between multiple trials utilizing the same antibody panel and immune cell readouts have the 

potential to identify common and/or unique immune phenotypes. Shown are representative 

immune analytes (n = 127) published for two trials with a common flow cytometry panel. 

Analytes were detected with frequencies between 0.04 and 97%, reflected by dot size. The 

first step in analyzing these data sets is removal of analytes with high technical variability 

(≥35% CV) using the respective internal controls. Analytes with low technical variability 

(shaded) can then be explored for biological relationships between trials. Unique technical 

variability that arises between trials (≥35% CV) can be used to identify areas for protocol 

improvement between trial sites. Graphs were generated using JMP software (SAS).
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Figure 4. Flow cytometry standardization of five antibody panels using whole blood in the 
INNODIA multicenter study.
Stained blood samples from newly diagnosed (ND)-T1D donors collected in EDTA tubes 

were acquired on BD LSRFortessa flow cytometers with either five or three lasers at Sites B 

and C, respectively. Averaged intraindividual CV per parameter was determined using data 

at three time points0 (baseline, 3 and 6 months) from 13 and 21 ND-T1D subjects at Sites 

B and C, respectively. (A) Interindividual CV per parameter was determined using baseline 

data from the same cohorts. Technical variability (triplicate staining of three samples for 

all five flow panels) compared to biological intraindividual variability was assessed using 

averaged data from three samples. A total of 118 cell subset parameters were measured as 

depicted by each data point. Size of data point = mean frequency of each cell population 

(ranging in frequency of parent population from 0.03 to 93%). For samples to the right of the 

black diagonal line, technical and biological variability cannot be discriminated (i.e., >35% 

CV). Shaded area indicates biologically relevant immune subsets of interest with less than 

35% technical CV and biological variability exceeding that of technical. (B) Two samples 

were stained at 0 (fresh), 6, 24, and 48 h after blood collection. Differences in frequencies 

of selected cell subsets (columns) were calculated for each time point compared to fresh 

values and data for the two samples were averaged, where red and blue indicate increased 

or decreased frequency, respectively. (C) Intra- and interindividual percent CV are compared 

between Sites B and C for N = 117 cell subsets. Size of data point = mean frequency of each 

cell population (ranging in frequency of parent population from 0.03 to 94%). (D) Complete 

baseline flow data from N = 24 and N = 27 samples from ND-T1D donors at Sites B and 

C, respectively, were used to perform PCA using base R functions and ggplot2 R packages 

in an unsupervised approach. Ellipse drawn assumed multivariate t-distribution at a level of 

0.95 for each site (depicted by shape). Each operator is depicted by a color.

Yang et al. Page 25

Eur J Immunol. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 26

Ta
b

le
 1

.

St
ag

ed
 a

pp
ro

ac
h 

to
 s

ta
nd

ar
di

za
tio

n 
of

 f
lo

w
 c

yt
om

et
ri

c 
as

sa
ys

T
hr

ee
 s

ta
n

da
rd

iz
at

io
n

st
ag

es

F
ou

r 
fl

ow
 c

yt
om

et
ry

 s
ta

nd
ar

di
za

ti
on

 c
at

eg
or

ie
s

E
qu

ip
m

en
t

A
nt

ib
od

y 
pa

ne
ls

A
nt

ib
od

ie
s/

st
ai

ni
ng

 r
ea

ge
nt

s
A

na
ly

si
s/

re
po

rt
in

g

Fu
nd

am
en

ta
l

D
if

fe
re

nt
 in

st
ru

m
en

ts
Pe

rf
or

m
an

ce
 o

f 
in

st
ru

m
en

t c
al

ib
ra

tio
n 

us
in

g 
C

S&
T

 a
nd

 a
pp

lic
at

io
n 

se
tti

ng
s 

(B
D

),
 F

SP
 

(B
ec

km
an

 C
ou

lte
r)

, o
r 

Sp
ec

tr
oF

lo
 (

C
yt

ek
 

A
ur

or
a)

 b
ea

ds
C

ha
lle

ng
e:

 r
eq

ui
re

s 
th

or
ou

gh
 d

at
a 

co
m

pa
ri

so
ns

 a
cr

os
s 

di
ff

er
en

t t
yp

es
 o

f 
in

st
ru

m
en

ts

D
if

fe
re

nt
 a

nt
ib

od
y 

pa
ne

l a
t e

ac
h 

si
te

, 
al

be
it 

sa
m

e 
m

ar
ke

r(
s)

 to
 d

ef
in

e 
ce

ll 
ty

pe
s.

C
he

ck
 f

ul
l p

an
el

 s
ta

in
 o

n 
sa

m
pl

es
 r

el
ev

an
t 

to
 th

e 
tr

ia
l (

e.
g.

, s
ub

je
ct

s 
w

ith
 T

1D
s)

C
ha

lle
ng

e:
 d

if
fe

re
nt

 c
lo

ne
s 

ca
n 

le
ad

 to
 

di
ff

er
en

ce
s 

in
 M

FI
 a

nd
 p

er
ce

nt
ag

e 
of

 
po

si
tiv

e 
ce

lls
 d

et
ec

te
d

Pe
rf

or
m

 a
nt

ib
od

y 
tit

ra
tio

ns
 a

nd
 o

pt
im

iz
at

io
n 

of
 o

th
er

 k
ey

 r
ea

ge
nt

s.
E

ns
ur

e 
re

ge
nt

s 
ar

e 
us

ed
 w

ith
in

 e
xp

ir
y 

da
te

s
C

ha
lle

ng
e:

 ti
m

e-
 a

nd
 r

es
ou

rc
e-

co
ns

um
in

g 
to

 
ch

ec
k 

tit
ra

tio
n 

of
 d

if
fe

re
nt

 a
nt

ib
od

y 
lo

ts

Si
m

ila
r 

ga
tin

g 
st

ra
te

gy
 a

nd
 th

e 
us

e 
of

 
ap

pr
op

ri
at

e 
co

nt
ro

ls
.

R
ep

or
t a

ll 
de

vi
at

io
ns

 f
ro

m
 p

ro
to

co
l t

ha
t 

m
ay

 im
pa

ct
 a

na
ly

si
s

C
ha

lle
ng

e:
 a

 r
ig

id
 a

na
ly

si
s 

m
ay

 
pr

ec
lu

de
 u

ne
xp

ec
te

d 
re

su
lts

D
es

ir
ab

le
Si

m
ila

r 
in

st
ru

m
en

ts
, d

es
pi

te
 d

if
fe

re
nt

 
co

nf
ig

ur
at

io
ns

 (
e.

g.
, B

D
 L

SR
Fo

rt
es

sa
 3

 v
s.

 4
 

la
se

rs
)

B
ac

k-
up

 in
st

ru
m

en
ts

 a
t e

ac
h 

si
te

 C
ha

lle
ng

es
: 

re
qu

ir
es

 th
or

ou
gh

 d
at

a 
co

m
pa

ri
so

ns
 a

cr
os

s 
di

ff
er

en
t i

ns
tr

um
en

ts
; s

om
e 

si
te

s 
w

ill
 li

m
it 

an
d 

pr
io

ri
tiz

e 
m

ar
ke

rs
 d

ue
 to

 la
ck

 o
f 

nu
m

be
r 

of
 

pa
ra

m
et

er
s

Si
m

ila
r 

pa
ne

ls
 a

cr
os

s 
si

te
s 

th
at

 u
se

 
sa

m
e 

m
ar

ke
rs

 a
nd

 c
lo

ne
s 

al
be

it 
a 

sl
ig

ht
 d

if
fe

re
nc

e 
in

 m
ar

ke
r/

fl
uo

ro
ch

ro
m

e 
co

m
bi

na
tio

n
C

ha
lle

ng
e:

 d
if

fe
re

nt
 f

lu
or

oc
hr

om
es

 
us

ua
lly

 a
ff

ec
t m

ar
ke

r 
st

ai
ni

ng
 s

en
si

tiv
ity

; 
m

us
t b

e 
ta

ke
n 

in
to

 a
cc

ou
nt

M
ar

ke
r 

ev
al

ua
tio

n 
ac

ro
ss

 p
la

tf
or

m
s 

to
 e

ns
ur

e 
th

at
 p

op
ul

at
io

ns
 o

f 
in

te
re

st
 c

an
 b

e 
de

te
ct

ed
 b

y 
cy

to
m

et
er

s 
at

 e
ac

h 
cl

in
ic

al
 tr

ia
l s

ite
.

C
ha

lle
ng

e:
 ti

m
e-

 a
nd

 r
es

ou
rc

e-
co

ns
um

in
g

Pr
ed

ef
in

ed
 g

at
in

g 
st

ra
te

gy
 a

nd
 

da
ta

 a
cc

ep
ta

nc
e 

cr
ite

ri
a 

al
on

g 
w

ith
 

no
rm

al
iz

at
io

n 
to

 c
on

tr
ol

s
C

ha
lle

ng
e:

 a
 r

ig
id

 a
na

ly
si

s 
m

ay
 

pr
ec

lu
de

 u
ne

xp
ec

te
d 

re
su

lts

Id
ea

l
Id

en
tic

al
 in

st
ru

m
en

ts
 w

ith
 th

e 
sa

m
e 

co
nf

ig
ur

at
io

n
L

ev
y-

Je
nn

in
gs

 p
lo

ts
 f

or
 c

ro
ss

-v
al

id
at

in
g 

Q
C

 
ac

ro
ss

 s
ite

s 
&

 o
ve

r 
tim

e
C

ha
lle

ng
e:

 s
am

e 
in

st
ru

m
en

t c
an

 d
if

fe
r 

in
 

da
ily

 p
er

fo
rm

an
ce

 a
nd

 s
en

si
tiv

ity
; s

om
e 

co
m

pa
ri

so
ns

 o
f 

da
ta

 is
 d

es
ir

ab
le

Id
en

tic
al

 p
an

el
s 

w
ith

 c
on

si
de

ra
tio

n 
to

 
m

in
im

iz
e 

fl
uo

ro
ch

ro
m

e 
sp

ill
ov

er
 a

nd
 

sp
re

ad
C

ha
lle

ng
e:

 th
er

e 
m

ay
 b

e 
lo

t-
to

-l
ot

 
va

ri
ab

ili
ty

 b
et

w
ee

n 
id

en
tic

al
 a

nt
ib

od
ie

s.
 

C
on

si
de

r 
pu

rc
ha

si
ng

 lo
ts

 in
 b

ul
k

U
se

 o
f 

ly
op

hi
liz

ed
 a

nt
ib

od
y 

tu
be

s 
to

 r
ed

uc
e 

or
 e

lim
in

at
e 

lo
t-

to
-l

ot
 v

ar
ia

tio
n 

an
d 

pi
pe

tti
ng

 
er

ro
r

Pe
rf

or
m

 lo
t-

to
-l

ot
 c

ro
ss

ov
er

s 
w

he
n 

us
in

g 
w

et
 

an
tib

od
ie

s
C

ha
lle

ng
e:

 w
he

n 
se

ve
ra

l p
an

el
s 

ar
e 

us
ed

 f
or

 a
 

st
ud

y,
 lo

t-
to

-l
ot

 c
ro

ss
ov

er
 te

st
in

g 
ca

n 
be

co
m

e 
te

di
ou

s,
 e

xp
en

si
ve

, a
nd

 n
ot

 f
ea

si
bl

e

U
se

 o
f 

au
to

m
at

ic
 g

at
in

g 
an

d 
in

de
pe

nd
en

t a
na

ly
se

s 
of

 s
am

e 
sa

m
pl

es
/

da
ta

 b
y 

tw
o 

di
ff

er
en

t s
ite

s.
 I

nt
er

na
l 

co
nt

ro
ls

 to
 a

ss
es

s 
te

ch
ni

ca
l v

er
su

s 
bi

ol
og

ic
al

 v
ar

ia
tio

n
C

ha
lle

ng
e:

 a
 r

ig
id

 a
na

ly
si

s 
m

ay
 

pr
ec

lu
de

 u
ne

xp
ec

te
d 

re
su

lts

C
as

e 
st

ud
y

D
es

ir
ab

le
Si

te
 B

: 5
-l

as
er

 B
D

 L
SR

Fo
rt

es
sa

Si
te

 C
: 3

-l
as

er
 B

D
 L

SR
Fo

rt
es

sa
Id

ea
l i

m
pr

ov
em

en
t: 

us
e 

of
 s

am
e 

in
st

ru
m

en
t 

w
ith

 id
en

tic
al

 c
on

fi
gu

ra
tio

n 
to

 a
llo

w
 f

or
 th

e 
us

e 
of

 id
en

tic
al

 f
lo

w
 p

an
el

s

D
es

ir
ab

le
Si

m
ila

r 
fi

ve
 f

lo
w

 p
an

el
s 

us
in

g 
sa

m
e 

an
tib

od
y 

cl
on

es
Id

ea
l i

m
pr

ov
em

en
t: 

id
en

tic
al

 in
st

ru
m

en
t 

us
ed

 w
ith

 id
en

tic
al

 f
lo

w
 p

an
el

s

D
es

ir
ab

le
W

et
 a

nt
ib

od
y 

tit
ra

te
d 

w
ith

 d
oc

um
en

ta
tio

n 
of

 
re

ag
en

t l
ot

 n
um

be
rs

Id
ea

l i
m

pr
ov

em
en

t: 
va

lid
at

e 
th

e 
us

e 
of

 
an

tib
od

y 
m

as
te

r 
m

ix
es

 a
nd

/o
r 

id
en

tif
y 

w
he

re
 

po
ss

ib
le

 th
e 

us
e 

of
 ly

op
hi

liz
ed

 a
nt

ib
od

y 
tu

be
s 

to
 r

ed
uc

e 
pi

pe
tti

ng

Id
ea

l
Id

en
tic

al
 g

at
in

g 
st

ra
te

gy
, d

at
a 

an
al

yz
ed

 
by

 s
ite

 e
ac

h 
an

d 
al

l d
at

a 
re

vi
ew

ed
 b

y 
co

or
di

na
tin

g 
si

te
O

pe
ra

to
r 

an
d 

tim
e 

be
tw

ee
n 

sa
m

pl
e 

co
lle

ct
io

n 
an

d 
pr

oc
es

si
ng

 w
er

e 
do

cu
m

en
te

d 
to

 a
ss

es
s 

te
ch

ni
ca

l 
va

ri
at

io
n

T
he

 a
pp

lic
at

io
n 

of
 th

re
e 

st
ag

es
 o

f 
st

an
da

rd
iz

at
io

n 
(f

un
da

m
en

ta
l, 

de
si

ra
bl

e,
 a

nd
 id

ea
l)

 to
 f

ou
r 

ca
te

go
ri

es
 (

eq
ui

pm
en

t, 
an

tib
od

y 
pa

ne
l d

es
ig

n,
 a

nt
ib

od
ie

s/
st

ai
ni

ng
 r

ea
ge

nt
s,

 a
nd

 a
na

ly
si

s/
re

po
rt

in
g)

 w
he

n 
de

si
gn

in
g 

fl
ow

 c
yt

om
et

ri
c 

as
sa

ys
 in

 a
 c

lin
ic

al
 tr

ia
l a

nd
 w

he
n 

ap
pl

ie
d 

to
 a

 c
as

e 
st

ud
y 

w
ith

 c
ha

lle
ng

es
 n

ot
ed

.

Eur J Immunol. Author manuscript; available in PMC 2022 April 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 27

Ta
b

le
 2

.

Im
m

un
op

he
no

ty
pi

ng
 p

la
tf

or
m

s

P
la

tf
or

m
N

um
be

r 
of

P
ar

am
et

er
s

T
hr

ou
gh

pu
t

(e
ve

nt
s/

se
co

nd
)

Sc
al

ab
ili

ty

St
an

da
rd

 F
lo

w
 

C
yt

om
et

ry
Ty

pi
ca

lly
: 1

–2
0

M
ax

im
um

 p
ub

lis
he

d:
 3

0 
[9

9]

Ty
pi

ca
lly

: 1
00

0—
10

 0
00

M
ax

im
um

: 1
00

 0
00

•
V

er
y 

hi
gh

 th
ro

ug
hp

ut
 p

er
m

its
 a

cq
ui

si
tio

n 
of

 m
an

y 
ev

en
ts

•
H

ig
h-

th
ro

ug
hp

ut
 s

ys
te

m
s 

al
lo

w
 e

ff
ic

ie
nt

 a
ut

om
at

ed
 a

cq
ui

si
tio

n 
of

 la
rg

e 
nu

m
be

rs
 o

f 
sa

m
pl

es

•
C

os
ts

 a
re

 ty
pi

ca
lly

 <
$1

00
/s

am
pl

e 
1

•
R

el
at

iv
el

y 
sm

al
l f

ile
 s

iz
e 

pe
r 

sa
m

pl
e 

2

Sp
ec

tr
al

 F
lo

w
 

C
yt

om
et

ry
Ty

pi
ca

lly
: 2

0–
30

M
ax

im
um

 p
ub

lis
he

d:
 4

3 
[7

8]

Ty
pi

ca
lly

: 1
00

0–
30

00
M

ax
im

um
: 3

0 
00

0
•

H
ig

h 
th

ro
ug

hp
ut

 p
er

m
its

 a
cq

ui
si

tio
n 

of
 m

an
y 

ev
en

ts

•
H

ig
h 

th
ro

ug
hp

ut
 s

ys
te

m
s 

al
lo

w
 e

ff
ic

ie
nt

 a
ut

om
at

ed
 a

cq
ui

si
tio

n 
of

 la
rg

e 
nu

m
be

rs
 o

f 
sa

m
pl

es

•
C

os
ts

 a
re

 ty
pi

ca
lly

 <
$1

00
/s

am
pl

e 
1

•
L

ar
ge

r 
fi

le
 s

iz
e 

re
la

te
d 

to
 a

cq
ui

si
tio

n 
of

 f
ul

l s
pe

ct
ru

m
 f

or
 e

ac
h 

la
se

r 
2

C
yT

O
F

Ty
pi

ca
l: 

30
–4

0
M

ax
im

um
 p

ub
lis

he
d:

 4
7 

[1
00

]

Ty
pi

ca
lly

: 2
00

–5
00

M
ax

im
um

: 1
00

0
•

Sl
ow

er
 th

ro
ug

hp
ut

 r
eq

ui
re

s 
ex

te
nd

ed
 a

cq
ui

si
tio

n 
tim

e

•
C

os
ts

 a
re

 ty
pi

ca
lly

 <
$3

00
/s

am
pl

e 
th

ou
gh

 s
am

pl
es

 m
ay

 b
e 

ba
rc

od
ed

 a
nd

 m
ul

tip
le

xe
d 

to
 r

ed
uc

e 
ba

tc
h 

ef
fe

ct
s,

 c
os

t, 
an

d 
im

pr
ov

e 
pr

oc
es

si
ng

 e
ff

ic
ie

nc
y 

an
d 

st
ai

ni
ng

 c
on

si
st

en
cy

 1

•
L

ar
ge

 m
as

s 
da

ta
 f

ile
 s

iz
e,

 w
hi

ch
 is

 s
ub

se
qu

en
tly

 c
on

ve
rt

ed
 to

 tr
ad

iti
on

al
 F

C
S 

fi
le

s 
2

C
IT

E
-S

eq
 &

 
R

E
A

P-
Se

q
Ty

pi
ca

l: 
30

–4
0

M
ax

im
um

 p
ub

lis
he

d:
 2

28
 

[1
01

]

N
ot

 a
cq

ui
re

d 
in

 r
ea

l t
im

e;
 

ty
pi

ca
l e

xp
er

im
en

ts
 w

ill
 o

nl
y 

ev
al

ua
te

 <
10

 0
00

/s
am

pl
e

•
V

er
y 

sl
ow

 p
ro

ce
ss

in
g 

to
 d

at
a 

tim
e.

 C
el

ls
 r

eq
ui

re
 p

ar
tit

io
ni

ng
, f

ol
lo

w
ed

 b
y 

cD
N

A
 g

en
er

at
io

n,
 li

br
ar

y 
co

ns
tr

uc
tio

n,
 Q

C
 a

nd
 s

eq
ue

nc
in

g 
w

hi
ch

 c
an

 ty
pi

ca
lly

 ta
ke

 s
ev

er
al

 w
ee

ks
.

•
C

os
ts

 a
re

 ty
pi

ca
lly

 $
10

00
s/

sa
m

pl
e,

 th
ou

gh
 s

am
pl

es
 m

ay
 b

e 
ba

rc
od

ed
 a

nd
 m

ul
tip

le
xe

d 
to

 r
ed

uc
e 

ba
tc

h 

ef
fe

ct
s,

 c
os

t, 
an

d 
im

pr
ov

e 
pr

oc
es

si
ng

 e
ff

ic
ie

nc
y 

at
 th

e 
co

st
 o

f 
to

ta
l c

el
ls

 p
er

 s
am

pl
e 

1

•
V

er
y 

la
rg

e 
se

qu
en

ci
ng

 d
at

a 
fi

le
 s

iz
e,

 o
ft

en
 a

cc
om

pa
ni

ed
 b

y 
sc

R
N

A
-S

eq
 d

at
a

1 C
os

ts
 w

ill
 b

e 
af

fe
ct

ed
 b

y 
nu

m
be

r 
of

 a
nt

ib
od

ie
s.

 I
so

to
pe

 c
on

ju
ga

tio
n 

fo
r 

m
as

s 
cy

to
m

et
ry

 in
cr

ea
se

s 
co

st
s/

an
tib

od
y.

2 Fi
le

 s
iz

e 
w

ill
 b

e 
de

pe
nd

en
t u

po
n 

nu
m

be
r 

of
 e

ve
nt

s 
ac

qu
ir

ed
.

T
he

 n
um

be
r 

of
 p

ar
am

et
er

s 
re

qu
ir

ed
 w

ill
 v

ar
y 

ba
se

d 
on

 e
xp

er
im

en
ta

l n
ee

ds
 a

nd
 r

ea
ge

nt
 a

va
ila

bi
lit

y,
 c

os
t, 

an
d 

in
 th

e 
ca

se
 o

f 
fl

ow
 c

yt
om

et
ry

 p
la

tf
or

m
s,

 m
ar

ke
r 

co
ex

pr
es

si
on

.

Eur J Immunol. Author manuscript; available in PMC 2022 April 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 28

Ta
b

le
 3

.

H
ig

h 
th

ro
ug

hp
ut

 d
at

a 
an

al
ys

is
 to

ol
s

M
et

ho
d

D
es

cr
ip

ti
on

Y
ea

rs
 

(C
it

at
io

ns
)

C
yt

ob
an

k1
•

C
lo

ud
-b

as
ed

 a
na

ly
si

s 
su

ite
 w

ith
 G

U
I 

fe
at

ur
in

g 
in

te
ra

ct
iv

e 
da

ta
 o

ve
rv

ie
w

•
In

cl
ud

es
 p

op
ul

at
io

n 
cl

us
te

ri
ng

 (
i.e

., 
SP

A
D

E
, F

lo
w

SO
M

, C
IT

R
U

S)

•
In

cl
ud

es
 d

im
en

si
on

al
ity

 r
ed

uc
tio

n 
(v

iS
N

E
)a

lg
or

ith
m

s

•
In

fo
rm

at
ic

s 
su

pp
or

t

20
10

 [
10

2]

SP
A

D
E

2
•

Sp
an

ni
ng

-t
re

e 
Pr

og
re

ss
io

n 
A

na
ly

si
s 

of
 D

en
si

ty
-n

or
m

al
iz

ed
 E

ve
nt

s

•
C

lu
st

er
s 

hi
gh

 d
im

en
si

on
 im

m
un

op
he

no
ty

pi
ng

 d
at

a 
us

in
g 

hi
er

ar
ch

ic
al

 c
lu

st
er

in
g 

th
at

 is
 m

ap
pe

d 
on

to
 a

 m
in

im
al

 s
pa

nn
in

g 
tr

ee

•
T

re
e 

no
de

s 
co

rr
es

po
nd

 to
 c

lu
st

er
s 

of
 c

el
ls

 w
ith

 c
om

m
on

 p
he

no
ty

pe
s.

•
T

ra
di

tio
na

l p
op

ul
at

io
ns

 c
an

 b
e 

as
si

gn
ed

 to
 tr

ee
 n

od
es

 v
ia

 it
er

at
iv

e 
ex

am
in

at
io

n 
of

 m
ar

ke
rs

.

20
11

 [
10

3]

C
IT

R
U

S2
•

C
lu

st
er

 I
de

nt
if

ic
at

io
n,

 C
ha

ra
ct

er
iz

at
io

n,
 a

nd
 R

eg
re

ss
io

n.

•
Id

en
tif

ie
s 

hi
gh

-d
im

en
si

on
al

 c
el

l c
lu

st
er

s 
th

at
 a

ss
oc

ia
te

 w
ith

 e
xp

er
im

en
ta

l g
ro

up
s.

•
A

gg
re

ga
te

s 
da

ta
 f

ro
m

 a
ll 

sa
m

pl
es

 a
nd

 th
en

 p
er

fo
rm

s 
hi

er
ar

ch
ic

al
 c

lu
st

er
in

g.

•
U

se
s 

re
gu

la
ri

ze
d 

re
gr

es
si

on
 m

od
el

 to
 id

en
tif

y 
cl

us
te

rs
 a

nd
 f

ea
tu

re
s 

th
at

 s
ig

ni
fi

ca
nt

ly
 d

if
fe

r 
be

tw
ee

n 
ex

pe
ri

m
en

ta
l g

ro
up

s

20
14

 [
10

4]

Fl
ow

SO
M

1
•

C
lu

st
er

s 
us

in
g 

se
lf

-o
rg

an
iz

in
g 

m
ap

s 
fo

llo
w

ed
 b

y 
m

in
im

al
 s

pa
nn

in
g 

tr
ee

 to
 o

rg
an

iz
e 

hi
gh

-d
im

en
si

on
al

 im
m

un
op

he
no

ty
pi

ng
 d

at
a.

•
Fa

st
er

 c
lu

st
er

in
g 

al
go

ri
th

m
 th

an
 S

PA
D

E
.

•
A

dd
s 

m
ar

ke
r 

ex
pr

es
si

on
 v

is
ua

liz
at

io
ns

 to
 n

od
es

 to
 f

ac
ili

ta
te

 p
op

ul
at

io
n 

id
en

tif
ic

at
io

n

•
E

xh
ib

its
 h

ig
h 

pr
ec

is
io

n 
an

d 
co

he
re

nc
e.

•
R

eq
ui

re
s 

nu
m

be
r 

of
 c

lu
st

er
s 

to
 b

e 
pr

ed
et

er
m

in
ed

20
15

 [
10

5]

Ph
en

oG
ra

ph
2

•
C

lu
st

er
s 

po
pu

la
tio

ns
 u

si
ng

 th
e 

k-
ne

ar
es

t n
ei

gh
bo

rs
 (

K
N

N
) 

te
ch

ni
qu

e 
to

 d
et

ec
t c

on
ne

ct
iv

ity
 a

nd
 d

en
si

ty
 p

ea
ks

 a
m

on
g 

ce
lls

 e
m

be
dd

ed
 in

 h
ig

h-
di

m
en

si
on

al
 s

pa
ce

s.

•
E

xh
ib

its
 h

ig
h 

pr
ec

is
io

n,
 c

oh
er

en
ce

, a
nd

 s
ta

bi
lit

y.

•
M

ay
 b

e 
ov

er
w

he
lm

ed
 b

y 
ex

tr
em

el
y 

la
rg

e 
sa

m
pl

e 
si

ze
s.

20
15

 [
10

6]

C
el

lC
nn

•
C

om
bi

ne
s 

un
su

pe
rv

is
ed

 c
el

l s
ub

se
tti

ng
 o

f 
hi

gh
-d

im
en

si
on

al
 s

in
gl

e-
ce

ll 
m

ea
su

re
m

en
ts

 w
ith

 s
up

er
vi

se
d 

di
se

as
e/

ph
en

ot
yp

e 
as

so
ci

at
io

n 
us

in
g 

m
ac

hi
ne

 
le

ar
ni

ng
.

•
E

ff
ec

tiv
e 

fo
r 

id
en

tif
ic

at
io

n 
an

d 
as

so
ci

at
io

n 
of

 r
ar

e 
ce

ll 
po

pu
la

tio
ns

 (
fr

eq
ue

nc
ie

s 
as

 lo
w

 a
s 

0.
01

%
).

•
N

et
w

or
k 

tr
ai

ni
ng

 s
ca

le
s 

lin
ea

rl
y 

w
ith

 th
e 

nu
m

be
r 

of
 m

ea
su

re
d 

co
m

po
ne

nt
s.

20
17

 [
10

7]

Eur J Immunol. Author manuscript; available in PMC 2022 April 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 29

M
et

ho
d

D
es

cr
ip

ti
on

Y
ea

rs
 

(C
it

at
io

ns
)

•
R

eq
ui

re
s 

te
ch

ni
ca

l c
od

in
g 

ex
pe

rt
is

e 
fo

r 
im

pl
em

en
ta

tio
n.

M
et

aC
yt

o
•

D
es

ig
ne

d 
to

 a
na

ly
ze

 d
at

a 
fr

om
 d

if
fe

re
nt

 e
xp

er
im

en
ta

l d
es

ig
ns

, e
na

bl
in

g 
m

et
a-

an
al

ys
is

 a
cr

os
s 

st
ud

ie
s,

 th
us

, i
nc

re
as

in
g 

st
at

is
tic

al
 p

ow
er

•
C

lu
st

er
in

g 
m

et
ho

ds
 c

an
 th

en
 b

e 
em

pl
oy

ed
 (

i.e
., 

Fl
ow

SO
M

, h
ie

ra
rc

hi
ca

l)

•
Si

lh
ou

et
te

 s
ca

nn
in

g 
is

 th
en

 u
se

d 
to

 id
en

tif
y 

ce
lls

 w
ith

 c
om

m
on

 im
m

un
op

he
no

ty
pe

s 
ac

ro
ss

 s
tu

di
es

20
18

 [
10

8]

A
st

ro
la

be
1,

2
•

C
lo

ud
-b

as
ed

 a
na

ly
si

s 
su

ite
 w

ith
 g

ra
ph

ic
al

 u
se

r 
in

te
rf

ac
e 

(G
U

I)

•
C

lu
st

er
s 

us
in

g 
Fl

ow
SO

M
 a

nd
 f

ea
tu

re
s 

au
to

m
at

ed
 p

op
ul

at
io

n 
la

be
lli

ng
 b

as
ed

 o
n 

ca
no

ni
ca

l a
nt

ig
en

 e
xp

re
ss

io
n.

•
V

is
ua

liz
at

io
n 

of
 p

op
ul

at
io

n 
st

ru
ct

ur
e 

us
in

g 
PC

A
, t

SN
E

, a
nd

 S
ca

ff
ol

d 
m

ap
s

•
In

cl
ud

es
 d

at
a 

cl
ea

n-
up

 a
nd

 d
em

ul
tip

le
x 

fe
at

ur
es

•
In

cl
ud

es
 f

ol
lo

w
-u

p 
an

al
ys

es
 o

f 
di

ff
er

en
tia

l e
xp

re
ss

io
n 

an
d 

vo
lc

an
o 

pl
ot

s 
to

 id
en

tif
y 

im
m

un
e 

si
gn

at
ur

es
 o

f 
cl

in
ic

al
 o

ut
co

m
e.

20
19

 [
10

9]

1 Fe
e 

fo
r 

us
e.

2 A
va

ila
bl

e 
as

 a
 p

lu
g-

in
 f

or
 s

om
e 

co
m

m
er

ci
al

 f
lo

w
 c

yt
om

et
ry

 a
na

ly
si

s 
so

ft
w

ar
e.

Fe
at

ur
es

 o
f 

av
ai

la
bl

e 
da

ta
 a

na
ly

si
s 

to
ol

s 
ar

e 
pr

es
en

te
d 

w
ith

 la
un

ch
 y

ea
rs

 a
nd

 c
ita

tio
ns

.

Eur J Immunol. Author manuscript; available in PMC 2022 April 13.


	Abstract
	Introduction
	General approaches for cross-site and cross-study sample standardization
	Sample collection, storage, and transportation
	Appropriate controls and documentation

	Defining the current state of fluorescence flow cytometry assay standardization
	Equipment
	Antibody panel design
	Antibodies/staining reagents
	Analysis/reporting

	Case study: Standardization of a fresh whole blood flow cytometry assay across multiple sites
	Integrating modern immunophenotyping platforms in T1D studies
	Innovations in fluorescence-based flow cytometry
	Mass cytometry
	Oligonucleotide-based antibody profiling
	Choosing a platform

	High parameter data analysis tools
	Expanding horizons
	Big data challenges
	Distilling meaning from the noise

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.

