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ABSTRACT

Objectives: Electronic health records (EHRs) contain a large quantity of machine-readable data. However, insti-

tutions choose different EHR vendors, and the same product may be implemented differently at different sites.

Our goal was to quantify the interoperability of real-world EHR implementations with respect to clinically rele-

vant structured data.

Materials and Methods: We analyzed de-identified and aggregated data from 68 oncology sites that imple-

mented 1 of 5 EHR vendor products. Using 6 medications and 6 laboratory tests for which well-accepted stand-

ards exist, we calculated inter- and intra-EHR vendor interoperability scores.

Results: The mean intra-EHR vendor interoperability score was 0.68 as compared to a mean of 0.22 for inter-

system interoperability, when weighted by number of systems of each type, and 0.57 and 0.20 when not weight-

ing by number of systems of each type.

Discussion: In contrast to data elements required for successful billing, clinically relevant data elements are

rarely standardized, even though applicable standards exist. We chose a representative sample of laboratory

tests and medications for oncology practices, but our set of data elements should be seen as an example, rather

than a definitive list.

Conclusions: We defined and demonstrated a quantitative measure of interoperability between site EHR sys-

tems and within/between implemented vendor systems. Two sites that share the same vendor are, on average,

more interoperable. However, even for implementation of the same EHR product, interoperability is not guaran-

teed. Our results can inform institutional EHR selection, analysis, and optimization for interoperability.

Key words: electronic health records, information storage and retrieval, data aggregation, data management, common data ele-

ments, data warehousing

VC The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

753

Journal of the American Medical Informatics Association, 29(5), 2022, 753–760

https://doi.org/10.1093/jamia/ocab289

Advance Access Publication Date: 7 January 2022

Research and Applications

https://orcid.org/0000-0003-0869-6316
https://academic.oup.com/
https://academic.oup.com/


INTRODUCTION

Interoperability is the “degree to which two or more systems, prod-

ucts or components can exchange information and use the informa-

tion that has been exchanged.”1 The widespread implementation of

electronic health records (EHRs) has focused attention on the ability

to share structured (clinical) data between sites; or, to be more pre-

cise, between EHR implementations.2,3 However, interoperability is

often discussed as a binary property without consideration of any

particular task or purpose. Clearly, it is possible for 2 systems to be

able to share some data types (eg, demographics), but not others (eg,

laboratory results). In addition, the sharing of a particular data type

may be suitable for one purpose but not another. Thus, interopera-

bility is a continuum based on context, rather than an absolute.

Interoperability can be subtyped even further. Interoperability

can be assessed between specific EHR implementations (inter-system

interoperability), answering the question: Can sites A and B ex-

change information? Interoperability can also be assessed between

EHR vendors, answering the question: Can sites that implement a

particular vendor’s product share information? Intra-vendor inter-

operability refers to the ability to share information between instan-

ces of the same vendor’s product (eg, Epic $ Epic). Inter-vendor

interoperability refers to the ability to share information between

instances of different vendor products (eg, Epic$ Cerner). The lat-

ter question is relevant to sites that are choosing to implement a new

or replacement EHR system. Will choosing the same EHR vendor as

a likely partner increase interoperability?

In previous work, we found that standards were used consis-

tently for diagnoses (ICD-9/104) and encounter data (CPT5) often

for race, and rarely for medications (RxNorm6), laboratory tests

(Logical Observation Identifiers Names and Codes [LOINC]7), or

biomarkers.8,9 However, selection of EHR vendor is sometimes

made on the basis of perceived interoperability. For example, 2 col-

laborating entities may choose the same EHR vendor in hopes of be-

ing able to share data more easily, even if the data do not necessarily

conform to a particular standard. To assess inter- and intra-EHR in-

teroperability, we propose an approach to quantitating interopera-

bility and report results based on a real-world sample of 68 sites.

METHODS

Data source
In 2014, the American Society of Clinical Oncology (ASCO),

through its wholly owned nonprofit subsidiary CancerLinQ LLC,

developed and implemented the health technology platform Cancer-

LinQ to help improve the quality of cancer care and to generate new

insights, by delivering a suite of electronic clinical measures and

dashboards to oncologists and by enabling the creation of de-

identified secondary-use real-world data sets, respectively. Cancer-

LinQ extracts, aggregates, and normalizes structured data sourced

primarily from the EHRs of participating centers.10 This presents

the opportunity to evaluate the standards in use for structured data

across a sample of oncology practices as well as the degree to which

the EHRs implemented at these practices are interoperable with re-

spect to structured data.

Sites
For purposes of this analysis a “site” is a CancerLinQ subscriber

site, that is, an entity with a Business Associate Agreement, plus an

EHR software system. Thus an organization with multiple physical

locations or multiple instances of the same EHR vendor system (eg,

2 Epic instances) is considered one site. Conversely, a single sub-

scriber with multiple EHR vendor systems (eg, an instance of Epic

and an instance of Cerner) is represented as multiple sites. We in-

cluded only EHR vendors (eg, Epic, Cerner) for which there were 3

or more sites. We masked EHR vendor names (in part to avoid re-

vealing the identities of sites) but the 5 systems chosen (labeled A–E

in the figures) were a subset of the CancerLinQ supported EHR list

of: Allscripts (Allscripts, Chicago, IL), Aria (Varian Medical Sys-

tems, Palo Alto, CA), Centricity (General Electric, Boston, MA),

Cerner (Cerner, North Kansas City, MO), Clarity (Epic Systems, Ve-

rona, WI), Intellidose (IntrinsiQ, LLC, Burlington, MA), MOSAIQ

(Elekta, Stockholm, Sweden), NextGen (NextGen Healthcare, Ir-

vine, CA), and OncoEMR (Flatiron Health, New York, NY). Using

these criteria, 68 sites were analyzed.

Data element selection
We previously found that procedure and diagnosis codes (eg, CPT5

and ICD-9/104]) were consistently used, most likely for billing rea-

sons.8 For this analysis, we selected a set of common laboratory tests

and medications (Table 1). We focused on laboratory tests and medi-

cations because these data types are associated with standards recom-

mended by the Office of the National Coordinator for Health

Information Technology (ONC).11 Specifically, the ONC recommends

using LOINC for laboratory results and RxNorm for medications.

To assess medication variability, we selected widely prescribed

drugs such as acetaminophen and dexamethasone as well as com-

mon cancer therapeutic agents such as carboplatin, trastuzumab,

and nivolumab. These selections were based upon consensus of the

authors, informed by their domain knowledge and experience with

interoperability and health data standards.

For medications, we used both ordered and administered medi-

cations, which CancerLinQ manages in separate tables, given the

variability that we see in the use of these concepts at various sites.

We restricted our analysis to native EHR data, excluding cancer reg-

istry data and any data abstracted from clinical notes obtained

through a manual curation pipeline.10 We only examined lab and

medication name original values and did not assess categorical

responses, units, etc.

Variability assessment
CancerLinQ receives data from EHRs as original values, that is, the

representation of the value in the EHR. These are transformed by

CancerLinQ into codified values, that is, the same content but coded

to a controlled biomedical terminology (see Potter et al10 for a de-

scription of this process) via specific rules. These transformations

are both syntactic (ie, structural) and semantic (ie, related to mean-

ing). For example, a cancer stage group listed as “2A” in the EHR is

transformed from whatever table and variable name is used locally

into a triplet in the CancerLinQ procedure_performed table. For our

example, the triplet comprises the stagegroup_codesystem that de-

fined the specific controlled terminology used for that particular

datum (ie, SNOMED CT12) a stagegroup_code, the concept unique

identifier (CUI) from the code system that represents the value “2A”

(SNOMED CUI 261614003); and a stagegroup_codelabel that has a

human readable form of the coded value (“Stage 2A”).

Some data elements, such as laboratory tests, medication orders,

and administration events were constructed from multiple triplets. In

these cases, the full semantics of the data element are captured by their

presence in the specific table plus a series of triplets. For a laboratory

test that would involve a labtestname triplet and either a labtestvalue
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numeric field and labtestunits triplet or a labtestvalue triplet for tests

with categorical values (eg, positive/negative, 1þ, 2þ, 3þ, etc.). For a

medication order, the element is constructed from the presence in the

order table and a set of triplets that describe medicationname, medica-

tionroute, medicationunits, etc. In addition to the triplets, CancerLinQ

retains the “original value,” making each triplet a quadruplet, al-

though these values are neither presented to users nor included in sec-

ondary-use de-identified datasets for researchers.

Data are frequently received from EHRs in inconsistent ways.

For example, laboratory tests from the same system can be received

as LOINC7 coded values with the local “original values” attached,

or just as the “original value” string. Some systems provide only the

“original value” strings, and even where the test is coded, the coding

can represent different levels of abstraction. For example, a test for

hematocrit can be coded as a hematocrit or as a Complete Blood

Count, meaning that the original value string is often key to under-

standing what is transferred. For this reason, we used these “original

value” strings to assess the degree of variability.

Initial assessments of variability were determined by simply

counting the number of distinct inbound original values that were

coded to the same codified value with larger numbers indicating

greater variability. That is, we counted the number of distinct origi-

nal values from an EHR that were mapped to the same value. We fo-

cused on the name of the medication or test rather than the results

(which would have undoubtedly added additional variability to the

equation). Further, mapping requires clinical judgment (eg, should

venous hematocrit be mapped the same value as arterial hematocrit).

We did not analyze mapping accuracy and assumed that judgments

made by human analysts to be correct.

Note that we defined “distinct” to mean string variants. This in-

cluded names with variant capitalization (eg, Hematocrit vs hemato-

crit) or medications that attach dosage units or have different

spacing. In addition, we coded to ingredient levels for medications

(ie, any RxNorm6 variant or text string representing acetaminophen,

including dose variants and brand vs generic medications). This ap-

proach is important because meaning can depend on capitalization,

for example, estimated Glomerular Filtration Rate (eGFR) versus

Epidermal Growth Factor Receptor (EGFR) and because machines

do not apply clinical knowledge.

Interoperability assessment
We developed an objective measure of the likelihood that an

unmodified record transmitted from one site to another can be un-

derstood. For this purpose, we define “understood” to mean that

the specific text string used to define the meaning of the data ele-

ment was used in the recipient site. This presupposes that the data

item is meaningful in the recipient site, but we view this as reason-

able given that it suggests that the data are comparable with data al-

ready existing in the recipient system (eg, can count the number of

patients with a hematocrit < 30%).

We first created a series of matrices that represent the variability

for each of the selected lab tests and medications within each site.

These matrices, designated OV[name] had n rows each representing

a site with a particular EHR and m columns with each representing

one of the inbound original values that was mapped to a specific

LOINC code or RxNorm ingredient code across the entire database.

Each cell O[name]i, j contained the fraction of inbound values at

site i that were represented using form (representation) j. Thus, if

the jth original value for hematocrit was “Hct,” then O[name]i, j

would represent the fraction of hematocrit values from site i that

were indicated by an entry of “Hct.” Similarly if the kth original

value was “hematocrit,” then O[name]i, k would represent the frac-

tion of hematocrit values from site i that were indicated by an entry

of “hematocrit.” The sum of each row equals 1 as each cell is a frac-

tion of the data that was recorded using the particular original

value. The maximum value for the sum of a column is m if and only

if all sites used the same representation for that test or variable.

Calculation of interoperability for a data element value

pair
We calculated probability matrices (P) that a value sent from site i

would be understood at site j. The matrices each have n rows and

columns, with each row and column representing a site, and each

cell Pi, j representing the probability that a value transmitted from

site i to site j (as an original value) had been seen before. The proba-

bility was calculated as follows:

Pi;j ¼
Xm�1

0

Oi;mmatchðOi;m;Oj;mÞ

matchðOi;m;Oj;mÞ ¼ 1 if Oj;m 6¼ 0; else 0

For example, consider a data type with 4 original values, W, X,

Y, and Z. Site A is distributed 33% W, 33% X, and 34% Y. Site B is

distributed 25% each for W, X, Y and Z. P1,2 will be 1.0, since all

variants from site A are seen in site B (calculation is

0.33(1)þ0.33(1)þ0.33(1)þ0(0)). The measure is not symmetric. PB,

Table 1. Set of data elements used to determine interoperability

Category Value Code system Coded value

Medication Acetaminophen RxNorm 161

Medication Cisplatin RxNorm 2555

Medication Dexamethasone RxNorm 3264

Medication Carboplatin RxNorm 40 048

Medication Trastuzumab RxNorm 224 905

Medication Nivolumab RxNorm 1 597 876

Lab test Hemoglobin (mass/volume) in blood LOINC 718-7

Lab test Alanine aminotransferase (enzymatic activity/volume) in serum or plasma LOINC 1742-6

Lab test Creatinine (Mass/volume) in serum or plasma LOINC 2160-0

Lab test Urea nitrogen (Mass/volume) in serum or plasma LOINC 3094-0

Lab test Hematocrit (volume fraction) of blood LOINC 20 570-8

Lab test Leukocytes (#/volume) in blood LOINC 26 464-8

Abbreviation: LOINC: Logical Observation Identifiers Names and Codes.
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A¼0.75 as 25% of the values at site B are not present at site A. The

diagonal is always 1.

The calculation yielded a 68 by 68 matrix where each row repre-

sents a sending site and each column a receiving site. The diagonal

represents site A versus site A and so it has the value of 1. The ma-

trix is not symmetric across the diagonal. For example, consider 2

sites (sites A and B) with 2 common representations (ie, both A and

B have these 2 representations) and one additional representation at

the second site (ie, site B has one additional representation, thus 3

different representations at site B, but only 2 at site A). Since all of

the representations from site A (2 representations) will be under-

standable at site B (3 representations), but the reverse is not true.

Calculation of inter-site interoperability
Intuitively, we considered inter-institutional interoperability to be a

function of the data element pair interoperability (described above).

In other words, institutional EHR implementations were interopera-

ble to the extent that they could meaningfully exchange data ele-

ment pairs. We created a virtual 3-dimensional matrix consisting of

the interoperability matrices described above. Functionally, the x

and y axes are sites as before, and the z axis moves along the ele-

ments listed in Table 1. We then calculated the mean for each x and

y pair across the z dimension, yielding an inter-site interoperability

score matrix. This is another 68 by 68 matrix with a diagonal that is

filled with 1s, and that is not symmetric across the diagonal.

Conceptually, we took the probability matrices for each of the

tested values and created a 3-dimensional n � n � v matrix where v

is the number of laboratory results or medications examined. Each

of the first 2 dimensions represents an EHR vendor plus site combi-

nation and the third dimension represents a score for one of the mea-

sured data elements. We then calculate an inter-site interoperability

score for site i and site j by calculating the mean interoperability

score for all of the individual measures for those 2 sites as below:

Ii;j ¼
1

v

Xv�1

0

Pi;j

Intuitively, we are taking a slice out of the z-dimension of the 3-

dimensional matrix for each value in the x- and y-dimensions and

calculating the mean value in that slice, and then placing this value

in a new 2-dimensional matrix I of dimension n � n with each row

and column representing a site. The maximum value for each cell is

1 and the minimum is 0. The diagonal is defined to be 1; however,

in this matrix we set the Ii, i to null where i¼ j to support our final

analysis. Each data type is weighted equally (ie, interoperability of

acetaminophen is equally important as interoperability of hemato-

crit).

Calculation of inter- versus intra-electronic health

records vendor interoperability
Intuitively, inter-vendor interoperability reflects the ability of imple-

mentations of different vendor products to meaningfully share data

(eg, Epic$ Cerner). Similarly, intra-vendor interoperability reflects

the ability of same-vendor implementations to meaningfully share

data (eg, Epic $ Epic). To determine inter-vendor interoperability,

we computed the average of the interoperability scores of each EHR

vendor versus other EHR vendors. Functionally, we calculated the

mean of a series of regions representing each EHR. Intra-vendor in-

teroperability regions are focused around the diagonal and inter-

vendor interoperability scores are off of the diagonal. We did not in-

clude the values along the diagonal in the calculation of the intra-

vendor interoperability because the diagonal represents interopera-

bility within a specific instance of an EHR system (ie, the site ex-

changing data with itself, which is by definition 1.0 and would

artificially inflate the interoperability score). This yields a 5 by 5 ma-

trix that provides a rough measure of interoperability between

implemented EHR vendor products, as opposed to between 2 spe-

cific EHR instances.

RESULTS

We analyzed 12 data elements at 68 sites. Thus, these calculations

yielded a series of 12 matrices of size 68 by n where n is the number

of distinct inbound values for each individual data element. As an

example, consider the hypothetical element that indicates smoking

status (not evaluated in this work) that is labeled “Smoking” in 20

EHR implementations, “Smoking Status” in 20 EHR implementa-

tions, “Smoke Stat” in 20 EHR implementations, and “Tobacco

Use” in 30 EHRs. The matrix for this data element would have 68

rows and 4 columns. If EHR implementation number 1 had 95% of

its smoking status data coded to “Smoking” and 5% to “Tobacco

Use,” the first row of the matrix would be [0.95,0,0,0.05]. The rest

of the matrix would be calculated similarly for each of the other

EHR installations. The key is that the number of columns in the ma-

trix defines the totality of all representations of the same data ele-

ment across all EHRs examined.

A sample portion of such a matrix is shown in Figure 1. Nota-

bly, even standard data elements such as hematocrit had many dif-

ferent representations. As indicated, the matrix values are the

fractions of each row that is represented as this original value, and

each row sums to 1.0. Generally, highly consistent representations

of data internal to a single implementation of an EHR yield rows

with single cells with high scores (eg, the cells in Figure 1 with val-

ues of 0.95 or 1.0). Internally inconsistent representations will have

values distributed across multiple cells (eg, a number of EHR “C”

installations represent this data element using representation 20 for

this data element from 19% to 27%, with other values comprising

the remainder of the 73% to 81% of the values.)

Interoperability for a data element value pair
Figure 2 shows the 68 by 68 matrix. Each row represents a sending

site and each column a receiving site. Visually, it is apparent that

sites that share the same vendor tend to be relatively interoperable,

but this is not universally true. For example, although sites imple-

menting vendor C are relatively interoperable with other sites imple-

menting vendor C, they are also interoperable with some, but not all

sites implementing vendor A.

Inter-site interoperability
Figure 3 shows the resulting 68 by 68 matrix. Again, sites imple-

menting the same vendor product tend to be more interoperable.

However, this is neither guaranteed nor exclusive. For example, sites

implementing vendor A vary with respect to their interoperability

with each other and are somewhat interoperable with some, but not

all sites implementing vendor C.

Inter- versus intra-electronic health records vendor in-

teroperability
Figure 4 quantitatively summarizes the inter- and intra-vendor in-

teroperability.
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The mean intra-vendor interoperability score was 0.68, com-

pared to a mean of 0.22 for inter-vendor interoperability, when

weighted by number of sites implementing the particular vendor’s

product, and 0.57 and 0.20 when not weighting for the number of

sites implementing that vendor’s product.

DISCUSSION

We proposed an approach to calculate objective interoperability

scores and demonstrated this approach using data from 68 real-

world EHR implementations from a variety of vendors. We found

that inter-vendor interoperability was lower than intra-vendor inter-

operability (0.22 vs 0.68, respectively, if weighted by the number of

implementing sites). Thus, 2 sites that implement the same vendor

product are more likely to be able to share data (laboratory test

results and medications). However, interoperability is far from per-

fect.

To our knowledge, this is the first attempt to define and demon-

strate an objective approach to quantifying interoperability using

real-world structured data within EHRs. A major strength of our

study is the relatively large sample of 68 sites with real-world data

that were collected for routine clinical care. Although we did not in-

clude all EHR vendors, our sample included 4 of the 7 most fre-

quently implemented vendors based on expenditure-weighted

Meaningful Use attestation rates of certified EHRs.13

We recognize that the specifics of our interoperability score rep-

resent a particular set of choices and that a community consensus

might differ from these choices. Initially, we examined a measure

based on vector distances, that is, we treated each row on the initial

distribution matrix (O) as a vector, and constructed the equivalent

of P using P(i, j) as the vector distance between rows i and j. Such a

measure created a transposable matrix (in contrast to the measure

we ultimately selected) that provided a good measure of similarity,

but did not reflect whether the value had been seen, and therefore

was likely to be understood, at the receiving site.

The particular data elements that we selected to assess interoper-

ability and the even weight given to these selections are an example,

not a definitive recommendation for calculating a formal and repro-

ducible interoperability score. Many important categories of clinical

data were not included. Since our data were derived from oncology

practices, we chose a small subset of medications, some used to treat

a variety of conditions (eg, acetaminophen, dexamethasone) and

some cancer-specific (eg, cisplatin, carboplatin). Similarly, we chose

a small subset of laboratory test results. Less commonly prescribed

medications and less frequently checked laboratory values are likely

to be even less interoperable.

Another limitation is that we did not leverage EHR data extrac-

tion and export tools. For example, we did not make our assess-

ment based on Clinical Data Architecture (CDA) extracts or

translation layers that might be included in some EHR implementa-

tions but not others. Instead, we analyzed the data present in the

EHR. The use of directly stored values could be an issue if the EHR

stores coded information rather than as understandable text. For

example, some EHRs code performance status based on the Eastern

Cooperative Oncology Group scale as “2.” The meaning of “2” is

driven by a combination of the context in which it is stored and the

values that are used to represent the data element. Within the EHR

(and potentially in a CDA extract) this information could be clearly

understandable, but becomes functionally useless without that con-

text.

Figure 1. Representation matrix. Rows are instances of electronic health records vendor products (eg, implementation of vendor A, B, etc.), columns are distinct

representations of a particular data item (eg, hematocrit). Rows do not sum to 1.0 because we are showing only a portion of the entire matrix. The cells are color-

coded by value (darker green ¼ larger fraction of data following that representation).
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Organizations with multiple instances of the same vendor prod-

uct (eg, multiple Epic instances, but no Cerner instances) were con-

sidered one site. Thus, we were not able to calculate “within site”

variability for organizations with multiple instances of the same ven-

dor product. Due to restrictions on the data set imposed for confi-

dentiality reasons, we cannot re-analyze the data to address this

question, so it must be left to future work. However, we expect this

situation to occur rarely, if ever, thus the impact on our results was

likely small. Due to variable use of coded values, we measured inter-

operability using local “original values.” Over time, we saw sub-

stantial improvement in the capture of coded information,

particularly in laboratory tests, but many key oncology tests remain

uncoded in the EHR due to the mechanics of collecting the informa-

tion. One prime example of this is estrogen and progesterone recep-

tor and human epidermal growth factor receptor 2 (HER2) status in

breast cancer. Because this information is manually transcribed

from pathology reports by clinicians, it often comes with no coding,

despite the fact that the actual value and methods (particularly for

HER2) can be crucial for making clinical decisions.

We hope that the informatics community will take our work and

expand upon it to develop a nuanced and relevant measure (or mul-

tiple measures) of interoperability. Multiple measures may be

needed because some medical specialties, such as radiation oncol-

ogy, may require assessment of data elements that are not relevant

for general EHRs. Interoperability measures should also account for

increased use of coded values, and whether the coding specifics im-

prove or hinder interoperability.

An alternative to developing specialty-specific measures is to cre-

ate an interoperability profile based on data types such as medica-

tions, laboratory results, risk assessments, etc. This approach has

the advantage of allowing for reasonable interoperability measures

with systems that support limited subsets of medical care (eg, ePre-

scribing or imaging). Thus, 2 systems may be more interoperable

with respect to medications, for example, than with respect to labo-

ratory test results. We expect that all such approaches will require

careful selection of data elements and values to measure, and deter-

minations of reasonable weights for each of the elements (eg, com-

mon medications may be weighted more than rare medications).

In practice, interoperability is determined by a combination of

product features chosen by the vendor (eg, defaults) and implemen-

tation choices made by the institution (eg, how to represent a partic-

ular data type, legacy data, etc.). A potentially interesting

consequence of implementing objective measures of interoperability

is that vendors or institutions will focus interoperability efforts on

the data elements chosen for assessment of interoperability. Just as

in the economics domain where the Consumer Price Index can be

manipulated to artificially reduce apparent inflation, it will be im-

portant to ensure that certification does not replace poor interopera-

Figure 2. Interoperability matrix for an example data element. Each column row represents a vendor product implemented at a site for an example data element.

758 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5



bility with poor interoperability except for a few chosen data ele-

ments.

In this article, we describe a quantitative approach to measuring

interoperability using real-world data. We demonstrated our ap-

proach by assessing interoperability between sites and implementa-

tions of vendor products. Overall, interoperability was relatively

poor with a maximum of 0.68. In the most favorable case (intra-ven-

dor, weighted for the number of sites) approximately two-thirds of

data types will be “understood” by a receiving site. Thus, institu-

tions implementing products sold by the same vendor are likely to

be more interoperable than institutions implementing products sold

by different vendors. However, vendor choice does not ensure reli-

able interoperability. Reliable interoperability requires institutions

to map their data to the same standards and ensure that mapping

practices are consistent across institutions.

FUNDING

This work was supported in part by the National Center for Advancing

Translational Sciences (NCATS) under awards UL1TR000371 and

U01TR002393; the Cancer Prevention and Research Institute of Texas

Figure 3. Interoperability matrix for all data elements (inter-site interoperability). A–E represent 5 distinct vendors. Each cell represents the interoperability be-

tween products grouped by vendor on the X and Y axes.

Figure 4. Inter- versus intra-electronic health records interoperability.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5 759



(CPRIT), under award RP170668, ASCO CancerLinQ, LLC and the Rey-

nolds and Reynolds Professorship in Clinical Informatics.

AUTHOR CONTRIBUTIONS

EVB, JLW, JCK, EA, WR, GK, RSM, and JLC conceived the study idea. EVB,

RSM, and GK wrote the initial manuscript. GK performed the data analysis.

All authors revised and expanded the manuscript. GK, RSM, WR provided

the data. All authors reviewed and approved the manuscript prior to submis-

sion.

ACKNOWLEDGMENTS

Dr. Rubinstein participated in this work prior to joining the Food and Drug

Administration. This work and related conclusions reflect the independent

work of study authors and does not necessarily represent the views of the

Food and Drug Administration or US government.

CONFLICT OF INTEREST STATEMENT

Wendy Rubinstein, George Komatsoulis, and Robert S. Miller made contribu-

tions to this study while employees of CancerLinQ, LLC.

DATA AVAILABILITY

The data underlying this article cannot be shared publicly due to CancerLinQ

policies.

REFERENCES

1. ISO/IEC/IEEE. Systems and software engineering – Vocabulary

2017. https://standards.iso.org/ittf/PubliclyAvailableStandards/c071952_

ISO_IEC_IEEE_24765_2017.zip (item 3.2089, p. 235). Accessed Decem-

ber 30, 2021.

2. Walker J, Pan E, Johnston D, et al. The value of health care information

exchange and interoperability. Health Affairs 2005; 24 (Suppl1): W5-

10–18.

3. Halamka JD, Tripathi M. The HITECH era in retrospect. N Engl J Med

2017; 377 (10): 907–9.

4. Classification of Diseases (ICD). World Health Organization. https://

www.who.int/standards/classifications/classification-of-diseases.

Accessed September 17, 2021.

5. Current Procedural Terminology (CPT). American Medical Association.

https://www.ama-assn.org/amaone/cpt-current-procedural-terminology.

Accessed September 17, 2021.

6. RxNorm. National Library of Medicine (National Institutes of Health).

https://www.nlm.nih.gov/research/umls/rxnorm/index.html. Accessed

September 17, 2021.

7. McDonald CJ, Huff SM, Suico JG, et al. LOINC, a universal standard for

identifying laboratory observations: a 5-year update. Clin Chem 2003; 49

(4): 624–33.

8. Bernstam EV, Warner JL, Ambinder E, et al. Continuum of interop-

erability in oncology EHR implementations. In: Proceedings of the

AMIA Fall Symposium; November 16–20, 2019, pp. 1304–5; Wash-

ington, DC.

9. Bernstam EV, Warner JL, Krauss JC, et al. Quantifying interoperability:

an analysis of oncology practice electronic health record data variability. J

Clin Oncol 2019; 37 (15_suppl): e18080.

10. Potter D, Brothers R, Kolacevski A, et al. Development of CancerLinQ, a

health information learning platform from multiple electronic health re-

cord systems to support improved quality of care. J Clin Cancer Inform

2020; 4: 929–37.

11. Office of the National Coordinator for Health IT, 2020 Interoperability

Standards Advisory, Reference Edition. Washington, DC.

12. SNOMED - Home j SNOMED International. https://www.snomed.org/.

Accessed September 17, 2021.

13. Sorace J, Wong H-H, DeLeire T, et al. Quantifying the competitiveness of

the electronic health record market and its implications for interoperabil-

ity. Int J Med Inform 2020; 136: 104037.

760 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
https://www.nlm.nih.gov/research/umls/rxnorm/index.html
https://www.snomed.org/

