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ABSTRACT

Objective: After deploying a clinical prediction model, subsequently collected data can be used to fine-tune its

predictions and adapt to temporal shifts. Because model updating carries risks of over-updating/fitting, we

study online methods with performance guarantees.

Materials and Methods: We introduce 2 procedures for continual recalibration or revision of an underlying pre-

diction model: Bayesian logistic regression (BLR) and a Markov variant that explicitly models distribution shifts

(MarBLR). We perform empirical evaluation via simulations and a real-world study predicting Chronic Obstruc-

tive Pulmonary Disease (COPD) risk. We derive “Type I and II” regret bounds, which guarantee the procedures

are noninferior to a static model and competitive with an oracle logistic reviser in terms of the average loss.

Results: Both procedures consistently outperformed the static model and other online logistic revision meth-

ods. In simulations, the average estimated calibration index (aECI) of the original model was 0.828 (95%CI,

0.818–0.938). Online recalibration using BLR and MarBLR improved the aECI towards the ideal value of zero,

attaining 0.265 (95%CI, 0.230–0.300) and 0.241 (95%CI, 0.216–0.266), respectively. When performing more exten-

sive logistic model revisions, BLR and MarBLR increased the average area under the receiver-operating charac-

teristic curve (aAUC) from 0.767 (95%CI, 0.765–0.769) to 0.800 (95%CI, 0.798–0.802) and 0.799 (95%CI, 0.797–

0.801), respectively, in stationary settings and protected against substantial model decay. In the COPD study,

BLR and MarBLR dynamically combined the original model with a continually refitted gradient boosted tree to

achieve aAUCs of 0.924 (95%CI, 0.913–0.935) and 0.925 (95%CI, 0.914–0.935), compared to the static model’s

aAUC of 0.904 (95%CI, 0.892–0.916).

Discussion: Despite its simplicity, BLR is highly competitive with MarBLR. MarBLR outperforms BLR when its

prior better reflects the data.

Conclusions: BLR and MarBLR can improve the transportability of clinical prediction models and maintain their

performance over time.
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BACKGROUND

A growing number of prediction models have been validated and ap-

proved as clinical decision support systems and medical diagnostic

devices.1 Models that have been successfully deployed need to be

regularly monitored and updated over time, because locked algo-

rithms are known to decay in performance due to changes in clinical

practice patterns, patient case mix, measurement procedures, and

more.2–4

With the expansion of electronic health record systems, we have

a unique opportunity to embed models that continuously learn and

evolve by analyzing streaming medical data, which are often re-

ferred to as online learning or continual learning systems.5–8 Online

learning systems not only have the potential to protect against the

consequences of distributional shifts over time, but they may also

improve prediction performance, for example, by increasing preci-

sion of their estimates or personalizing predictions to local medical

practices.9,10 Nevertheless, there are major technical challenges in

developing reliable online learning systems,8 so establishing their

safety and effectiveness is of utmost importance.11

In this study, we focus our attention on online model revision for

risk prediction models, in which data are revealed in a sequential

manner and the goal of the online model is to dynamically predict

the probability of having or developing a disease (or outcome) given

forecasted scores from an underlying model. We build on the com-

mon practice of using logistic regression to recalibrate and/or revise

forecasted scores from an underlying prediction model on an initial

dataset2 and extend it to the online setting with streaming labelled

data (Figure 1). In the simplest case, the revisions only depend on

the forecasted score, which is also known as online model recalibra-

tion. In more complex situations, the updated prediction can depend

on both the forecasted score and other patient variables. We are par-

ticularly interested in procedures that can safely update “black-box”

models such as gradient boosted trees and neural networks, which

have achieved unprecedented success by capturing nonlinearities

and interactions in the data. Simply refitting black-box models on

accumulating data may carry risks because the refitted version is not

guaranteed to outperform the original model.12 However, we can

analyze the theoretical properties of logistic model revision, even for

an underlying black-box prediction model.

Methods for continually updating clinical prediction models

have traditionally relied on dynamic Bayesian models13,14 or online

hypothesis testing.15 However, these methods do not provide theo-

retical guarantees under model misspecification or distributional

shifts. More recently, game-theoretic online learning methods have

been applied to the problem of online model recalibration, which

provide performance guarantees that bound its cumulative loss rela-

tive to some oracle procedure (also known as “regret”). Kuleshov et

al16 use a nonparametric binning technique, but this method con-

verges slowly in practice and cannot be used to revise a model with

respect to patient variables. Davis et al17 apply Adam to the related

problem of estimating dynamic calibration curves18; however, re-

cent theoretical results show that the optimal regret bound for on-

line logistic regression is, in fact, achieved by Bayesian model

updating.19,20

OBJECTIVE

In this work, we develop online revision methods for “black-box”

models that may be locked or evolving over time and provide theo-

retical guarantees without making any assumptions about the data

distribution or the quality of the underlying model. We investigate

online model revision using Bayesian logistic regression (BLR) and

BLR with a Markov prior that explicitly models distribution shifts

(MarBLR). To quantify the safety and effectiveness of the proposed

online model revisers, we introduce the notions of Type I and II re-

gret. We derive regret bounds for BLR and MarBLR, which provides

a recipe for selecting a Bayesian prior that satisfies desired perfor-

mance guarantees. In simulation studies, we evaluate BLR and

MarBLR for online model recalibration and revision and as wrap-

pers for black-box refitting procedures. We then apply the online

updating procedures to Chronic Obstructive Pulmonary Disease

(COPD) risk prediction in a retrospective dataset from 2012 to

2020. Code is available at http://github.com/jjfeng/bayesian_model_

revision.

MATERIALS AND METHODS

Because the nature of future distribution shifts is typically unknown,

we study the safety and effectiveness of an online model reviser in

the presence of arbitrary distribution shifts, following the game-

theoretic online learning literature. This general framework allows

us to study, for example, distribution shifts induced by the deploy-

ment of the machine learning (ML) model itself, which has been

raised as a concern in a number of recent works.21,22

A framework for evaluating online model revision

algorithms
Denote patient variables with x 2 X and binary outcomes with y.

Suppose the streaming data are received at discrete times

t ¼ 1; . . . ;T. At time t, we observe a new observation xt; ytð Þ. Letbft : X7!R denote the underlying prediction model. Let cAt : R�X7!
0;1½ � be the model revision that outputs a probability. The initial

clinical prediction model is defined by the composition cA1 8bf1 . If bf1

is well-calibrated, we may simply define cA1 to be the identity func-

tion; otherwise, cA1 should be estimated on an initial recalibration

dataset.2 Let s ¼ s1; s2; . . . ssð Þ be any sequence of s times in which

the model revision is updated. In certain cases, one may observe a

batch of observations at each time point instead. We discuss how

the theoretical framework and results need to be adjusted to handle

batched data in the Supplementary Appendix.

The online learning procedure can be described as follows. For

time steps t ¼ 1;2; I;T:

1. Patient xt is revealed. The online reviser deploys modificationcAt for model bft and releases a prediction for the patient.

2. We observe the respective outcome yt:

3. The evolving model selects dftþ1 :The online reviser selects dAtþ1 .

The next observation xtþ1; ytþ1ð Þ is acquired, but not revealed

to the model yet.

Figure 1. Given a patient with variables, the model reviser cAt wraps around

an underlying machine learning model bft to predict the true probability of

having or developing a disease (or outcome). The focus of this work is the de-

sign of an online model reviser.
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In this setup, we do not make any assumptions about how the

data are generated or the reliability of the underlying model.

For the theoretical analyses, we quantify the performance of the

online model reviser by its average over the entire time period, that

is, � 1
T

PT
t¼1 log p yt;cAt

bft xtð Þ; xt

� �� �
where �logp y; bp� �

denotes the

negative log likelihood for the outcome y and predicted probabilitybp. This is a direct extension of offline logistic regression—which is

usually fit using maximum likelihood estimation—to the online set-

ting.

For an online model reviser to be safe, it should be, at the very

least, noninferior to locking the original model. Drawing analogy to

the hypothesis testing literature, locking the model can be viewed as

the “null” hypothesis and using the online model reviser as the

“alternative.” Type I error is then the incorrect rejection of the null.

Combining this with the notion of regret from the online learning

literature, we define Type I regret as the average increase in the loss

when using the online reviser instead of the original model, that is

� 1

T

XT

t¼1
½log p yt;cAt

bft xtð Þ;xt

� �� �
� log p yt;cA1

bf1 xtð Þ; xt

� �� �� �
Þþ:

Type I regret spans the nonnegative real values, where a smaller

value is better. A safe online model reviser should control its value

below some pre-specified noninferiority margin c > 0. Over-

zealous model updating (also known as over-updating2) tends to in-

flate Type I regret. Nevertheless, it is not enough to solely control

Type I regret because locking the original model perfectly controls

Type I regret without offering any protection against distribution

shifts.

In addition, we quantify the effectiveness of an online model re-

viser by comparing its performance to that achieved by the best se-

quence of model revisions in retrospect. More specifically, if one

had access to observations for times t ¼ 1; . . . ;T, there is some ora-

cle sequence of model revisions fA�s;t : t ¼ 1; . . . ;Tg, restricted to

update times s, that minimizes the average loss. We refer to an ora-

cle as static when s is the empty set (ie the model revision sequence

is the optimal constant sequence) and dynamic otherwise. We define

Type II s-regret as the average performance difference between the

online reviser and this dynamic oracle, that is

� 1

T

XT

t¼1
½log p yt;cAt

bft xtð Þ;xt

� �� �
� log p yt;A

�
s;t
bft xtð Þ; xt

� �� �
�

� �
þ
:

Type II regret is large when we fail to update the model fast

enough. It is especially large when we make a Type II error—when

we fail to reject the “null” hypothesis—and do not update the model

at all. Similar to Type I regret, Type II regret spans the nonnegative

real values where small values are better.

Our aim is to design online model revisers that minimize Type II

regret while controlling Type I regret, regardless of how the data dis-

tribution and underlying prediction model change over time. There

is a trade-off between Type I and II regret, since increasing the fre-

quency and magnitude of the model revision updates typically in-

crease Type I regret but decrease Type II regret.

Bayesian logistic revision and a Markov variant
BLR and MarBLR perform inference for logistic model revisers of

the form

1

1þ exp �ht;0 � ht ; 1
>z bft xð Þ; x
� �� � ;

where z is some basis expansion of the score from the underlying

model and patient variables. Let ht denote the logistic revision

parameters at time t. After receiving a new labeled observation, we

update the posterior for the model revision parameters according to

Bayes’ theorem. We predict the probability that Y ¼ 1 for a pa-

tient variables x using the posterior mean of Pr Y ¼ 1jX ¼ xð Þ.
BLR defines a Gaussian prior N hinit;Rinitð Þ over the model revi-

sion parameters and assumes the parameters are fixed over the entire

time period, that is, the true ht do not have time dependence. Be-

cause BLR is an over-simplification of the data, we also consider a

generalization of BLR called MarBLR that allows for updates to the

revision parameters over time (Figure 2). In particular, MarBLR

supposes the revision parameters need updating at each time point

with a prior probability of a and evolves according to the Gaussian

random walk ht ¼ ht�1 þ VtWt, where Vt are independent N 0;Rtð Þ
random vectors and Wt is a binary random variable with success

probability a. Thus, a is the prior probability for how frequently the

model revision needs to be updated and Rt is our prior regarding the

magnitude of these updates. In the theoretical analyses, we analyze

MarBLR with Rt ¼ d2Rinit. In practice, we choose Rt ¼ d2 dRt � 1

where dRt�1 is the posterior covariance matrix of the ht�1 at time

– � 1. MarBLR reduces to BLR when a ¼ 0 or d2 ¼ 0.

We derive Type I and II regret bounds for BLR and MarBLR by

extending,19 which only compared BLR to a static oracle. We gener-

alize the results to handle dynamic oracles and the more general

MarBLR procedure. The Type I regret bounds hold as long as BLR

and MarBLR are able to revert to the original model. Thus, one

should always choose the basis expansion z to include scores from

both the original and evolving models f1 and ft, respectively.

Bayesian inference for MarBLR requires marginalizing over 2T

possible update times. Enumerating all possible shift times is compu-

tationally intractable and because the posterior does not have a

closed form, we use instead a Laplace approximation of the logistic

posterior23 and perform Kalman filtering with collapsing13,24 (see

Section A in the Supplementary Appendix).

Empirical analyses
Simulation settings

We assess the performance of BLR and MarBLR in 3 simulation

studies with increasingly complex model revisions. We generate 10-

dimensional patient variables X using a multivariate normal distri-

bution and binary outcomes Y using a logistic model. We introduce

distribution shifts by perturbing coefficients of this model. The un-

derlying prediction model is a gradient-boosted tree (GBT). To en-

sure that the initial prediction model is well-calibrated, we fit cA1 on

100 observations held out from the original training data. Thereaf-

ter, we observe a single subject at each time point and run the proce-

dure for T ¼ 500 time steps. For each simulated condition, we

perform 50 replicates to estimate standard errors. (Additional simu-

lation details are in the Supplementary Appendix.)

Scenario 1 is on online recalibration of a locked underlying

model in the presence of temporal shifts as well as recalibration

across patient subgroups to see if these methods can improve algo-

rithmic fairness. Our motivation is based on recent works that high-

light disparities in the performance of ML models when patient
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populations are heterogeneous and unbalanced.25 We define patient

subgroups A and B with 20% and 80% prevalence, respectively. We

simulate an initial distribution shift in each subgroup and introduce

1 and 2 subsequent shifts in subgroups A and B, respectively. We fit

a univariate logistic recalibration that ignores subgroup status as

well as a subgroup-aware recalibration using interaction terms be-

tween the forecasted score and subgroup status.

Scenario 2 is on learning logistic model revisions where the

inputs are the forecasted score from a locked underlying model and

10 patient variables, that is

1

1þ exp h0 þ h1
bf1 xð Þ þ h>2 x

� � ;
where h0 is the intercept, h1 is the coefficient for the locked model,

and h2 is a vector of coefficients associated with the patient varia-

bles. We consider 3 types of data distributions: independent and

identically distributed (IID) data after an initial distribution shift

(Initial Shift), cyclical variation (Cyclical), and repeated dataset

shifts that lead to gradual performance decay of the original model

(Decay). The initial GBT is trained on 300 observations.

Scenario 3 performs online ensembling of the original model and

a black-box refitting procedure bft . The logistic revision is of the

form

1

1þ exp h0 þ h1
bf1 xð Þ þ h2

bft xð Þ
� � ;

where h1 and h2 are the coefficients for the locked and evolving mod-

els, respectively. We use the Initial Shift and Decay data settings from

scenario 2 and the same initial model. We simulate a reliable black-

box refitting procedure by refitting on all available data (All-Refit).

To test if the online model reviser can protect against black-box refit-

ting procedures with unreliable performance, we simulate an evolv-

ing model that refits on the most recent 75 observations up to time

100 and then suddenly refits using only the most recent 30 observa-

tions thereafter (Subset-Refit). While this refitting procedure is un-

likely to be used in practice, it lets us simulate how the online model

reviser might respond to sudden deterioration in the evolving model.

Performance metrics

For baseline comparison, we lock the original model, perform online

logistic revision using Adam, and cumulative logistic regression

(CumulativeLR) as suggested in.19 Briefly, Adam performs a

gradient-based update to the current logistic revision parameters

and CumulativeLR refits logistic revision parameters by minimizing

with respect to all prior observations. BLR is similar to Cumulati-

veLR in nature but appropriately integrates over uncertainty using a

Bayesian framework, and MarBLR additionally models distribution

shifts. We evaluate the methods in terms of the expected negative

log likelihood (NLL), estimated calibration index (ECI),26 and area

under the receiver-operating characteristic curve (AUC), when ap-

propriate. Note that a model is better if it has smaller NLL and ECI

and bigger AUC, where the minimum ECI is zero and the maximum

AUC is 1. We use aNLL, aECI, and aAUC to denote their average

value over the time period.

Hyperparameter selection

We select the Gaussian prior for BLR and MarBLR such that its

mean is the estimated logistic revision parameters on the initial reca-

libration dataset and its covariance is a scaled version of the stan-

dard error matrix to achieve the desired Type I regret control. In the

third simulation, we must construct an initial recalibration dataset

such that the fixed and evolving models are not exactly the same.

We do this by representing the evolving model with a model that

was trained on 90% of the original training data. The Gaussian

prior at t ¼ 1 is then centered at the estimated revision parameters

with the constraint that the coefficient for the evolving model is zero

and the prior covariance is a scaled version of the Hessian matrix.

The priors for BLR and MarBLR are selected such that their

Type I regret is no more than 5% of the initial loss of the original

locked model in the first and third scenarios. Because the second sce-

Figure 2. BLR and its Markov variant MarBLR update the deployed model revision at each time point per the evolving Bayesian posterior. Theoretical guarantees

for BLR and MarBLR hold under misspecification of the logistic model and/or priors. A, Bayesian logistic revision (BLR) estimates the model revision parameters

ht for the underlying prediction model bft with the simplifying assumption that the data Xt ;Ytð Þ are independently and identically distributed for a constant set of

model revision parameters over all time points t ¼ 1; . . . ;T . B, MarBLR defines a prior over revision parameter sequences that change over time. It assumes that

the revision parameters change with probability a at each time t , as modeled by a binary random variable Wt . It supposes that changes in the model revision

parameters follow a Gaussian prior centered at zero.
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nario considers higher dimensional model revisions and Type I re-

gret scales with the dimensionality of the problem (see Theoretical

Results in the following section), we use a looser bound of 10% in

this setting. Because the regret bounds for Adam and CumulativeLR

are too wide to be meaningful, these methods are run without any

Type I regret control.

COPD dataset

We analyzed 108 002 in-patient admissions to UCSF Health from

June 15, 2012 to December 1, 2020, of which 2756 admissions

resulted in a primary or secondary diagnosis of COPD (based on

ICD-9 and ICD-10 codes). We ordered observations by their admis-

sion dates. There are a total of 36 predictors available, including

age, history of smoking, history of COPD, active outpatient medica-

tions prior to emergency department (ED) presentation, and medica-

tions administered in the ED prior to the point of admission. The

initial model is fit using a gradient boosted tree on the first 2500

observations, of which 92 are positive cases. For initial model recali-

bration, we use the 1000 immediately following observations, of

which 52 are positive cases.

We apply BLR and MarBLR for online model recalibration, lo-

gistic model revision, and online ensembling, using the same proce-

dures described for the simulations. Logistic model revision was

restricted to 3 predictors based on clinical knowledge: age, history

of COPD, and history of smoking. In the online ensembling experi-

ment, we refit the gradient boosted tree on all prior data every 270

observations (across 400 time points). We selected the hyperpara-

meters for BLR and MarBLR such that the regret bound was no

more than 5% of the initially estimated loss for the locked model.

For computational speed, we run BLR and MarBLR on batches of n

¼ 10 observations.

We split the data into 4 time periods with an equal number of

observations. We evaluate the deployed models using walk-forward

testing, that is, the forecasted probability was compared to the ob-

served outcome at each time point, and estimated the AUC, ECI,

and NLL for each time period. We average these performance met-

rics across the time periods to calculate aAUC, aECI, and aNLL.

Confidence intervals are constructed using 200 bootstrap replicates.

Computation

All empirical studies were performed on an Intel Gold 6240 CPU.

The computation time for each experiment was no more than thirty

minutes, except for the online ensembling procedure for the COPD

data analysis. This particular experiment took around 3 h, where

the bulk of the time was spent on refitting a GBT each time new

data was collected.

RESULTS

Theoretical results
We derived Type I and II regret bounds for BLR and MarBLR,

which give us the theoretical guarantees regarding the safety and ef-

fectiveness of the 2 procedures in the presence of distribution shifts.

The regret bounds provide guidance for choosing between BLR and

MarBLR as well as their hyperparameters. The results are finite-

sample, do not assume that the Bayesian modeling assumptions are

correct, and hold even if the data are adversarially chosen. A sum-

mary of the regret bounds is shown in Table 1. Theorems and

proofs are provided in the Supplementary Appendix. Below, we

highlight the trade-off between Type I and II regret as we vary

hyperparameters in the 2 procedures.

Type I regret for BLR converges at the rate of O d=Tlog T=dð Þð Þ,
where d denotes the dimension of the logistic revision parameter,

and T denotes the total number of time steps. This is best currently

known rate for online logistic regression.20 Because this regret

bound converges quickly to zero as T increases, it can be used to

meaningfully control Type I regret on realistic time horizons. Al-

though not shown in Table 1, the Type I regret for BLR decreases

to zero as we shrink the prior covariance matrix Rinit and concen-

trate the prior around locking the original model (and its revision).

In comparison, the Type I regret bound for MarBLR includes an

additional error term of O dalog d2T
� �� �

that corresponds to the

prior probability of revision sequences that change over time. As we

increase a and d2, MarBLR prior puts less weight on the original

model and searches over more dynamic revision sequences. Because

this additional error term does not go to zero as T increases, so one

needs to choose the MarBLR hyperparameters with care. This illus-

Table 1. Overview of theoretical results.

Type I regret bound Type II s-regret bound

BLR d
T log 1þ T

d

� �
d

T
log 1þ T

d

� �

þ 1

T
kh�s locked � hinitk2

2 þ
1

T

Xjsj
j¼1

ðsj þ 1� sjÞkh�slocked � h�sj
k2

MarBLR d
T log 1 ¼ T

d

� �
þ da log 1þ d2T

d

� �
Xjsj
j¼2

d

T
log 1þ 1

d2
þ sj � sj � 1

d

� �

þ 1

T
kh�1 � hinitk2

2 þ
1

T

Xjsj
j¼2

1

d2
kh�sj
� h�sj�1

k2
2

� 1

T
log p0ðsÞ þ

jsj � 1

T
d log d

Note: The regret bounds are displayed in asymptotic notation. h�slocked
is the best locked model revision sequence in retrospect and h�s is the best dynamic model

revision sequence with revision times s in retrospect. Symbol meanings: d¼dimension of logistic revision parameters, T¼total number of time steps, hinit¼initial

logistic parameters, d2¼inflation factor for MarBLR posterior, a¼update probability in MarBLR, p0¼MarBLR prior over update times.
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trates how Type I regret increases when we try to estimate more

complex model revision sequences using MarBLR.

Type II regret for MarBLR is O d=Tlog T=dð Þð Þ plus the distance

between the dynamic oracle and the prior. If the true sequence of re-

vision update times s is known, selecting a ¼ s=T in MarBLR mini-

mizes the bound on the average expected loss. On the other hand,

BLR assumes the oracle model revision sequence is static and sets

a ¼ 0. Consequently, its Type II regret bound incurs an additional

Table 2. Average performance of online logistic recalibration methods of a fixed underlying prediction model and simulated patients sub-

groups A and B with prevalence 20% and 80%, respectively (scenario 1).

Average ECI (aECI) Average NLL (aNLL)

Subgroup A B Combined A B Combined

Locked 1.371 (0.009) 0.612 (0.005) 0.910 (0.005) 0.661 (0.001) 0.559 (0.000) 0.580 (0.000)

Online univariate logistic recalibration

MarBLR 0.590 (0.024) 0.176 (0.009) 0.301 (0.016) 0.622 (0.001) 0.538 (0.000) 0.555 (0.001)

BLR 0.655 (0.027) 0.199 (0.012) 0.346 (0.019) 0.624 (0.001) 0.539 (0.001) 0.556 (0.001)

Adam 0.878 (0.018) 0.273 (0.012) 0.494 (0.014) 0.635 (0.001) 0.543 (0.001) 0.561 (0.001)

CumulativeLR 0.745 (0.025) 0.225 (0.013) 0.403 (0.019) 0.629 (0.001) 0.541 (0.001) 0.558 (0.001)

Online subgroup-aware logistic recalibration

MarBLR 0.498 (0.035) 0.233 (0.013) 0.241 (0.013) 0.616 (0.001) 0.541 (0.001) 0.556 (0.001)

BLR 0.465 (0.037) 0.270 (0.016) 0.265 (0.018) 0.615 (0.002) 0.542 (0.001) 0.557 (0.001)

Adam 0.439 (0.025) 0.426 (0.011) 0.320 (0.016) 0.614 (0.001) 0.550 (0.001) 0.562 (0.001)

CumulativeLR 0.449 (0.040) 0.303 (0.017) 0.311 (0.020) 0.616 (0.002) 0.544 (0.001) 0.558 (0.001)

Note: Methods include Bayesian logistic revision (BLR) and its Markov variant (MarBLR), Adam, cumulative refitting of a logistic regression model (Cumulati-

veLR), and locking the original model (Locked). Standard errors over 50 replicates are shown in parentheses.

Abbreviations: aECI: average estimated calibration index; aNLL: average negative log likelihood.

Figure 3. Results from online model recalibration of a fixed underlying prediction model in a patient population with patient subgroups A and B with prevalence

20% and 80% (scenario 1). Left: Estimated calibration index (ECI) at each time point. Right: Calibration curves for the original model and the revised versions from

BLR and MarBLR. The ideal calibration curve is the identity function, which has an ECI of zero. A, Univariate recalibration; calibration measured with respect to

the general population. B, Subgroup-aware recalibration; calibration measured with respect to subgroups A (top) and B (bottom).
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term that quantifies the error in approximating the dynamic oracle

h�s with a locked oracle h�slocked
.

To summarize, BLR has smaller Type I but larger Type II regret

bounds than MarBLR for the same Gaussian prior at time t ¼ 1. We

can further fine-tune the Type I regret control achieved by the 2

methods by selecting more or less diffuse priors.

Simulation studies
Scenario 1: online recalibration of a locked underlying model

By design, the online recalibration methods aim to minimize the

aNLL with respect to the general population. Indeed, we find

that all the online recalibration methods significantly improved

aNLL and aECI compared to the locked model, with BLR and

MarBLR achieving the smallest values (Table 2, Figure 3). On-

line recalibration also improved aNLL and aECI within each sub-

population, but different methods achieved different levels of

calibration of across the subgroups. In general, we find that that

subgroup-aware recalibration leads to more similar aECI between

the subpopulations than univariate recalibration. For instance,

MarBLR achieved aECIs of 0.590 (95% CI, 0.543–0.637) and

0.176 (95% CI, 0.158–0.193) in subgroups A and B, respectively,

when performing univariate recalibration. In contrast, the aECIs

for subgroups A and B are 0.498 (95% CI, 0.429–0.566) and

0.233 (95% CI, 0.208–0.258), respectively, when performing

subgroup-aware recalibration. Finally, we note that there is a

spike in the ECI at early time points but quickly disappears as

data accumulates.

Scenario 2: online logistic revision of a locked underlying model

BLR and MarBLR learned beneficial logistic revisions faster than

the other online methods across all data settings (Table 3, Figure 4),

improving in both model discrimination and calibration over the

locked model. BLR and MarBLR significantly improved model dis-

crimination in the setting with IID data after an initial shift. We also

observed improvements in model discrimination when there were

cyclical distribution shifts, but to a lesser extent. In the Decay data

setting, the locked model had an initial AUC of 0.85 and achieved

an average AUC of 0.803 (95% CI, 0.801–0.805). In contrast, BLR

and MarBLR slowed down the performance decay, achieving an

aAUC of 0.819 (95% CI, 0.817–0.821).

Scenario 3: online ensembling of a locked and continuously refitted

black-box model

CumulativeLR, BLR, and MarBLR achieved the top performance

across the different model refitting procedures and data distribu-

tions (Table 4, Figure 5). In All-Refit, the evolving model had

better performance than the original model so the online revisers

learned to place more weight on the evolving model, thereby im-

proving model calibration and discrimination. In Subset-Refit, we

simulated an unreliable evolving black-box model to test how the

online revisers respond to sudden model deterioration. All the on-

line model revisers drop in performance when the evolving model

suddenly deteriorates, but they recover over time, some faster

than others.

We can gain more insight into the operating characteristics of

BLR and MarBLR by visualizing how the logistic revision coeffi-

cients change over time (Supplementary Appendix Figure A.1).

For All-Refit, the 2 methods gradually increased the importance

of the evolving model and decreased the importance of the locked

model. By the end of the time period, both methods assigned

higher importance to the evolving model. As expected, this switch

in model importance occurs earlier in the nonstationary setting.

For Subset-Refit, BLR and MarBLR increase the coefficient of the

evolving model during the time period when it was a good pre-

dictor of the outcome (t<100). Once the evolving model decayed

in prediction accuracy, its coefficient starts to decrease towards

zero.

COPD case study

Due to real-world temporal shifts, the original model decayed in

calibration (Table 5, Figure 6). Online logistic recalibration grad-

ually decreased the forecasted score, which reflects the general

downward trend in COPD diagnosis rates. It improved the aECI

from 1.526 (95% CI, 1.371–1.680) to 0.693 (95% CI, 0.624–

0.762) with BLR and 0.450 (95% CI, 0.411–0.490) with MarBLR.

The performance of online logistic revision was similar to online

logistic recalibration. We observe significant improvements when

BLR and MarBLR ensemble the original and continually refitted

GBTs. Using MarBLR, we achieve an aAUC of 0.925 (95% CI,

0.914–0.935) compared to the locked model’s aAUC of 0.904

(95% CI, 0.892–0.916). Although the initial coefficient for the

refitted model is set to zero, BLR and MarBLR increased the

weight of the refitted model and decreased that of the original

model. Finally, BLR and MarBLR had similar AUC as the continu-

ally refitted model but were better calibrated. Perhaps even more

importantly, BLR and MarBLR offer safety guarantees whereas the

continual refitting procedure does not.

Table 3. Performance of online logistic revision of fixed underlying

prediction model with respect to the forecasted score and patient

variables (scenario 2).

aAUC aECI aNLL

Initial Shift

MarBLR 0.799 (0.001) 0.288 (0.012) 0.554 (0.001)

BLR 0.800 (0.001) 0.278 (0.013) 0.553 (0.001)

Adam 0.795 (0.001) 0.576 (0.014) 0.574 (0.001)

CumulativeLR 0.797 (0.001) 0.417 (0.017) 0.563 (0.001)

Locked 0.767 (0.001) 1.637 (0.008) 0.661 (0.001)

Cyclical

MarBLR 0.834 (0.001) 0.211 (0.011) 0.510 (0.001)

BLR 0.834 (0.001) 0.202 (0.012) 0.509 (0.001)

Adam 0.834 (0.001) 0.293 (0.011) 0.514 (0.001)

CumulativeLR 0.834 (0.001) 0.240 (0.013) 0.511 (0.001)

Locked 0.826 (0.001) 0.605 (0.002) 0.542 (0.000)

Decay

MarBLR 0.819 (0.001) 0.281 (0.015) 0.532 (0.001)

BLR 0.819 (0.001) 0.277 (0.017) 0.532 (0.001)

Adam 0.820 (0.001) 0.379 (0.015) 0.537 (0.001)

CumulativeLR 0.819 (0.001) 0.337 (0.018) 0.535 (0.001)

Locked 0.803 (0.001) 0.979 (0.002) 0.588 (0.000)

Note: Simulated data settings include IID data after an initial shift (Initial

Shift), nonstationary data that cycles between 3 distributions (Cyclical), non-

stationary data where the performance of the original model decays over time

(Decay). Methods include Bayesian logistic revision (BLR) and its Markov

variant MarBLR, Adam, cumulative refitting of a logistic regression model

(CumulativeLR) and locking the original model (Locked). Standard errors

over 50 replicates are shown in parentheses

Abbreviations: aAUC: area under the receiver operating characteristic

curve; aECI: average estimated calibration index, aNLL: average negative log

likelihood.
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DISCUSSION

Performance degradation of clinical ML algorithms occur for a variety

of reasons, such as abrupt system-wide changes in the record keeping

system,27 changes in the event rate and patient case mix,28 and changes

in clinical order patterns.29 A growing number of papers have

highlighted the need for regular monitoring and updating of clinical pre-

diction algorithms,3,30 but there are currently no online procedures with

practical performance guarantees. Instead, much of the literature has fo-

cused on learning 1-time model updates,31–33 which have inflated error

rates when applied repeatedly over time. Dynamic model updating has

also been suggested for clinical prediction models,14,34,35 but theoretical

guarantees in the presence of model misspecification and dataset shifts

have been lacking.

In this work, we show that online model revision by BLR or

MarBLR is a promising solution that both exhibits strong empiri-

cal performance and provides theoretical guarantees. We derived

Type I regret bounds that guarantee the online revision methods

will be noninferior to locking the original model in the presence of

arbitrary distribution shifts and Type II regret bounds that guaran-

tee the methods quickly learn beneficial revisions. Our data analy-

ses verified these results: BLR and MarBLR consistently

outperformed locking the original model by slowing down perfor-

mance decay in nonstationary settings and gradually improved

overall performance in stationary settings. For example, the risk

predictions from the locked model became increasingly inflated in

the COPD dataset; by the end of the 8-year time span, a risk pre-

diction of 0.8 from the locked model corresponded to an observed

event rate of 0.5. Although other online methods helped protect

against distribution shifts, their theoretical guarantees are much

weaker and they tended to learn good model revisions more

slowly.

The key difference between BLR and MarBLR is that the former

assumes the oracle sequence of model revisions is static, whereas

the latter allows for dynamic sequences. The theoretical results

Figure 4. Results from online logistic revision of a fixed underlying model with respect to the forecasted score and ten patient variables (scenario 2), in terms of

the estimated calibration index (ECI, left) and AUC (right). Data are simulated to be stationary over time after an initial shift (Initial Shift, top), shift in a cyclical

fashion (Cyclical, middle), and shift such that the original model decays in performance over time (Decay, bottom). All online logistic revision methods outper-

formed locking the original model in terms of the average ECI and AUC, with BLR and MarBLR performing the best. Note that the revised models were worse

than the original model briefly in the Decay setting.
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highlight a tradeoff between the 2 procedures: BLR incurs higher

bias because of its simplifying assumptions, whereas MarBLR is

more sensitive to sampling noise because it searches over a richer

class of model revision sequences. In practice, we find that BLR is

highly competitive with MarBLR. Although MarBLR tended to

outperform BLR in settings with more severe distribution shifts, the

performance differences were negligible in most, if not all, cases.

Given that BLR is a simpler procedure involving fewer hyperpara-

meters, we believe BLR is sufficient in most settings. Moreover,

BLR can be implemented using standard software packages for

Bayesian inference.36,37

We highlight that MarBLR and BLR only provide theoretical guar-

antees in terms of the average negative log likelihood. As seen in the

simulations, MarBLR and BLR may perform worse than the original

model for a few time points because of small sample sizes early on, or

because the continual refitting procedure for the underlying prediction

model suddenly introduces a bad update. This serves as a point of cau-

tion. Many online learning methods, including ours, do not guarantee

that the deployed model will outperform the static model at all time

points. Nevertheless, MarBLR and BLR are guaranteed to recover from

sudden performance decay such that the average performance compares

favorably to locking the original model. Analogously, MarBLR and

BLR are not guaranteed to outperform the original model within a par-

ticular patient subgroup if the online revision procedure trains on data

from the general population. Although the results from the first simula-

tion are promising, we can only control Type I regret if separate instan-

ces of MarBLR/BLR are deployed within each patient subgroup. Future

work should evaluate the algorithmic fairness of MarBLR and BLR in a

wide variety of settings and introduce any necessary extensions to en-

sure fairness will be maintained over time. This paper has only explored

the simplest setting with 2 patient subgroups defined a priori; in prac-

tice, one may be interested in many more subgroups and may even

want to preserve fairness across subgroups that have yet to be defined

clinically.

A key assumption in this work is that one can measure gold stan-

dard outcomes and perform an unbiased evaluation of the underly-

ing prediction model. One must verify these assumptions hold, at

least approximately, before applying MarBLR and BLR. In our case

study, we considered a risk prediction model for predicting COPD

diagnosis. This model may influence clinical decision making and

perturb the distribution of both the covariates and the outcome,

thereby complicating model evaluation and updating. This issue

called “performative prediction”38 can be even more severe in high

acuity settings where ML recommendations are designed to change

clinical workflows. Nevertheless, one may be able to obtain more

accurate patient outcomes by incorporating a lag time, during which

missed diagnoses are corrected. Another option is to consider the

counterfactual framework and define the true outcome as the out-

come that would have been observed, had the ML prediction not

been made available to the clinician. Two avenues for identifying

this true outcome are to either randomize a subset of patients to re-

ceive no ML prediction or use a causal inference/missing data frame-

work. Both options come with substantial challenges and require

further research.39

In this paper, we require the user to decide the class of logistic

revisions upfront. That is, they must decide between online model

recalibration versus revision; if they choose the latter, they must de-

cide which variables to include and whether to incorporate a con-

tinually refitted model. Because future data distributions are

unknown, it is difficult to anticipate which type of model revision

will lead to best online performance. As seen in the COPD case

study, the logistic model revisions with respect to the selected pa-

tient variables did not improve model discrimination but incorpo-

rating a continually refitted model did. Instead of requiring a model

revision class to be selected upfront, future extensions of MarBLR/

BLR may be able to incorporate model selection using a hierarchi-

cal modeling approach such as in McCormick et al.14 In addition,

new biomarkers will be discovered as the biomedical field continues

to advance. An important use case is to let the model developer add

these newly discovered biomarkers to the online model revision

procedure.

Finally, a limitation of the current work is that the derived regret

bounds scale linearly with the number of variables used during on-

line model revision. As such, MarBLR and BLR may not provide

meaningful safety guarantees in high-dimensional settings. Because

many modern ML algorithms analyze a large number of variables,

future work should look to refine our regret bounds by characteriz-

ing, say, the L1-norm or sparsity of the oracle model revision.20

CONCLUSION

Our theoretical and empirical results support the use of online

model revision by BLR or MarBLR over other online methods for

regular monitoring and updating of clinical prediction algorithms

when performance drift is of concern.

Table 4. Performance of online logistic revision as a wrapper for a

continually refitted gradient boosted tree (scenario 3).

aAUC aECI aNLL

Initial Shift, All-Refit

MarBLR 0.689 (0.002) 0.452 (0.024) 0.646 (0.001)

BLR 0.689 (0.002) 0.482 (0.027) 0.647 (0.001)

Adam 0.621 (0.001) 1.085 (0.029) 0.702 (0.001)

CumulativeLR 0.690 (0.002) 0.448 (0.021) 0.646 (0.001)

Locked 0.624 (0.001) 2.695 (0.017) 0.762 (0.001)

Initial Shift, Subset-Refit

MarBLR 0.658 (0.001) 0.707 (0.033) 0.671 (0.001)

BLR 0.658 (0.001) 0.696 (0.035) 0.671 (0.001)

Adam 0.643 (0.001) 1.128 (0.035) 0.695 (0.001)

CumulativeLR 0.659 (0.001) 0.787 (0.040) 0.675 (0.001)

Locked 0.624 (0.001) 2.695 (0.017) 0.762 (0.001)

Decay, All-Refit

MarBLR 0.726 (0.001) 0.238 (0.014) 0.617 (0.001)

BLR 0.725 (0.001) 0.224 (0.014) 0.617 (0.001)

Adam 0.689 (0.001) 0.514 (0.019) 0.652 (0.001)

CumulativeLR 0.727 (0.001) 0.211 (0.014) 0.616 (0.001)

Locked 0.688 (0.001) 1.218 (0.007) 0.679 (0.000)

Decay, Subset-Refit

MarBLR 0.703 (0.001) 0.456 (0.029) 0.639 (0.001)

BLR 0.704 (0.001) 0.450 (0.031) 0.639 (0.001)

Adam 0.698 (0.001) 0.647 (0.026) 0.650 (0.001)

CumulativeLR 0.705 (0.001) 0.533 (0.034) 0.642 (0.001)

Locked 0.688 (0.001) 1.218 (0.007) 0.679 (0.000)

Note: Refitting procedures include refitting on all available data (All-Refit)

and refitting on the most recent window of data (Subset-Refit). Methods in-

clude Bayesian logistic revision (BLR) and its Markov variant MarBLR,

Adam, cumulative refitting of a logistic regression model (CumulativeLR),

and locking the original model (Locked). Standard errors over 50 replicates

are shown in parentheses.

Abbreviations: aAUC: area under the receiver operating characteristic

curve; aECI: average estimated calibration index; aNLL: average negative log

likelihood.
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Figure 5. Model calibration and discrimination (left and right panels, respectively) from online ensembling of the original model with an underlying prediction

model that is continually refitted over time (scenario 3). Data are simulated to be stationary over time after an initial shift (Initial Shift) and nonstationary such that

the original model decays in performance over time (Decay). Underlying prediction model is updated by continually refitting on all previous data (All-Refit) or refit

on the most recent subset of data (Subset-Refit). Note that Subset-Refit simulates a sudden drop in performance for the continually refitted model at time t ¼ 100

and, consequently, across all online ensembling procedures. BLR and MarBLR recover from this sudden performance decay and achieve better performance than

locking the original model in terms of the average ECI and AUC. A, Initial Shift, All-Refit. B, Decay, All-Refit. C, Initial Shift, Subset-Refit. D, Decay, Subset-Refit.

Table 5. Results from COPD risk prediction task using Bayesian logistic revision (BLR) and its Markov variant MarBLR.

aAUC aECI aNLL

Locked 0.904 (0.892,0.916) 1.526 (1.371,1.680) 0.099 (0.097,0.101)

Online logistic recalibration

MarBLR 0.907 (0.895,0.919) 0.450 (0.411,0.490) 0.079 (0.077,0.082)

BLR 0.906 (0.894,0.918) 0.693 (0.624,0.762) 0.082 (0.080,0.085)

Online logistic revision

MarBLR 0.909 (0.897,0.921) 0.460 (0.427,0.493) 0.078 (0.075,0.080)

BLR 0.907 (0.894,0.919) 0.708 (0.647,0.769) 0.082 (0.079,0.084)

Online ensembling of the original and continually refitted models

MarBLR 0.925 (0.914,0.935) 0.482 (0.450,0.514) 0.072 (0.070,0.074)

BLR 0.924 (0.913,0.935) 0.429 (0.401,0.458) 0.071 (0.069,0.073)

Continual Refit Only 0.924 (0.914, 0.935) 0.657 (0.624, 0.690) 0.078 (0.076, 0.080)

Note. 95% bootstrap confidence intervals are shown in parentheses.

Abbreviations: aAUC: average area under the receiver operating characteristic curve; aECI: average estimated calibration index; aNLL: average negative log

likelihood.
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