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Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not
rely on viruses capable of spread are needed for potential use in lower-containment settings. In
this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2
self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-
complemented with viral glycoproteins to generate replicon delivery particles for single-cycle
delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and
versatile platform for antiviral drug screening, neutralization assays, host factor validation, and
viral variant characterization.

S
elf-replicating RNAs, known as replicons,
are model systems used to genetically
probe numerous aspects of RNA virus
life cycles without producing infec-
tious virus (1–7). Replicons for positive-

stranded RNA viruses are typically constructed
using reverse genetics approaches to replace
one or more viral structural proteins with se-
lectable and reporter genes. When translated
inside cells, replicon RNA produces viral gene
products that establish RNA replication fac-
tories, with reporter genes providing read-
outs for replicon activity and selectable genes
permitting selection of cells that stably harbor
the replicon. Because key structural compo-
nents of the virion are missing, replication
proceeds without producing infectious virus.
Replicon systems that do not require high-
containment laboratory settings have been
invaluable as molecular virology and high-
throughput drug development platforms, as
perhaps best exemplified for hepatitis C vi-
rus (8, 9).

Reverse genetics systems for severe acute
respiratory syndrome coronavirus 2 (SARS-
CoV-2), the causative agent of COVID-19, have
been developed for fully infectious recombi-
nant virus production (10–13) and as replicon
platforms (14–19). In the latter case, trans-
complementation of the deleted structural
gene nucleocapsid (18) or envelope and Orf3a
genes (19) can enable single-cycle–infectious
SARS-CoV-2 virion production thatmay reduce
the need for high containment for a range of
applications. Although these systems permit
spike-dependent replicon delivery, investiga-
tion of newly emerging spike variants requires
replicon reengineering for each variant. By con-
trast, SARS-CoV-2 spike-pseudotyped lentivi-
ruses (20–22) or chimeric rhabdoviruses (22, 23)
bearing spike(s) offer a rapid, plasmid-based
means of virion production for spike-directed
studies (24), such as the characterization of
neutralizing antibodies. There remains a need
for experimental systems that harness the non-
infectious advantages of replicons while also
enabling studies of virus entry and replica-
tion. In principle, combining a spike-deleted
SARS-CoV-2 replicon with viral glycoprotein
trans-complementation would achieve this
goal. Such a system would enable isogenic
studies of spike variants in a SARS-CoV-2–
based platform while also serving as an ap-
propriately safeguarded infection-based means
of replicon launch that could be extended to
additional cell types through the use of heter-
ologous viral glycoproteins. Here we describe
the construction, activity, and single-cycle virion
generation of spike-deleted SARS-CoV-2 repli-
cons and the use of viral glycoprotein trans-

complementation to create replicon delivery
particles (RDPs).

Spike-deleted replicon design and
optimization of RNA production

The SARS-CoV-2 genome is thought to encode
16 nonstructural proteins (Nsp1 to Nsp16) in
two overlapping reading frames (Orf1a and
Orf1b), as well as four structural proteins
[spike (S), membrane (M), envelope (E), and
nucleocapsid (N)] and at least seven accessory
proteins (3a, 3c, 6, 7a, 7b, 8, and 9b) expressed
from subgenomic RNAs or alternative read-
ing frames (Fig. 1A) (25, 26). We adopted a
modular design to assemble a replicon that
consists of all viral proteins except the primary
structural glycoprotein spike (DS). The spike
transcription-regulating sequence (TRS) was
instead used to drive expression of a gene
cassette that consists of neomycin-resistance
(NeoR) and a reporter gene [nuclear-localized
monomeric NeonGreen or secreted Gaussia
luciferase (Gluc)] separated by a T2A ribosome
shift sequence (Fig. 1A). The plasmid encoding
the replicon cDNA contains an upstream T7
promoter at the 5′ end for in vitro transcription
and a self-cleaving hepatitis delta virus ribo-
zyme at the 3′ end, which cleaves after an en-
coded polyA sequence yielding an authentic
terminus.
For replicon assembly, we employed a re-

cently published RNA virus reverse genetics
system in the yeast Saccharomyces cerevisiae
(10). This system leverages transformation-
associated recombination to accurately as-
semble numerous, large overlapping DNA
fragments (27). Transformation of yeast with
equimolar ratios of replicon cDNA fragments
led to efficient replicon assembly, as assessed
by multiplex polymerase chain reaction (PCR)
(fig. S1A). We performed restriction enzyme
digests of the resulting DNA to assess plasmid
integrity and observed that yeast-derived plas-
mids were contaminated with yeast genomic
DNA and did not reveal the expected NdeI
digest pattern (Fig. 1B). In an alternative ap-
proach, we propagated yeast-assembled plas-
mids in bacteria, which boosted plasmid purity,
as demonstrated previously (10). However, the
overall DNA yield was suboptimal in both in-
stances and, in the case of bacterial propaga-
tion, often resulted in mutations in the coding
region of the viral RNA-dependent RNA poly-
merase (RdRp). To improve plasmid purity
and yield, we developed a method that relies
on selective enzymatic digestion of contami-
nating yeast DNA, followed by preferential
amplification of the plasmid product.We first
treated plasmid preparations with BamHI,
which digests yeast genomic DNA but whose
recognition sequence is absent in the replicon
plasmid. We subsequently treated the DNA
with plasmid-safe (PS) deoxyribonuclease
(DNase) to digest linear contaminating yeast
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DNA.Wenext turned tomultiple-displacement
rolling circle amplification using phi29 DNA
polymerase (28) and random primers to am-
plify replicon plasmids from either yeast or
sequence-verified bacterial clones. Owing to
its processivity (>70 kb per binding event),
strand-displacement activity, and low error
rate (<1 × 10−6), phi29 polymerase can expo-
nentially amplify long, circular DNA sequences
with high fidelity under isothermal conditions
and has been used to replicate bacterial arti-
ficial chromosomes, cosmids, mitochondrial
DNA, andmicrobial genomes at the megabase
length scale (29–31). Indeed, amplification
of replicon plasmids from yeast or bacteria
yielded useful quantities of full-length and
intact replicon DNA (Fig. 1B), as verified by

amplicon sequencing. We used the result-
ing DNA for T7 transcription reactions and
observed apparently full-length (~27.5 kb)
replicon RNA in addition to shorter RNA
products (Fig. 1C). To directly compare launch
efficiency, mNeonGreen-encoding replicon
RNAs were electroporated into BHK-21 cells
together with additional in vitro transcribed
N mRNA, which has previously been shown
to boost launch efficiency (10, 15). The per-
centage of cells expressing the mNeonGreen
reporter was measured 24 hours after elec-
troporation. We observed fewer than 1% of
replicon-positive cells using RNA from non–
phi29-amplified templates, where bacteria-
propagated plasmids yielded the highest (0.8%)
mNeonGreen reporter signal (Fig. 1D). By con-

trast, PS DNase-treated and phi29-amplified
templates yielded ~20% mNeonGreen-positive
cells. The mNeonGreen signal was dependent
on productive replication and transcription,
as no signal was observed with the use of rep-
licon RNA that harbors inactivating muta-
tions in Nsp12, the viral RdRp (32, 33) [Fig. 1E;
pol(-)]. In summary, the most efficient means
of reaching high replicon launch efficiency
was achieved by making capped RNA from
yeast plasmids that are PS-digested and phi29-
amplified before transcription (Fig. 1F).

Spike-deleted SARS-CoV-2 replicons are
convenient and versatile assay platforms

To characterize the utility of spike-deleted
replicons for antiviral compound evaluation
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Fig. 1. SARS-CoV-2 replicon design and launch optimization. (A) (Upper
schematic) SARS-CoV-2 genome, with structural proteins in black. (Lower
schematic) Replicon amplicon fragments for yeast assembly. Fragments from
(10) are shown in gray; fragments harboring mutations in Nsp1 or Nsp12 [pol(-)]
are marked as such. The reporter gene cassette in place of spike is shown in
purple; reengineered flanking regions are in blue. nt, nucleotides; L, leader; UTR,
untranslated region; pA: polyA, HDV, hepatitis delta virus; NLS, nuclear
localization sequence. (B) Agarose gel of replicon DNA recovered from yeast or
bacteria (bac). Phi29 amplification or plasmid-safe (PS) DNAse treatment is
indicated. Expected NdeI digest is depicted at right. (C) Agarose gel of T7 RNA

transcription reactions from the DNA plasmids in (B). The arrowhead indicates
the expected size of full-length RNA; the asterisk denotes truncated product.
(D and E) Percent of mNeonGreen replicon–positive BHK-21 cells from
nonamplified (D) or phi29-amplified (E) DNA templates measured by flow
cytometry. Insets show representative mNeonGreen (mNG) and bright-field (BF)
images. N = 3 biological replicates. Error bars indicate SEM; “Mock” indicates no
RNA electroporation. (F) Optimized RNA production for SARS-CoV-2 replicons.
Overlapping PCR fragments are assembled in yeast and propagated in bacteria
or yeast, in which case they are treated with PS DNAse. Subsequent phi29
amplification ensures full-length DNA template availability for transcription.
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and screening, host factor validation, and viral
mutant phenotype assessment, we constructed
a replicon encoding Gluc (Fig. 1A). RNA tran-
scripts were electroporated into Huh-7.5 cells,
and cumulative reporter activity per 24-hour
period was monitored via luciferase quan-
tification from culture supernatant. By
24 hours after electroporation, we detected
robust luciferase activity, which steadily de-
creased over time (Fig. 2A). Luciferase acti-
vity was dependent on viral replication, as
no signal was observed for the pol(-) replicon
mutant. Replicon-driven luciferase expres-
sion was also sensitive to remdesivir, a well-
characterized inhibitor of the SARS-CoV-2
RdRp (34). As a luciferase-independent mea-
sure of replicon activity, we measured N sub-
genomic mRNA levels by quantitative reverse
transcription (qRT)–PCR and observed RNA
accumulation kinetics that paralleled reporter

gene expression (Fig. 2B). This signal was dis-
tinct from that of coelectroporated N mRNA,
which is needed for efficient replicon or virus
launch from RNA (10) and was detectable in
all measured samples as expected (fig. S1B).
These results show that SARS-CoV-2 repli-
cons undergo robust and quantifiable RNA
replication.
Drug screening platforms are among the

most fruitful applications for replicons. As a
proof of concept, we treated cells bearing
luciferase reporter replicons with compounds
reported to have direct-acting antiviral (DAA)
activity at different stages of the viral life cycle:
the SARS-CoV-2 RdRp inhibitor remdesivir
(34), andmasitinib, a proposed 3C-like protease
inhibitor (35). As a negative control, we used
27-hydroxycholesterol (27-HC), a compound
reported to act against both SARS-CoV-2 and
human coronavirus OC43 (HCoV-OC43) by

affecting viral entry, which we bypassed by
means of RNA transfection (36).We also tested
the host-targeting agent (HTA) AM580, a reti-
noid derivative reported to have broad anti-
viral activity by disrupting sterol regulatory
element–binding protein (SREBP) lipid signal-
ing (37). For remdesivir, we observed median
inhibitory concentration (IC50) values and
low cytotoxicity profiles similar to those pre-
viously reported for live virus (Fig. 2C) (34).
For masitinib, we observed inhibition with
IC50 values similar to what was shown with
infectious HCoV-OC43 and SARS-CoV-2 (35).
However, cellular toxicity was observed at
high concentrations (Fig. 2D). For AM580,
IC50 values were consistent with reported re-
sults, with low cytotoxicity at inhibitory con-
centrations (Fig. 2E) (37). As expected, 27-HC
showed no detectable inhibition (Fig. 2F).
These representative results showcase the
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Fig. 2. SARS-CoV-2 replicons are
sensitive to antiviral compounds,
host factor loss, and viral
mutant phenotypes. (A) Gaussia
luciferase (Gluc) in Huh-7.5
supernatant from cells electropo-
rated with Gluc replicon RNA
(Rep), seeded with 100 nM remde-
sivir (RDV) or vehicle. Mock
electroporation and pol(-) replicons
were used as controls. The
dashed line indicates the limit of
detection. N = 4. Error bars
indicate SD. RLU, relative light
units. (B) qRT-PCR measurements
for subgenomic N RNA for cells in
(A). Signal from mock-infected cells
was used for normalization
(dashed line). N = 3. Error bars
indicate SD. ***P < 0.001;
n.d., not determined. sgmRNA,
subgenomic mRNA. (C to F) Rep-
resentative experiments in Huh-7.5
cells were electroporated with
the Gluc replicon RNA and seeded
with (C) remdesivir (N = 4), (D)
masitinib (N = 4), (E) AM580
(N = 3), or (F) 27-hydroxycholesterol
(27-HC) (N = 3). After 24 hours,
Gluc signal in the supernatant
(filled circles) and cell viability
(empty circles) were measured and
normalized to vehicle-treated
cells. Error bars indicate SEM.
(G) IC50 values from independent
experiments using the compounds
presented in (C) to (E). (H) Parental
Huh-7.5 (WT) and clonal TMEM41B
KO cells were electroporated as
indicated in (A). Gluc was measured 24 hours after electroporation. N = 4. (I) Cells as in (H) were electroporated with SINrep-GFP alphavirus replicon RNA. After
24 hours, GFP-positive cells were quantified by flow cytometry. N = 3. (J) As in (H), using cells reconstituted with TMEM41B. N = 5. Error bars indicate SD.
***P < 0.001 (two-sided Student’s t test); ns, not significant.

Days post electroporation
G

lu
c 

R
LU

RDV

Replicon signal

Cell viability

0

50

100

150

200

Masitinib

Concentration (µM)

A

B

C

E

H I

D

G

0

50

100

150

27-HC

Concentration (µM)

WT KO
101

102

103

104

105

repSARS-CoV-2

G
lu

c 
R

LU

WT KO
0

20

40

60

80

100

P
er

ce
nt

 G
F

P
 p

os
iti

ve
 (

%
)

SINrep-GFP

KO KO reconst.
101

102

103

104

105

repSARS-CoV-2

TMEM41B TMEM41B TMEM41B

Replicon

Replicon + RDV

IC50= 6.1µM

IC50= N/A

22x

11x

Rep Rep +
RDV

Rep
pol(-)

0hrs

24hrs

48hrs

Reporter Signal

N sgmRNA qRT-PCR

n.d.
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

F
ol

d 
ov

er
 M

oc
k

N
or

m
al

iz
ed

 R
LU

 (
%

) 
N

or
m

al
iz

ed
 R

LU
 (

%
) 

G
lu

c 
R

LU

***

***

***
ns

Concentration (µM)

IC50 = 31.2µM

10
0

10
1

10
2

10
-1

10
-2

AM580

0

50

100

150

N
or

m
al

iz
ed

 R
LU

 (
%

) 

0 1 2 3 4 5

101

102

103

104

105

Mock

Rep

Rep + RDV

Rep pol(-)

F

Replicon signal

Cell viability

10
0

10
1

10
2

10
-1

10
0

10
1

10
-1

0

50

100

150

N
or

m
al

iz
ed

 R
LU

 (
%

)

Concentration (nM)
10

0
10

1
10

2
10

3

IC50

23nM

=

RDV

Mas
itin

ib

AM58
0

10-9

10-8

10-7

10-6

10-5

10-4

IC
50

 c
on

c.
 (

M
)

RESEARCH | RESEARCH ARTICLE



utility of SARS-CoV-2 replicons as scalable
drug discovery platforms focused on intra-
cellular viral replication events (Fig. 2G).
We next evaluated whether replicons could

be used to identify or validate intracellular
SARS-CoV-2 host factors. Transmembrane
protein 41B (TMEM41B) was recently reported
to be a critical intracellular host factor for
multiple coronaviruses (38). To test whether
SARS-CoV-2 replicon activity depended on
TMEM41B function, we electroporated wild-
type (WT) and TMEM41B knockout (KO)
Huh-7.5 cells with reporter replicon RNA.
Consistent with results obtained with virus,
TMEM41B KO resulted in a 22-fold decrease
in reporter activity compared with that for
WT Huh-7.5 cells (Fig. 2H)—an effect simi-
lar in magnitude to that of remdesivir treat-
ment. By contrast, an alphavirus replicon was
not affected by TMEM41B ablation (Fig. 2I).
TMEM41B reconstitution in KO cells led to an
11-fold increase in replicon activity (Fig. 2J).
These results demonstrate that SARS-CoV-2
replicons are sensitive to disruption of critical
intracellular host factors.

SARS-CoV-2 replicons reveal viral
determinants of interferon sensitivity

SARS-CoV-2 replicons can also be used to
characterize viral mutants. Recent studies
have highlighted the importance of Nsp1 as a
suppressor of host translation (39–44), con-
sistent with prior studies of SARS-CoV (45, 46).
This Nsp1 activity can be ablated by two amino
acid substitutions at positions 164 and 165 (47)
that are important for association with the
40S ribosomal subunit (39, 40). Nsp1 mutant
(Nsp1mut) repliconsmight preserve translation
and cell viability and hence prolong repli-
con activity—or, given the proposed role of
Nsp1 in blunting the innate immune response
(14, 39, 48), such mutations might attenuate
the replicon. We generated Nsp1mut replicons
and found that they performed similarly to
WT versions in Huh-7.5 cells and could be in-
hibited by remdesivir (Fig. 3A) but exhibited
less cellular toxicity (Fig. 3B). By contrast,
viability of cells harboring WT replicons re-
mained lowevenwhen repliconswere launched
in the presence of remdesivir (Fig. 3B). Taken
together, these results suggest that the initial
burst of SARS-CoV-2 Nsp1, expressed from
transfected replicon RNA, is an important
mediator of cell toxicity.
BecauseSARS-CoV-2Nsp1 activity is proposed

to halt production of interferon-stimulated
gene (ISG) products (39, 40), we hypothesized
that Nsp1mut replicons would be more sensi-
tive to interferons. Indeed, upon launch in
Huh-7.5 cells, Nsp1 mutants were hypersen-
sitive to interferon-a (IFNa) and interferon-b
(IFNb) compared with WT replicons (Fig. 3,
C and D), whereas both replicons exhibited
similar sensitivity to remdesivir (Fig. 3E). These

results highlight the ability of Nsp1 to blunt
the antiviral ISG response by inhibiting host
translation, which contributes to cytotoxic-
ity. Although these features of Nsp1mut rep-
licons may be advantageous for DAA and
HTA screening, the lack of Nsp1 functions
may affect screening outcomes in different cell
backgrounds, depending on innate immune
competence or other factors. Further, attempts
to leverage the lower cytotoxicity of Nsp1mut

replicons to select for stable cell lines that har-
bor noncytopathic replicons, as done previ-
ously withHCoV-229E (49), have thus far been
unsuccessful in Huh-7.5 and BHK-21 cells. Dif-
ferent cell backgrounds and multiple adaptive
mutationsmay benecessary to achieve this goal.

SARS-CoV-2 replicons can be
trans-complemented with spike to
generate single-cycle virions

Although BHK-21 andHuh-7.5 cells are permis-
sive for replicon launch via electroporation,
physiologically relevant lung cell lines and
primary cell types are more challenging to
transfect. Such cells also have intact RNA
sensing and innate immune functions, which
BHK-21 andHuh-7.5 cells lack (50, 51). Electro-
poration or other methods of RNA delivery

also preclude the study of normal viral entry
processes, and the large quantities of trans-
fected RNA do not mimic virus infection, in
which one or few RNA genomes initiate pro-
ductive replication. As a more authentic route
for replicon delivery, we attempted to package
replicons as single-cycle virions that could
infect cells in a spike-dependent manner but
would not produce infectious progeny capable
of further spread. We refer to these single-
cycle virions as RDPs (replicon delivery par-
ticles). We transfected BHK-21 cells with a
spike-expressing plasmid; 24 hours later, we
coelectroporated spike-deleted mNeonGreen
replicon RNA and N mRNA (Fig. 4, A and B).
The full-length native spike gene was opti-
mized for human codons and designed to lack
5′ untranslated region (5′UTR), leader, TRS,
and 3′UTR viral sequences to minimize the
possibility of recombination into the replicon
(52, 53). Given that Nsp1 hindered cell survival
after electroporation, we hypothesized that
Nsp1mut replicons couldbe trans-complemented
more efficiently than WT replicons. To test this,
WT or Nsp1mut replicons were electroporated
into spike-expressing cells. After 24 hours, the
putative RDPs were concentrated from the
supernatant of producer cells by polyethylene
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Fig. 3. Nsp1-deficient replicons are hypersensitive to interferons. (A and B) Time course measurements
of Gluc in the supernatant (A) or cell viability (B) of Huh-7.5 cells electroporated with WT or Nsp1 K164A/
H165A double mutant (Nsp1mut) Gluc replicon RNA. Cells were seeded with 100 nM remdesivir or vehicle
and were washed in phosphate-buffered saline 24 hours before each respective time-point collection.
Mock-electroporated cells were used as controls for post-electroporation cell viability. The dashed line
indicates the limit of detection. N = 4. Error bars indicate SD. (C to E) Huh-7.5 cells were electroporated with
WT or Nsp1mut replicon RNA and seeded on 96-well plates containing the indicated concentrations of (C)
IFNa, (D) IFNb, or (E) remdesivir. Gluc activity (filled circles) and cell viability (empty circles) were measured
24 hours after electroporation. N = 4. Error bars indicate SD.

RESEARCH | RESEARCH ARTICLE



glycol (PEG) precipitation and introduced to
the culture medium of recipient Huh-7.5 cells
overexpressing ACE2 and TMPRSS2 (Huh-7.5
AT). We detected mNeonGreen-positive cells
in a spike-dependent manner (Fig. 4, C and D;
P1) and found that the proportion of positive
cells from Nsp1mut RDPs was five times that
from WT replicons. No mNeonGreen-positive
cells were detected upon further passage of
the supernatant from RDP-positive Huh-7.5
AT cells (P1) onto naïve Huh-7.5 AT cells (P2)
(Fig. 4, C and D). This suggests that spike
RDPs exhibit single-cycle infectivity. Con-
sistent with this observation, spike expres-

sion was readily detected in the producer
cells (P0) but absent in RDP-infected P1 cells
(fig. S2, A and B). N protein expression was
observed in producer and P1 cells, but not
in P2 cells as expected (fig. S2C). Further,
consistent with single-cycle infectivity, spike
RDP infection did not yield characteristic
syncytia indicative of spike expression, as is
typically seen with live virus (fig. S2, D and
E). We observed spike RDP titers of 103 to
104 median tissue culture infectious doses
per milliliter (TCID50/ml) in Huh-7.5 AT cells
using unconcentrated stocks and up to 6.2 ×
105 TCID50/ml upon concentration, with spe-

cific infectivity about 20-fold lower than that
of virus (Fig. 4, E to G). This may indicate that
RDPs have reduced spike density compared
with virus.

Neutralization assays with RDPs recapitulate
authentic SARS-CoV-2 antibody phenotypes

Spike RDPs could complement pseudovirus
assays based on HIV-1 or vesicular stomatitis
virus (VSV), with a SARS-CoV-2–based, and
therefore more authentic, single-cycle alter-
native. We generated Nsp1mut Gluc RDPs
trans-packaged with either the prototype
spike (WA1/2020 isolate) or the B.1.351 (Beta)
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Fig. 4. Trans-complementation of
replicons with spike yields single-cycle
SARS-CoV-2. (A) A scheme to trans-
complement replicons with ectopically
expressed spike for single-cycle
virion production. BHK-21 cells are
transfected with a spike-encoding plasmid;
24 hours later, they are electroporated
with DS mNeonGreen SARS-CoV-2 replicon
RNA. Supernatant from these producer
cells (P0) is collected and passed onto
naïve recipient cells (P1), yielding reporter
activity. A second round of passaging
onto naïve recipient cells (P2) fails to
propagate the replicon. (B) A spike
trans-complemented replicon consists of
spike-deleted replicon RNA alongside
plasmid-driven spike expression. Nsp1
mutations relative to the WT sequence are
indicated. (C) BHK-21 producer cells (P0)
alone or transfected with a spike-encoding
plasmid were electroporated with WT or
Nsp1mut replicon RNAs. The RDPs in
resulting supernatants were concentrated
after 24 hours and passaged onto
Huh-7.5 cells that overexpress ACE2 and
TMPRSS2 (Huh-7.5 AT cells; P1 and P2), as
in (A). Immunofluorescence images at
4× magnification of the mNeonGreen
signal (green) and N antibody staining
(magenta) are shown. Scale bars, 100 mm.
(D) Quantification of the percentage of
NeonGreen-positive cells in each passage
for the results in (C). The dashed line
denotes the lower limit of quantification.
N = 8. Error bars indicate SD. (E) TCID50
per milliliter of independently prepared
SARS-CoV2 and RDP stocks were
calculated by end-point dilution assay on
Huh-7.5 AT cells. Conc, stocks concentrated
by PEG precipitation; n.d., not detected.
(F) Genome RNA copies per milliliter from
the virus and RDP stocks indicated in
(E) were calculated by qRT-PCR. (G) The
ratio between RNA copies per milliliter
indicated in (F) and TCID50 per milliliter
indicated in (E) was calculated to reflect
specific infectivity. In (E) to (G), error bars indicate SD.
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variant of concern (54). We performed neu-
tralization assays with these RDPs using
two well-characterized human monoclonal
antibodies—C135 andC144—capable of potent-
ly neutralizing SARS-CoV-2 or pseudoviruses
expressing the prototype spike (55). C144 bind-
ing and neutralization is ablated by the spike
Glu484→Lys (E484K) mutation, which was
originally identified by antibody selection
experiments using a VSV pseudovirus (56) and
which later appeared in the B.1.351 variant
(54). RDPs harboring the prototype spike
were neutralized with both antibodies, where-
as only C135 neutralized B.1.351 spike RDPs
(Fig. 5, A and B). Neutralization curves and
relative IC50 values were comparable to those
obtained with the respective SARS-CoV-2 iso-
lates (Fig. 5, D to F) and to the findings of
previous studies that used pseudovirus assays
(55, 56), with the added advantage that RDP
generation does not require deletions in the
spike coding sequence (22).

Spike-deleted SARS-CoV-2 replicons can
incorporate VSV glycoprotein

Efficient entry with spike RDPs appears to
require high levels of ACE2 and TMPRSS2 in
Huh-7.5 cells because RDP addition toHuh-7.5

or Vero cells not overexpressing these factors
was unproductive. Because numerous cell lines
relevant for SARS-CoV-2 studies may have in-
sufficient ACE2 or TMPRSS2 levels unless
engineered to support viral entry (57), we
tested whether spike-deleted replicons could
be packaged with VSV glycoprotein (VSV-G),
analogous to one-way lentiviral transduction.
In such systems, VSV-G pseudotyping pro-
vides an efficient means of lentiviral vector
entry (58) and, for RDPs, might provide an
ACE2-independentmeans of replicon delivery.
We transfected BHK-21 cells with a VSV-G ex-
pression plasmid followed by coelectropora-
tionwith spike-deletedmNeonGreen replicon
RNA and N mRNA (Fig. 6A). The resulting
RDPs in the supernatant were concentrated
andadded to naïveHuh-7.5 cells. After 24hours,
we observed mNeonGreen-positive cells in a
VSV-G–dependentmanner (Fig. 6, B and C; P1).
Notably, there was nomeasurable signal in a
second passage (Fig. 6, B and C; P2) and no
VSV-G carryover was detected in the P1 cells
(fig. S3, A and B), which suggests that VSV-G
RDPs have single-cycle infectivity. In contrast
to spikeRDPs, producer (P0)VSV-G–expressing
BHK-21 cells had a significantly higher ratio of
mNeonGreen than did control cells when the

Nsp1mut replicon was used, which is sugges-
tive of local VSV-G–dependent spread. P1 cells
also exhibited highermNeonGreen andN pro-
tein positivity using Nsp1mut RDPs than did
WT RDPs (Fig. 6, B and C, and fig. S3C). We
observed VSV-G RDP titers between 1 × 103

and 8 × 103 TCID50/ml on Huh-7.5 cells. We
then tested VSV-G RDP infectivity on addi-
tional cell types: African greenmonkeyVeroE6
cells, human Caco2 intestinal epithelial cells
(59, 60), and both Calu3 andA549 human lung
adenocarcinoma cells (61–64). Additionally,
we tested RDP activity in two lines of human
airway cells: normal human bronchial (or
tracheal) epithelial (NHBE) cells and normal
human lung fibroblast (NHLF) cells (Fig. 6D).
All cells were susceptible to infection with
VSV-G RDPs and exhibited productive viral
replication, as evident from mNeonGreen
reporter expression. We pretreated NHBE,
NHLF, and A549 cells with 100 nM remdesivir
or 100 pM IFNa and subsequently added Gluc
VSV-G RDPs. As shown in Fig. 6E, both treat-
ments inhibited Gluc reporter activity to near-
baseline levels. Overall, these data demonstrate
that VSV-G RDPs provide a flexible means of
replicon launch in primary cell contexts.
To further examine whether VSV-G RDPs

have single-cycle infectivity using a more sen-
sitive approach, we generated Gluc-expressing
VSV-G RDPs and infected naïve Huh-7.5 cells
followed by Glucmeasurements 24 hours later
(P1). Whereas the VSV-G RDP–positive cells
produced a robust Gluc signal, no signal was
observed when the supernatant from P1 was
concentrated and passaged onto naïve cells
(P2) (Fig. 6F). Input supernatant was similarly
concentrated and used as positive control for
VSV-G RDP concentration and single-cycle
infection.

VSV-G trans-complementation of a SARS-CoV-2
replicon lacking all accessory genes

Because our RDP results to this point had
relied on spike-deleted replicons with or with-
out mutations in Nsp1, we next examined
whether replicons harboring additional dele-
tions could be packaged into RDPs. Previous
work with SARS-CoV and SARS-CoV-2 has
shown that M and E genes are required for
virionmorphogenesis and release (65, 66). On
that basis, we tested VSV-G packaging of a
replicon that lacked all accessory genes but
retained genes encoding the structural M,
E, and N proteins (DAcc) (fig. S4A). VSV-G–
dependent infectivity was observed on recip-
ient Huh-7.5 cells when both mNeonGreen
and Gluc DAcc versions were used at levels
comparable to that of the spike-deleted (DS)
replicon (fig. S4, B to D). Thus, accessory
genes are dispensable for replicon pseudo-
typing with VSV-G.
In this paper, we highlight several features

of SARS-CoV-2 RDPs. First, RDPs enable a
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rapid and isogenicmeans of generating single-
cycle SARS-CoV-2 virions for spike-directed
efforts, such as screening spike variants against
neutralizing antibodies while eliminating the
potential for spike mutations to arise, as is
commonly encountered with cell culture–
passaged virus (67, 68) and for screening anti-
bodies against additional structural proteins.
Second, single-cycle infectivity can be achieved
withVSV-G,whichmaybebeneficial for studies
in systems where ACE2 receptor overexpres-
sion is infeasible. Finally, in contrast to repli-
con launch by RNA transfection, RDPs can
be frozen, stored, and distributed because

they require no specialized equipment to use
once generated. These attributes could even-
tually enable high-throughput drug screen-
ing without the need for high-containment
settings. Overall, these features highlight how
SARS-CoV-2 spike-deleted replicons andRDPs
provide a flexible and single-cycle–infectious
platform for future studies of this pandemic
virus.
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