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SUMMARY

Multi-dimensional functional data arises in numerous modern scientific experimental and observational
studies. In this article, we focus on longitudinal functional data, a structured form of multidimensional
functional data. Operating within a longitudinal functional framework we aim to capture low dimensional
interpretable features. We propose a computationally efficient nonparametric Bayesian method to simulta-
neously smooth observed data, estimate conditional functional means and functional covariance surfaces.
Statistical inference is based on Monte Carlo samples from the posterior measure through adaptive blocked
Gibbs sampling. Several operative characteristics associated with the proposed modeling framework are
assessed comparatively in a simulated environment. We illustrate the application of our work in two case
studies. The first case study involves age-specific fertility collected over time for various countries. The
second case study is an implicit learning experiment in children with autism spectrum disorder.

Keywords: Factor analysis; Functional data analysis; Gaussian process; Longitudinal mixed model; Marginal
covariance; Rank regularization; Tensor spline.

1. INTRODUCTION

We investigate Bayesian modeling and inference for longitudinal functional data, conceptualized as func-
tional data observed repeatedly over a dense set of longitudinal time points.A typical dataset would contain
n patients observed over the course of multiple visit times, with each visit contributing a functional datum.
Thus, for patient i we would record the outcome yi(s, t), where s is the visit time and t is the functional
argument. In this setting, it is reasonable to expect non-trivial correlations between functions from one
visit time to another. Therefore, appropriate modeling of this dependence pattern would be critical for
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the validity of statistical inference. This manuscript outlines a flexible Bayesian framework for the esti-
mation of the functional mean structure, possibly dependent on a set of time-stable covariates, as well
as an adaptive regularization framework for the estimation of the covariance operator of yi(s, t) and its
eigenstructure.

The frequentist analysis of longitudinal functional data is a mature field. In particular, semiparametric
modeling strategies, depending on the mixed effects modeling framework, have been proposed by Di and
others (2009) in the context of hierarchical functional data, and Greven and others (2010) for longitudinal
functional data. Important generalizations have been introduced by Chen and Müller (2012), through
structured functional principal components analysis (FPCA), with more parsimonious representations
introduced by Park and Staicu (2015), and Chen and others (2017) in the more general context of function-
valued stochastic processes. The appealing nature and flexibility of structured FPCA modeling strategies
has seen the application and extension of these methods to challenging scientific problems ranging from
functional brain imaging (Hasenstab and others, 2017; Scheffler and others, 2020), to the exploration of
complex data from wearable devices (Goldsmith and others, 2016). The vast majority of approaches based
on FPCA, generally focus on point estimation from a frequentist perspective, and do not provide reliable
uncertainty quantification without bootstrapping. The very application of the bootstrap methodology to
structured functional data has not been the subject of rigorous investigation. The literature, in fact, is
ambiguous on the handling of the many tuning parameters, typical of structured FPCA models. Although
there are some consistency results regarding the bootstrap for functional data (Cuevas and others, 2006;
Ferraty and others, 2010), the procedure is relatively underdeveloped for hierarchical data (Ren and others,
2010). Bayesian methods in functional data analysis define a straightforward mechanism for uncertainty
quantification. This appealing inferential structure comes, however, at the cost of having to specify a full
probability model, and priors with broad support on high-dimensional spaces (Shi and Choi, 2011; Yang
and others, 2016, 2017). In hierarchical and multi-dimensional functional data settings, starting from the
seminal work of Morris and others (2003), and recent extensions in Lee and others (2019), the prevalent
strategy has been to work within the framework of basis function transforms, defining flexible mixed
effect models at the level of the basis coefficients (Morris and others, 2003; Baladandayuthapani and
others, 2008; Zhang and others, 2016). The resulting functional mixed effects models, like their finite
dimensional counterpart, require a certain degree of subject matter expertise in the definition of random
effects and their covariance structure (Morris and others, 2011; Morris and Carroll, 2006).

This manuscript aims to merge the appealing characterization of longitudinal functional data through
FPCA decompositions (Chen and Müller, 2012; Park and Staicu, 2015; Chen and others, 2017), with
flexible probabilistic representations of the classical Karhunen–Loéve expansion of square integrable
random functions. Our work builds on the ideas of Suarez and Ghosal (2017) and Montagna and others
(2012), who adapted the regularized product Gamma prior for infinite factor models of Bhattacharya and
Dunson (2011), to the analysis of random functions. Extensions of this framework to the longitudinal
functional setting are discussed in Section 2. In Section 3, we discuss prior distributions and ensuing
implications for the covariance operator. A comprehensive framework for posterior inference is discussed
in Section 4. Section 5 contains a comparative simulation study. Finally, in Section 6 we discuss the
application of our proposed methodology to two case studies. The first case study explores age-specific
fertility dynamics in the global demographic study conducted by the Max Plank Institute and the Vienna
Institute of Demography (HFD, 2019). While purely illustrative, these data allow for a direct comparison
with the original analysis of Chen and others (2017). The second case study, involves the analysis of
electroencephalogram (EEG) data from an investigation of implicit learning in children with autism
spectrum disorder (ASD) (Jeste and others, 2015). The main interest in both case studies is modeling and
interpreting the longitudinal component.
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2. A PROBABILITY MODEL FOR LONGITUDINAL FUNCTIONAL DATA

Let yi(s, t) denote the response for subject i, (i = 1, . . . , n), at longitudinal time s ∈ S and functional time
t ∈ T , where S and T are compact subspaces of R. Furthermore, for each subject, assume we observe a
time-stable d-dimensional covariate xi ∈ R

d . In practice, we only obtain observations yi(sj, tk) at discrete
sampling locations (sj, tk) ∈ S × T , j = 1, . . . , ns

i , k = 1, . . . , nt
i . However, in subsequent developments,

we maintain the lighter notation yi(s, t) without loss of generality.
Let fi(s, t) be a Gaussian Process with mean E{fi(s, t)} = μ(xi, s, t) and covariance kernel

Cov{fi(s, t), fi(s′, t′)} = K{(s, t), (s′, t′)}. A familiar sampling model for yi(s, t) assumes:

yi(s, t) = fi(s, t)+ εi(s, t), εi(s, t)
iid∼ N (0,ϕ2); (2.1)

where ϕ2 > 0 is the overall residual variance. Given a set of suitable basis functions b(1)m (s) : S → R,
(m = 1, 2, . . . p1), and b(2)� (t) : T → R, (� = 1, 2, . . . p2), and a set of random coefficients θiml , the prior
for the underlying signal fi(s, t) is constructed through a random tensor product expansion, so that

fi(s, t) = ∑p1
m=1

∑p2
l=1 b(1)m (s)b

(2)
l (t)θiml . (2.2)

Since the truncation values p1 and p2 may be large to ensure small bias in the estimation of the true fi(s, t),
we follow Bhattacharya and Dunson (2011) and project the basis coefficients on a lower-dimensional
space.

Let�i = {θim�} ∈ R
p1×p2 be the matrix of basis coefficients for subject i.After defining loading matrices

� ∈ R
p1×q1 , (q1 � p1), and � ∈ R

p2×q2 , (q2 � p2), and a latent matrix of random scores ηi ∈ R
q1×q2 , we

assume

�i = �ηi�
� + ζ i, vec(ζ i) ∼ N (0,	), (2.3)

where	 is taken to be diagonal. The foregoing construction has connections with factor analysis. In fact,
vectorizing �i we obtain

vec(�i) = (� ⊗�)vec(ηi)+ vec(ζ i);

which resembles the familiar (q1 × q2) latent factor model, with loading matrix � ⊗� and latent factors
vec(ηi). Differently from standard latent factor models, our use of a Kronecker product representation for
the loading matrix introduces additional structural assumptions about Cov(�i), and the ensuing form of
the covariance kernel K{(s, t), (s′, t′)}.

More precisely, assuming Cov(ηi) = H , the marginal covariance of �i takes the form

Cov(�i) = (� ⊗�)H (� ⊗�)� +	 = 
. (2.4)

Furthermore, defining B1(s) = {b(1)1 (s), . . . , b(1)p1
(s)}� and B2(t) = {b(2)1 (t), . . . , b(2)p2

(t)}�, the model in (2.3)
induces the following representation for the covariance kernel K{(s, t), (s′, t′)}, s.t.

K{(s, t), (s′, t′)} = {B1(s)⊗ B2(t)}
 {B1(s
′)⊗ B2(t

′)}�. (2.5)

The low-rank structure of 
 in (2.4), depends on the number of latent factors q1 and q2 in the quadratic
form (�⊗�)� H (�⊗�). Rather than selecting the number of factors a priori, in Section 3, we introduce
prior distributions encoding rank restrictions through continuous stochastic regularization of the loading
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coefficient’s magnitude. Additional structural restrictions may ensue from specific assumptions about the
latent factors’ covariance H . Specifically, setting H = Iq1q2 leads to strong covariance separability of
the longitudinal and functional dimensions. A more flexible covariance model hinges on the notion of
weak-separability (Lynch and Chen, 2018). This is achieved by assuming H = diag(h1, . . . , hq1q2) > 0.

Finally, let xi be a d-dimensional time-stable covariate for subject i. Dependence of the longitudinal
functional outcome yi(s, t) on this set of predictors is conveniently introduced through the prior expectation
of ηi. More precisely, let β be a d × q1q2 matrix of regression coefficients, we assume

vec(ηi) ∼ N (β�xi, H ),

which implies the following marginal mean structure for yi(s, t),

E{yi(s, t)} = μ(xi, s, t) = {B1(s)� ⊗ B2(t)�} β�xi. (2.6)

The model in (2.1), together with the sandwich factor construction in (2.3) defines a probabilistic represen-
tation of the product FPCA decomposition in Chen and others (2017). An intuitive parallel is introduced in
Section 3, and a technical discussion is provided in the accompanying web-based supplementary document
(Appendix A of the supplementary material available at Biostatistics online). Differently from Chen and
others (2017), we propose model-based inference through regularized estimation based on the posterior
measure.

3. RANK REGULARIZATION AND PRIOR DISTRIBUTIONS

The selection of prior distributions for all parameters introduced in Section 2 is guided by the fol-
lowing considerations. Let γlj and λmk be specific entries in the loading matrices � and � in (2.3),
respectively. Defining ψj(s) = ∑p1

l=1 γljb
(1)
l (s) and φk(t) = ∑p2

m=1 λmkb(2)m (t), we may expand fi(s, t) as
follows:

fi(s, t) =
q1∑

j=1

q2∑
k=1

ψj(s)φk(t)ηijk + ri(s, t),

ri(s, t) =
p1∑

j=1

p2∑
k=1

b(1)j (s)b
(2)
k (t)ζijk .

The first component in the expression for fi(s, t) describes a mechanism of random functional variability
which depends on the tensor combination of q1 and q2 data-adaptive basis functions ψj(s) and φk(t),
respectively, and q1 × q2 basis coefficients ηijk . Given q1 and q2, any residual variability is represented
in the random function ri(s, t). When ψj(s) and φk(t) are chosen to be eigenfunctions of the marginal
covariance kernels in s and t, this representation is essentially equivalent to the product FPCA construction
of Chen and others (2017).

Statistical inference for FPCA constructions, commonly selects a small number of eigenfunctions on
the basis of empirical considerations. Here, we take an adaptive regularization approach, choose q1 and
q2 relatively large, and assume the variance components in the priors for � and � to follow a modified
multiplicative gamma process prior (MGPP) Bhattacharya and Dunson (2011) Montagna and others
(2012).



562 J. SHAMSHOIAN AND OTHERS

Let λmk denote the (m, k) entry of �. The modified MGPP is defined by setting

λmk ∼ N (0, ρ−1
1mkτ

−1
1k ), ρ−1

1mk ∼ Gamma(ν1/2, ν1/2),

τ1k = ∏k
υ=1 δ1υ , δ11 ∼ Gamma(a11, 1),

δ1υ ∼ Gamma(a12, 1)1(δ1υ > 1), for υ ≥ 2; k = 1, 2, . . . , q1.

(3.7)

Using the “rate” parametrization for Gamma distributions (i.e., if a ∼ Gamma(b, c), then E(a) = bc), this
prior is designed to encourage small loadings in� as the column index increases. In the original formulation
of Bhattacharya and Dunson (2011) and Montagna and others (2012), choosing a12 > 1, insures stochastic
ordering of the prior precision, in the sense that E(τ1k) < E(τ1(k+1)), for any k = 1, 2, . . . , (q1 − 1). In our
setting, we require the more stringent probabilistic ordering Pr(τ1k < τ1(k+1)) = 1, by assuming δ1υ > 1,
which results in a more stable and efficient Gibbs sampling scheme. Analogous regularization over the
columns of � is achieved by setting:

γlj ∼ N (0, ρ−1
2lj τ

−1
2l ), ρ−1

2lj ∼ Gamma(ν2/2, ν2/2)

τ2l = ∏l
υ=1 δ2υ , δ21 ∼ Gamma(a21, 1),

δ2υ ∼ Gamma(a22, 1)1(δ2υ > 1), for υ ≥ 2; l = 1, 2, . . . , q2.

(3.8)

Adaptive shrinkage is induced by placing hyper-priors on a11, a12, a21, and a22, such that

a11, a21
ind∼ Gamma(r1, 1), a12, a22

ind∼ Gamma(r2, 1).

The model is completed with priors on residual variance components and regression coefficients. Specif-
ically, conditionally conjugate priors are placed on the diagonal elements of 	 and H , respectively, as
well as the residual variance ϕ, such that:

σ−1
j ∼ Gamma(aσ , bσ ), h−1

j ∼ Gamma(ah, bh), ϕ−1 ∼ Gamma(aϕ , bϕ).

Finally, we induce a Cauchy prior for the regression coefficients matrix β as in Montagna and others
(2012). Denoting with βj� the (j, �) entry of β, we assume

βj� ∼ N (0,ωj�), ω−1
j� ∼ Gamma(1/2, 1/2); � = 1, . . . , q1q2, j = 1, . . . , d.

In summary, our approach starts with the projection of the observed data onto a set of known basis
functions in (2.2). This initial projection is similar to the interpolation or smoothing step commonly used
in functional data analysis (Chen and others, 2017; Morris and Carroll, 2006). The basis coefficients �i

are assumed to arise from the latent factor model in (2.3), resulting in the weakly separable covariance
model in (2.4) and (2.5). Finally, the MGPP priors in (3.7) and (3.8), allow for adaptive regularization of
the covariance operator. The mean structure is made dependent on a set of time stable covariates through
a varying coefficient model in (2.6).
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4. POSTERIOR INFERENCE

Posterior simulation through Markov chain Monte Carlo is relatively straightforward, after selection of an
appropriate basis transform and truncation of � and � to include q1 � p1 and q2 � p2 columns respec-
tively. The use of conditionally conjugate priors allows for simple Gibbs transitions for all parameters,
with the exception of the shrinkage parameters a11, a12, a21, and a22, which are updated via a Metropolis–
Hastings step. A detailed description of the proposed algorithm is reported in the web-based supplement
(Appendix B of the supplementary material available at Biostatistics online).

We note that the decomposition of Cov(�i) in (2.4) may not be unique. However, from a Bayesian
perspective, one does not require identifiability of the loading elements for the purpose of covariance
estimation. Direct inference for K{(s, t), (s′, t′)} and its functionals may be achieved by post-processing
Monte Carlo draws from the posterior p(
 | y) and evaluating the covariance function over arbitrarily
dense points t∗ := (t∗1 , . . . , t∗w1)

� ∈ T and s∗ := (s∗
1, . . . , s∗

w2)
� ∈ S using (2.5). Analogously, given

samples from p(β | y), inference about the mean structure is achieved by evaluating μ(xi, s, t) over s∗ and
t∗ using the expansion in (2.6).

Some useful posterior summaries may be obtained through marginalization. We define marginal
covariance functions KT (t, t′) and KS(s, s′) as follows:

KT (t, t′) =
∫

S
K{(s, t)(s, t′)}ds, KS(s, s′) =

∫
T

K{(s, t)(s′, t)}dt. (4.9)

Intuitively, KS(·) and KT (·) summarize patterns of functional co-variation along a specific coordinate,
and their lower-dimensional posterior summaries may be obtained through functional eigenanalysis as in
Chen and others (2017). We outline details on extracting lower-dimensional summaries of the marginal
covariance functions without computing K{(s, t), (s′, t′)}, KT (t, t′), or KS(s, s′) in Appendix F of the of the
supplementary material available at Biostatistics online. Simultaneous credible intervals for all functions
of interest are easily obtained from Monte Carlo samples, by applying the methodology discussed in
Crainiceanu and others (2007) and Baladandayuthapani and others (2005).

Specifically, M Monte Carlo draws from a posterior function of interest, say g(τ ), are used to estimate
the posterior mean ĝ(τ ), and standard deviation

√
v̂ar{̂g(τ )}. Assuming approximate normality of the

posterior distribution, we derive the (1 − α) quantile cα of the pivotal quantity

max
τ

∣∣∣∣∣g(i)(τ )− ĝ(τ )√
v̂ar{̂g(τ )}

∣∣∣∣∣ , i = 1, . . . , M .

An approximate simultaneous (1−α) posterior band can then be constructed as a hyperrectangular region

over τ :
[̂
g(τ )± cα · √

v̂ar{̂g(τ )}
]

. More general simultaneous bands have been proposed by Krivobokova

and others (2010), but are not implemented in this manuscript.

The proposed modeling framework relies on a specific basis transform strategy. While the literature has
suggested the use of zero-loss transforms as a default option (Morris and others, 2003; Lee and others,
2019), we find that it is not uncommon to observe some sensitivity to the number of basis functions used
in the initial projection. Furthermore, the choice of more parsimonious designs, when warranted by the
application, may lead to important gains in computational and estimation efficiency.

Model flexibility is governed by choice of (p1, p2), as the number of smoothing basis functions, and
(q1, q2) as the number of latent factors. Due to the adaptive rank regularizing prior, q1 and q2 should be
chosen as large as possible. In practice (q1, q2) are chosen as fraction of (p1, p2).

Our simulation studies (Appendix C of the supplementary material available at Biostatistics online)
demonstrate that point estimates and uncertainty of mean and covariance functions are generally insensitive
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to choice of p1 and p2, provided q1 and q2 are large. Some sensitivity is, however, observed in the posterior
estimate of the residual errorϕ2.An alternative method is to simply rely on the minimization of information
criteria. In this article, we consider simple versions of the deviance information criterion (DIC), and two
versions of the Bayesian information criteria (BIC and BICh Delattre and others (2014)). Our simulations
studies (Appendix C of the supplementary material available at Biostatistics online) indicate that the
proposed information criteria perform well in selecting an adequate number of basis functions.

From a computational perspective, the most time consuming steps in the Gibbs sampling algorithm
are the Cholesky decompositions used in updating �i and ηi, requiring O

(
p3

1 p3
2

)
and O

(
q3

1q3
2

)
floating

point operations , respectively. Therefore, scalability of naïve Gibbs sampling is a potential issue for very
large samples and/or very long longitudinal or functional evaluation domains. In these cases, adapting the
estimation approach of Morris and Carroll (2006), is easily implemented, by treating the estimation of
�i as a pre-processing step, and considering 2.3 as the sampling model. For big data applications, other
analytical approximations to the posterior measure are also accessible, e.g., Integrated Nested Laplace
Approximations (INLA) (Rue and others, 2009).

5. A MONTE CARLO STUDY OF OPERATING CHARACTERISTICS

We performed a series of numerical experiments aimed at evaluating the estimation performance for both
the functional mean and covariance. We study three simulation scenarios, including two weakly separable
kernels (Cases 1 and 2) and one non-separable covariance function (Case 3). Specifically, for s ∈ [0, 1]
and t ∈ [0, 1], we take:

(1) KS(s, s′) = ∑2
j=1 λjψj(s)ψj(s′), with eigenvalues λj = 1

j2π2 and eigenfunctions

ψj(s) = √
2 sin(jπs), KT (t, t′) = σ 2

(
1 +

√
3|t−t′|
ρ

)
exp

(
−

√
3|t−t′|
ρ

)
, in the Matèrn class, and

mean μ(s, t) =
√

1
5
√

s+1
sin(5t).

(2) KS(s, s′) = ∑2
j=1 λjψj(s)ψj(s′), with eigenvalues λj = 1

(j−1/2)2π2 and eigenfunctions

ψj(s) = √
2 sin((j − 1/2)πs), KT (t, t′) = ∑50

k=1 λkφk(t)φk(t′), with λk = k−2α and φk(t) =
cos(kπ t), and mean μ(s, t) = 5

√
1 − (s − .5)2 − (t − .5)2.

(3) K((s, t), (s′, t′)) = 1

(t − t′)2 + 1
exp

{
− (s − s′)2

(t − t′)2 + 1

}
, stationary non-separable (Gneiting, 2002),

and mean μ(s, t) = √
1 + sin(πs)+ cos(π t).

Scenario 1 combines a simple Matèrn class pattern on the time-domain t with a more complex oscillatory
dependence pattern for the functional domain s. Covariance 2 includes an oscillatory pattern in both s and
t. Finally, Covariance 3, while defining simple parametric dependence in both longitudinal and functional
times, is not weakly separable, allowing for comparisons on misspecified models.

We consider estimation of the mean, covariance, marginal covariance functions, and the associated two
principal eigenfunctions. Each simulation includes 1000 Monte Carlo experiments. For each experiment,
posterior estimates are based on 10 000 iterations of four independent Markov chains, after discarding 2500
draws for burn-in. We compare estimation of covariance, marginal covariance functions, and associated
two principal eigenfunctions to the respective estimates provided by the product FPCA (Chen and others,
2017), as well as finite-dimensional empirical estimates of the mean and covariance defined as by their
vectorized sample counterparts. Estimates obtained with the product FPCA have data type set to sparse
and fraction of variance explained threshold set to 0.9999.
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Table 1. Mean and covariance relative errors under the three simulation cases described in
section 5. Bayes refers to the proposed method in this paper, product refers to the product decom-
position Chen and others (2017), and empirical refers to point-wise empirical estimation. Each
case is repeated 1000 times for sample sizes of n = 30 and n = 60. We report the 50th percentile
of the relative error, with the numbers in the parentheses denoting the 10th and 90th percentiles
of the relative error.

Case 1 Bayes Product Empirical

n = 30
μ(s, t) 0.014 (0.005, 0.038) 0.019 (0.010, 0.044) 0.019 (0.010, 0.044)

K{(s, t), (s′, t′)} 0.062 (0.023, 0.224) 0.085 (0.047, 0.200) 0.151 (0.097, 0.297)

n = 60
μ(s, t) 0.007 (0.003, 0.019) 0.010 (0.005, 0.021) 0.010 (0.005, 0.021)

K{(s, t), (s′, t′)} 0.030 (0.010, 0.097) 0.057 (0.038, 0.128) 0.076 (0.050, 0.151)
Case 2

n = 30
μ(s, t) 0.024 (0.007, 0.101) 0.031 (0.013, 0.118) 0.031 (0.013, 0.118)

K{(s, t), (s′, t′)} 0.039 (0.011, 0.184) 0.050 (0.012, 0.202) 0.067 (0.030, 0.228)

n = 60
μ(s, t) 0.014 (0.004, 0.054) 0.017 (0.007, 0.062) 0.017 (0.007, 0.062)

K{(s, t), (s′, t′)} 0.019 (0.005, 0.091) 0.024 (0.007, 0.093) 0.032 (0.014, 0.106)
Case 3

n = 30
μ(s, t) 0.155 (0.046, 0.389) 0.160 (0.051, 0.393) 0.160 (0.051, 0.393)

K{(s, t), (s′, t′)} 0.051 (0.016, 0.187) 0.051 (0.014, 0.183) 0.067 (0.023, 0.200)

n = 60
μ(s, t) 0.073 (0.019, 0.216) 0.076 (0.021, 0.219) 0.076 (0.021, 0.219)

K{(s, t), (s′, t′)} 0.028 (0.008, 0.091) 0.027 (0.007, 0.089) 0.034 (0.011, 0.099)

All comparisons are based on the relative mean integrated squared error. For a function f with domain
D and estimator f̂ , we define RE(f̂ , f ) = ∫

D{f̂ (u) − f (u)}2du/
∫

D f (u)2du. Note that D can be multi-
dimensional and in practice the integral is replaced with a sum. Table 1 compares mean μ(s, t) and
covariance K{(s, t), (s′, t′)} estimation under the three settings listed above. We find that estimates from
each method improve in accuracy with increasing sample size (n = 30, 60), with the posterior and product
FPCA showing greater accuracy than empirical approach in terms of covariance estimation. Similar
findings characterize the estimation performance of all marginal covariance functions (KS , KT ), and the
associated two principal eigenfunctions (ψi(s), i = 1, 2), and (φi(t), i = 1, 2). Detailed numerical results
and extended simulations are reported in the web-based supplement (Appendix C of the supplementary
material available at Biostatistics online).

In summary, we observe that posterior estimates are associated with similar, and potentially improved
accuracy in the estimation of the mean and covariance functions, when compared with product FPCA. This
similarity in estimation performance, provides some empirical assurances that the chosen probabilistic
representation of structured covariance functions, and estimation based on adaptive shrinkage, maintains
a data-adaptive behavior with good operating characteristics.

6. CASE STUDIES

We illustrate the application of the proposed modeling frameworks in two case studies. The first dataset
concerns fertility rate and age of mothers by country. The second case study focuses on functional brain
imaging through EEG in the context of implicit learning in children with ASD.
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6.1. Fertility rates

The Human Fertility Database (HFD, 2019) compiles vital statistics to facilitate research on fertility in
the past twentieth century and in the modern era. Age-specific fertility rates are available for 32 countries
over different time periods. The age-specific fertility rate ASFR(s, t) is defined as

ASFR(s, t) = Births during year s given by women aged t

Person-years lived during year s by women aged t
.

The dataset was previously analyzed and interpreted in a longitudinal functional framework using the
product FPCA (Chen and others, 2017). This section focuses on a comparative analysis of product FPCA
and the proposed probability model.

We follow Chen and others (2017), and consider n = 17 countries, with complete data for the time
period 1951 to 2006, 44 functional time points (ages 12–55), and 56 longitudinal time points (years 1951
to 2006). Since these rates are population measurements, we expect the data to contain very little noise.

We use cubic b-splines as our basis functions since the data look smooth with no sharp changes in fertility
rate over year or age of mother (Figure S1 of the supplementary material available at Biostatistics online)
and consider (p1, p2) = (22, 28) splines and (q1, q2) = (11, 10) latent factors, selected by minimizing the
DIC.

Longitudinal and aging dynamics are largely determined by their associated marginal covariance func-
tions KS(s, s′) and KT (t, t′). Figure 1 displays the first three marginal eigenfunctions for age and calendar
year. We include the 95% simultaneous credible bands (Crainiceanu and others, 2007) as well as estimates
obtained via product FPCA. We note that Bayesian posterior mean eigenfunctions are qualitatively similar
to the inferred product FPCA estimates, therefore warranting similar interpretations to the one originally
offered by Chen and others (2017).

In particular, the first marginal eigenfunction for age (Figure 1, left panel) can be interpreted as the
indexing variability in young fertility before the age of 25, with the second marginal eigenfunction for age
(Figure 1, central panel) indexing variability in fertility for mature age, between the ages of 20 and 40.
As our modeling framework allows for rigorous uncertainty quantification in these posterior summaries,
we note that the credible bands for the first and second eigenfunction are relatively wide, indicating that
specific patterns should be interpreted with care. Examining directions of variance in fertility through the
years, we note that the first marginal eigenfunction for year (Figure 1, left panel) is relatively constant and
can be interpreted as representing an overall “size-component” of fertility from 1951 to 2006. The second
eigenfunction (Figure 1, central panel) defines a contrast of fertility in countries before and after 1975.
For both the year and age coordinates, the third marginal eigenfunctions capture a smaller fraction of the
total variance and index higher patterns of dispersion at and around age 25 and at or around the year 1975.

We investigate sensitivity to the number of basis and latent factors considering four different models:
model 1: (p1, p2) = (44, 50), (q1, q2) = (20, 20); model 2 (p1, p2) = (44, 50), (q1, q2) = (6, 6); model
3: (p1, p2) = (16, 20), (q1, q2) = (12, 12); and model 4: (p1, p2) = (16, 20), (q1, q2) = (6, 6). We also
estimate the marginal covariance function with product FPCA using both the dense and sparse settings.
Point estimate for KT (t, t′) are reported in Figure 2. Comparing estimates within column (left and center
panels), we assess sensitivity to a drastic reduction in the number of latent factors. Comparing estimates
within row (left and center panels), we instead assess sensitivity to a drastic reduction in the number of
basis functions. We note that the marginal age covariance function is relatively stable in all four settings.
We contrast this relative robustness with estimates based on the product FPCA. In particular, sparse
estimation using 10-fold cross-validation results in meaningfully diminished local features. A possible
reason for the instability is due to the small sample size (n = 17). In this example, Bayesian estimation
is perhaps preferable, as adaptive penalization allows for stable estimates within a broad class of model
specifications.
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Fig. 1. Age and calendar year marginal eigenfunctions. The above plots include the Bayesian posterior means, 95%
credible bands, and the product FPCA marginal eigenfunctions.

6.2. An EEG study on implicit learning in children with ASD

This analysis is motivated by a functional brain imaging study of implicit learning in young children with
autism spectrum disorder (ASD), a developmental condition that affects an individual’s communication
and social interactions (Lord and others, 2000). Implicit learning is defined as learning without the
intention to learn or without the conscious awareness of the knowledge that has been acquired. We consider
functional brain imaging through EEG, an important and highly prevalent imaging paradigm aimed at
studying macroscopic neural oscillations projected onto the scalp in the form of electrophysiological
signals.

This study, carried out by our collaborators in the Jeste laboratory at UCLA, targets the neural cor-
relates of implicit learning in the setting of an event-related shape learning paradigm (Jeste and others,
2015). Children aged 2–6 years old with ASD were recruited through the UCLA Early Childhood Partial
Hospitalization Program (ECPHP). Each participant had an official diagnosis of ASD prior to enrollment.
Age-matched typically developing (TD) children from the greater Los Angeles area were recruited as
controls.

Six colored shapes (turquoise diamond, blue cross, yellow circle, pink square, green triangle, and red
octagon) were presented one at a time in a continuous “stream” in the center of a computer monitor.
There were three shape pairings randomized to each child. For instance, a pink square may always be
followed by a blue cross. After the blue cross would come a new shape pair. Within a shape pair would
constitute an “expected” transition and between shape pairs would constitute an “unexpected” transition.
Each child would wear a 128-electrode Geodesic Sensor Net and observe the stream of shapes on the



568 J. SHAMSHOIAN AND OTHERS

Fig. 2. Sensitivity analysis for the marginal covariance function KT (t, t′) (HFD study). Panels (1,2,3,4) refer to
posterior mean estimates obtained under different projections and numbers of latent factors (Specific details are
provided in Section 6.1). Panels (5, 6) refer to product FPCA estimates obtained under dense (5) or sparse (6) settings.

computer monitor. Each stimulus, or presentation of a single shape, is referred to as a trial, and can result
in frequency-specific changes to ongoing EEG oscillations, which are measured as event related potentials
(ERPs).

Each waveform contains a phasic component called the P300 peak which represents attention to salient
information. This phasic component is typically studied in EEG experiments and is thought to be related
to cognitive processes and early category recognition (Jeste and others, 2015). We use the same post-
processed data as in Hasenstab and others (2017). Namely, we consider 37 ASD patients and 34 TD
patients using data from trials 5 through 60 and averaging ERPs in a 30 trial sliding window (Hasenstab
and others, 2015). The sliding window enhances the signal to noise ratio at which the P300 peak locations
can be identified for each waveform. Each waveform is sampled at 250 Hz resulting in 250 within-trial
time points over 1000 ms. Following Hasenstab and others (2017), we reduce each waveform to a 140
ms window around each P300 peak. This 140 ms window results in 37 within-trial time points. We
do not apply warping techniques because each within-trial curve is centered about the P300 peak. Our
analysis focuses on condition differentiation, formally defined as the difference between the expected
and subsequent unexpected condition. Modeling condition differentiation for waveforms within a narrow
window about the P300 peak over trials may give insights into learning rates for the ASD and TD groups.
Thus, the main interest in this study is changes in condition differentiation over trials, and a longitudinal
functional framework is required for statistical inference in this setting. Our analysis is based on the
condition differentiation, averaged within subject over the four electrodes in the right frontal region of
the brain. In summary, for each subject we consider ns = 56 observations within trial, and nt = 37 total
trials.

We model the ASD and TD data cohorts separately, in order to estimate ERP time and trial covariance
functions within group. All inference is based on a model with p1 = 20, p2 = 56, q1 = 10, q2 = 28,
selected minimizing DIC. A comprehensive analysis is reported in the web-based supplementary material
available at Biostatistics online. Statistical inference is based on 50K MCMC posterior draws, after 20K
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Fig. 3. Posterior expected mean condition differentiation along trial and ERP time for the ASD (a) and the TD (b)
cohorts.

burn-in. We considered relatively diffuse priors: aσ = bσ = 0.5, ah = bh = 1, ν1 = ν2 = 1, r1 = r2 = 1,
and aϕ = bϕ = 0.0001. Results are relatively insensitive to these hyperparameter settings.

The estimated mean surfaces for the two groups are plotted in Figure 3. The ASD group tends to have
positive condition differentiation between trials 30 and 55, whereas the TD group tends to have positive
condition differentiation in earlier trials. Positive condition differentiation is thought to be indicative of
learning, so these results suggest that the TD group is learning at a faster rate than theASD group. However,
even though qualitatively the surfaces look very different, there is a substantial amount of heterogeneity in
the subject-level data, resulting in broad confidence bands around the mean, and perhaps suggesting that
differential patterns of condition differentiation betweenASD and TD groups are best explored considering
both the mean and the covariance structure.

Next we conduct an eigen-analysis of the covariance structure for both cohorts separately. Figure 4
plots eigenfunctions of the marginal covariances over ERP time and trials. Credible intervals are calculated
following Crainiceanu and others (2007). We start by analyzing summaries indexing variability in ERP
time. For both the TD and ASD cohorts, the first eigenfunction explains the vast majority of the marginal
covariance (84–88% in ASD, and 86–90% in TD). In both groups, this first eigenfunction is relatively flat
and can be interpreted as representing variability in the overall level of condition differentiation within a
trial. The magnitude and shape of variation is comparable between TD andASD children. Finer differences
may be detected in the second and third eigenfunction, which further characterize variability in the shape
of the ERP waveforms about the P300 peak. For both cohorts, however, these summaries represent only
a small percentage of the variance in ERP waveform within trial.

Perhaps more interesting is an analysis of the marginal covariance across trial, as probabilistic learning
patterns are likely to unfold with prolonged exposure to expected vs. unexpected shape pairings. For
the ASD group, the first eigenfunction dips in an approximately quadratic fashion, suggesting enhanced
variability in condition differentiation at around trial 35. Similarly, for the TD group, the first trial eigen-
function has a slight peak around trial 25. A possible interpretation of these covariance components relates
to implicit learning, with higher variance in differentiation occurring earlier for TD than for ASD children.
For both TD and ASD, the second eigenfunction across trials is interpreted as a contrast between high
condition differentiation at early trials and low condition differentiation at later trials. Finally for the ASD
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Fig. 4. Marginal eigenfunctions with associated uncertainty for the ASD and TD groups. Solid black lines represent
posterior means and dotted lines represent 95% simultaneous credible bands.

cohort, the third eigenfunction exhibits a peak around trial 30. A possible interpretation would identify
heterogeneity in the timing of learning, with some of the trajectories inducing variation in condition dif-
ferentiation around trial 30, as opposed to the first eigenfunction identifying increased variance at around
trial 35. Similarly for the TD group, the third trial eigenfunction has a dip around trial 35, indexing delayed
increased variability in condition differentiation around trial 35.
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7. DISCUSSION

In this article, we provide a probabilistic characterization of longitudinal functional data. As part of our
work, we propose a joint framework for the estimation of the mean or the regression function, and a
flexible prior for covariance operators. Regularized estimation relies crucially on the projection of a set of
basis coefficients onto a latent subspace, with adaptive shrinkage achieved via a broadly supported class
of product Gamma priors. While we have not established theoretical results on posterior consistency, we
have shown that the proposed framework exhibits competitive operating characteristics, when compared
with alternative modeling strategies.

Importantly, uncertainty quantification, is achieved without having to rely on the asymptotic per-
formance of bootstrap methods. From an applied perspective, analysts are charged with choosing the
appropriate projection space. However, we see this as a feature rather than a problem, as different data
scenarios may require and motivate the use of alternative basis systems. Because regularization is achieved
jointly with estimation, inference is straightforward and does not need to account separately for the esti-
mation of nuisance parameters or the choice of a finite number of eigenfunctions to use in a truncated
version of the model, as is the case for FPCA-based methods.

Crucially, the level of flexibility afforded by the proposed method is most important when inference
centers on both the mean and covariance structure. Simpler modeling strategies, e.g., the Integrated Nested
LaplaceApproximations (LFPCA) approach of Greven and others (2010), are likely to be more appropriate
when the number of longitudinal observations is small, or if inference centers mostly on the mean structure.
In a small simulation study (Appendix C of the supplementary material available at Biostatistics online),
we found that the proposed approach performs similarly to LFPCA, even when data are generated from
the latter scheme.

We have shown that posterior inference using MCMC is implemented in a relatively straightforward
fashion and need not rely on complicated posterior sampling strategies. When dealing with large data-sets,
this naïve inferential strategy may not be appropriate. For example, in updating the basis coefficients�i, the
number of floating point operations grow at a cubic rate with respect to the dimensions of the spline bases.
When naïve Gibbs is not scalable (e.g., for very large samples or long evaluation domains), potentially
promising acceleration strategies include the zero-loss projection approach of Morris and Carroll (2006),
and adaptations of the INLA framework for approximate inference (Rue and others, 2009).

From a modeling perspective, our probabilistic characterization of the longitudinal functional covari-
ance function is essentially equivalent to the weakly separable model of Chen and others (2017). While
more general than a strictly separable model, this strategy makes strong assumptions about the structure
of a high-dimensional covariance operator. Testing strategies have been developed in the literature (Lynch
and Chen, 2018). However, we find that a more natural approach to the problem is one of regularized
estimation. In this setting, a possible extension of our modeling framework could include an embedding
strategy for the regularization of a nonseparable covariance operator towards a weakly separable one.

8. SOFTWARE

Software in the form of an R package including complete documentation and a sample data set is available
from https://github.com/jshamsho/LFBayes.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.

https://github.com/jshamsho/LFBayes
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa041#supplementary-data
http://biostatistics.oxfordjournals.org
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