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Abstract

The development and study of a simple copper-catalyzed reaction of nitroarenes with aryl boronic 

acids to form diarylamines that uses phenyl silane as the stoichiometric terminal reductant is 

described. This cross-coupling reaction requires as little as 2 mol % of CuX and 4 mol% of 

diphosphine for success and tolerates a broad range of functional groups on either the nitroarene 

or the aryl boronic acid with to afford the amine in good yield. Mechanistic investigations 

established that the cross-coupling reaction proceeds via a nitrosoarene intermediate and that 

copper is required to catalyze both the deoxygenation of the nitroarene to afford the nitrosoarene 

and C–NAr bond formation of the nitrosoarene with the aryl boronic acid.
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The ubiquitous nature of N,N-diarylamines in molecules that exhibit important biological- 

and material activities has spurred considerable research in developing efficient catalytic 

reactions to construct this important scaffold.1,2 While transition metal-catalyzed cross-

coupling reactions that form C–N bonds are legion,3 few examples exist of their use 

to make secondary N,N-diarylamines from nitroarenes. Our laboratory has developed 

a series of transition metal-catalyzed reactions that exploit the reactivity embedded in 

nitroarenes for the construction of C–NAr bonds via nitrosoarene reactive intermediates,4 

and we were curious if a nitroarene could serve as the nitrogen component of the cross-

coupling reaction.5 In 2002, Sapountzis and Knochel reported that diarylamines 3 could 

be constructed from nitroarenes via the nucleophilic addition of Grignard reagents to 

nitrosoarenes followed by an iron-mediated reduction of the N-oxide product.6,7 After this 

seminal report, the development of reductive intermolecular cross-coupling reactions of 

nitroarenes lay dormant until 2015 when Baran and co-workers reported that 30 mol % 

of Fe(acac)3 catalyzed a reductive hydroamination reaction between a nitroarene and an 

olefin using superstoichmetric amounts of PhSiH3 and Zn(0) as the reductant (Scheme 1).8 

The authors proposed that this reaction occurred through the addition of benzyl radical 5 
to nitrosoarene 1. For this reaction, the transition metal catalyst was not involved in the 

formation of the C–NAr bond but functioned to facilitate deoxygenation of the nitroarene to 

the nitrosoarene. This report spurred a surge in interest in using nitroarenes to construct 

C–NAr bonds in reductive amination reactions.9 Recently, Radosevich and co-workers 

reported an organophosphorous-catalyzed reductive coupling of nitroarenes and aryl boronic 

acids using phenyl silane as the stoichiometric reductant.10 Critical to the success of 

this transformation was the strained nature of the phosphacyclobutane catalyst 6, which 

enables the P(III)-P(V)=O redox manifold.10 In 2019, a Mo-catalyzed reductive coupling 

of nitroarenes and boronic acids that used triphenylphosphine as the terminal reductant was 

reported by Suaréz-Pantiga, Sanz and co-workers.11 This transformation required only 5 mol 

% of MoO2Cl2(dmf)2 and bipyridine and a slight excess of either an aryl- or alkyl boronic 

acid for success and was proposed by the authors to proceed via metallocycle 10. We hoped 

to build on these results by developing a catalytic system that used a commercially available 

and earth abundant first row transition metal and ligand and a mild reductant. Herein, we 

report the development of a Cu-catalyzed cross-coupling reaction of nitroarenes and aryl 

boronic acids that uses phenyl silane as the stoichiometric reductant. Our data suggests 

that copper catalyzes both the deoxygenation of nitroarene to nitrosoarene and subsequent 

formation of the C–NAr bond.

To determine if a first-row transition metal catalyzed reductive cross-coupling reaction 

of nitroarenes and aryl boronic acids could be achieved we examined the reactivity of 

4-methoxyphenylboronic acid and methyl-4-nitrobenzoate (Table 1). While only aniline 

formation was observed using an iron- or nickel catalyst,12 we found that the combination 

of 10 mol % of Cu(OAc)2 and DPPB as the ligand afforded diarylamine 3a, but reduction 

to aniline was observed to be competitive (entry 1). While changing the oxidation state 

of copper resulted in no aniline formation, the yield of 3a was severely attenuated (entry 

2). After control experiments established that both copper and the silane were required 

for the formation of diarylamine 3a,12 we turned our attention to improving the ratio of 

cross-coupling product 3a to aniline. Changing the ratio of the nitroarene to aryl boronic 
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acid from 1.5:1 to 1:1.5 reduced the amount of aniline significantly (entry 3). A solvent 

screen was performed,12 and the amount of aniline was reduced in acetonitrile (entries 4 

– 6). The catalyst loading was investigated using this reaction medium, and we observed 

that 5 mol % of Cu(OAc)2 could be used without attenuating the ratio of 3a to aniline 

(entry 7). The catalyst could be reduced to as little as 2 mol % without adversely affecting 

the reaction outcome (entry 8). While changing the counterion on copper did not have a 

positive effect on the cross-coupling reaction (entries 9 – 11),11 reducing the temperature of 

the reaction to 60 °C improved the ratio of 3a to aniline to almost 2:1 (entry 12). At this 

temperature, we surveyed a range of co-solvents,11 and using a 1:1 mixture of acetonitrile 

and toluene produced 76% of 3a, which was accompanied by only 18% of aniline (entry 13). 

Using this solvent mixture and temperature, we found that changing the identity of the silane 

or ligand had a negative effect on the reaction outcome and did not improve the amount 

diarylamine 3a formed (entries 14 – 18). The larger effect of changing the substituents on 

silane prompted us to examine the concentration of PhSiH3, and we found that using 2.8 

equivalents of PhSiH3 afforded the highest ratio of diarylamine 3a to aniline (entries 19 and 

20).

Using the optimal conditions, the scope and limitations of our Cu-catalyzed reductive cross-

coupling reaction was investigated with respect to the nitroarene (Table 2). The influence 

of electronic nature of the nitroarene on the reaction outcome was examined by changing 

the identity of the R1-substituent (entries 1 – 6). We found the reaction worked best with 

electron-deficient nitroarenes, but diarylamines could be accessed from nitrobenzene albeit 

with a diminished yield. Electron-rich nitroarenes, however, such as 4-nitroanisole resulted 

in no reaction (entry 5).13 This result could be leveraged by using 1,4-dinitrobenzene, 

which resulted in coupling of the aryl boronic acid to only one of the two nitro groups to 

produce 3f, albeit in a slightly attenuated yield (entry 6). The effect of meta-substitution was 

investigated, and diarylamines 3g – 3i were formed in good yield irrespective of whether 

the R2-substituent was a F3C-, Me- or MeO-group (entries 7 – 10). To our surprise, the 

cross-coupling reaction exhibited a broad tolerance to the identity of the ortho-substituent 

(entries 10 – 13): high yields of diarylamine 3 were obtained with a potentially coordinating 

nitrile R3-substituent, an alkyl group and even an electron-donating methoxy R3-substituent, 

which inhibited the reaction when it was present in the para-position. The success of 

nitroarene 3j spurred us to examine other potentially coordinating heteroarenes, and we were 

delighted to see that 3-nitropyridines were competent substrates enabling access to 3o (entry 

15). These results illustrate that diarylamines can be efficiently formed from a broad range 

of nitroarenes and heteroarenes.

The scope with regards to the aryl boronic acid was also surveyed (Table 3). Modifying 

the electronic nature of the aryl boronic acid was investigated by examining the effect of 

a variety of R1- and R2-substituents on the cross-coupling reaction (entries 1 – 6), and 

we observed that the yield of 12 was high irrespective of whether the substituent was 

an electron-donating- or an electron-withdrawing group. In contrast, the cross-coupling 

reaction was sensitive to the identity of the ortho-substituent. While a methoxy substituent 

was tolerated, no diarylamine was formed from an aryl boronic acid bearing an ethyl 

R3-substituent (entries 8 and 9).14 While this effect could be attributed to the increased steric 
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environment around the reaction center, we found 1-napthylboronic acid to be a good partner 

to afford diarylamine 12i (entry 9). Our cross-coupling reaction also tolerated a coordinating 

heterocycle in the boronic acid component to afford 2-pyrimidine amine 12j, albeit in an 

attenuated yield in comparison to pyridyl 3o (entry 10). While our method enables access 

to a broad range of N,N-diarylamines, neither nitroalkanes nor alkyl boronic acids are 

tolerated as substrates using our reaction conditions despite their use in Radosevich’s or 

Suaréz-Pantiga and Sanz’s methods.10,11

To provide insight into the mechanism of the reaction, several control experiments were 

performed (Scheme 2). To validate that the cross-coupling reactions proceeded via a 

nitrosoarene intermediate, an excess of 2,3-dimethylbutadiene was added to the reaction 

of 2-bromonitrobenzene and 4-methoxyphenyl boronic acid. Although the excess of diene 

inhibited this reaction, analysis of the reaction mixture after approximately 10% conversion 

using 1H NMR spectroscopy revealed that oxazine 13 and diarylamine 3k were both 

present.15,16 The observation of oxazine 13 indicates that cycloaddition of the nitrosoarene 

intermediate with 2,3-dimethylbutadiene is competitive with the cross-coupling process. 

Because anilines are well established as competent substrates for C–N bond cross-coupling 

reactions,17 we were curious to determine if C–NAr bond formation in our reaction occurred 

via a nitrosoarene or aniline. While no diarylamine formation was obtained using an aniline, 

submission of nitrosoarene 14 to reaction conditions afforded diarylamine 3p in 56%. Our 

data suggests that copper is required to trigger C–NAr bond formation. No reaction was 

observed when copper acetate was omitted from the reaction of nitrosoarene 14 and the 

aryl boronic acid. Our investigations also uncovered that the hydroxyl substituent of the 

aryl boronic acid plays a critical role for a successful reaction outcome. When an aryl 

boronic pinacolate ester or an aryl trifluoroborate were submitted to reaction conditions only 

reduction to aniline was observed.

Together these experiments suggest that the catalytic cycle for this cross-coupling reaction 

requires the copper catalyst for both the deoxygenation and C–NAr bond formation 

(Scheme 3). Deoxygenation of nitroarene by a copper hydride produces nitrosoarene 

and a copper hydroxide, which is reduced by silane.18 The observation of oxazine 13 
when 2,3-dimethylbutadiene is present suggests that the nitrosoarene dissociates from the 

copper hydroxide complex before the subsequent C–NAr bond forming steps. If the copper 

remained coordinated to ArNO then only a nitroso-ene product would have been observed.19 

Our control experiments indicate that copper also catalyzes the carbon–nitrogen bond 

formation. This could occur through coordination of copper to either the aryl boronic acid to 

form 15 or via copper nitrosoarene 16.19a,19b ,20 Reaction with the coupling partner—ArNO 

1 or ArB(OH)2—forms metallocycle 17,21 which triggers a 1,2-aryl shift to establish the 

C–N bond and produce 18. Reduction of 18 with copper hydride produces the diarylamine 

and regenerates the copper catalyst.22,23

Alternatively, diarylamine 3 could form via a copper aryl intermediate. This species could 

be generated following a mechanism proposed by Liebeskind and co-workers for the cross-

coupling of nitrosoarenes with aryl boronic acids:24 reaction of copper(I) complex 19 with 

ArNO 1 to afford side-on formal copper(III) complex 20.25 Transmetalation by the aryl 
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boronic acid would form 21, and reductive elimination would generate the C–NAr bond. 

Reduction of 22 by silane would form diarylamine 3 and generate the copper catalyst.

The C–NAr bond could also be formed through a mechanism similar to the Chan–Evans–

Lam reaction. Coordination of the aryl boronic acid to the copper hydroxide substituent 

affords 23, which triggers transmetalation to produce Cu(II) intermediate 24 and boric acid. 

Coordination of nitrosoarene 1 affords 25, which undergoes a 1,2 insertion to produce 26. 

Reduction of 26 with silane produces diarylamine 3 and regenerates the copper catalyst. This 

mechanism appears less likely because formation of copper aryl species 24 should occur for 

aryl boronic pinacolate esters or trifluoroborate salts.26,27

In conclusion, we have discovered a mild copper-catalyzed reaction that couples nitroarenes 

or nitroheteroarenes and aryl boronic acids using phenyl silane as the stoichiometric 

reductant. Our reaction requires as little as 2 mol % of copper and tolerates a broad 

range of functionality on both the nitroarene and aryl boronic acid to furnish the amine 

product. Our preliminary mechanistic investigations reveal that the cross-coupling reaction 

proceeds via a nitrosoarene intermediate and that copper is required for to catalyzed both the 

deoxygenation and the C–NAr bond forming steps.
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phenylbenzene boronic pinacolate ester and aniline, albeit in a reduced yield. Consequently, some 
diarylamine 3 would be expected using ArBpin as a coupling partner.233 
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Scheme 1. 
Progress towards the development of efficient catalysis of cross-coupling reactions of 

nitroarenes to access diarylamines.
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Scheme 2. 
Mechanistic experiments.
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Scheme 3. 
Potential catalytic cycle.
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Table 2.

Scope and limitations with regards to the nitroarene.

entry R1 R2 R3 3
yield, 
%a

1 MeO2C H H a
83 

(81)b

2 F3C H H b 84

3 H H H c 66

4 Cl H H d 85

5 MeO H H e n.r.

6 O2N H H f 59

7 H F3C H g 89

8 H Me H h 73

9 H MeO H i 85

10 H H NC j 83

11 H H Br k 89

12 H H Et l 82

13 H H OMe m 72

14 −HC=CH−CH=CH− H n 96
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entry R1 R2 R3 3
yield, 
%a

15 o 75

a
Isolated after silica gel chromatography.

b
1 mmol reaction scale.
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Guan et al. Page 16

Table 3.

Scope and limitations with regards to the boronic acid.

entry R1 R2 R3 13
yield, 
%a

1 F3C H H a 90

2 F H H b 97

3 Me H H c 90

4 H F H d 88

5 H MeO H e 92

6 H Me H f 88

7 H H MeO g 85

8 H H Et h n.r.

9 H −HC=CH−CH=CH− i 83

10 j 59

a
Isolated after silica gel chromatography.
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