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Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated pro-
tein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of 
metformin’s action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a het-
erothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This 
enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its 
alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies 
have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK 
enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory 
conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various 
cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin’s activa-
tion of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of 
various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due 
to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in 
altering the cells’ proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
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Introduction

Metformin is known as one of the oldest, and most widely 
used oral medications in the treatment of type two diabe-
tes or diabetes mellitus (Beladi Mousavi 2012; Taleb et al. 
2014). As a result of metformin’s activity, the mitochon-
drial respiratory chain complex (MRCC) (Baur and Birn-
baum 2014) is blocked, the rate of glucose production from 
glycogen in liver cells is reduced, and sensitivity to insulin 
and glucose uptake through the activation of the adenosine 
monophosphate-activated protein kinase (AMPK) increases 
in the liver and peripheral tissues (Ismaiel et al. 2016; Mum-
midi et al. 2016; Wang et al. 2016). Metformin can sup-
press gluconeogenesis and reduce blood sugar by activating 
AMPK and inducing small heterodimer partner expression 
in the liver (Kim et al. 2008; Chanda et al. 2009). AMPK is 
a heterothermic serine/threonine kinase made of a catalytic 
alpha subunit and two subunits of beta and a gamma regula-
tor (Oakhill et al. 2009; Hasanvand et al. 2016). This enzyme 
can measure the intracellular ratio of AMP/ATP. If this ratio 
is high, the amino acid threonine 172 available in its alpha 
chain would be activated by the phosphorylated liver kinase 
B1 (LKB1), leading to AMPK activation (Young and Zaha 
2012; Hardie 2015). In other words, since it is an intracel-
lular energy sensor, AMPK interferes with the regulation of 
glucose, cellular as well as whole‐body energy homeostasis, 

and fatty acid metabolism (Shaw et al. 2005; Bright et al. 
2009; Oakhill et al. 2009). Moreover, the muscle activity, 
physiological stress and oxidative factors are also able to 
activate the AMPK (Kim, Yang et al. 2016).

AMPK, metabolic and non‑metabolic 
pathways

Several studies have examined the role of AMPK signal-
ling pathway in various metabolic processes. This enzyme 
inhibits anabolic pathways (ATP consumer), and activates 
catabolic pathways to re-supply the cellular energy sources. 
The results of a study conducted by Suet Ching Chen in 
2017 revealed that metformin can suppress adipogenesis 
through processes that are either dependent or independ-
ent of AMPK (Chen et al. 2017). Moreover, the effect of 
metformin independent of AMPK depends on the cell type 
and its evolutionary stage. Metformin in AMPK-mediated 
mechanisms leads to reduced liver glucose production and 
an increase in its consumption. AMPK is, indeed, consid-
ered as the main regulator of sugar and fat metabolisms. 
Ampk activation results in a diminish in the production of 
lipogenic enzymes, the induction of fatty acids oxidation, 
and a reduction in the activity of Acetyl-CoA carboxylase 
enzyme (Zhou et al. 2001; An and He 2016). Furthermore, 
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the chronic activation of AMPK will induce the expression 
of hexokinase and glucose carrier (Zhou et al. 2001). In a 
research conducted on experimental model, it was revealed 
that the intra-duodenum injection of metformin into these 
rats could reduce glucose production from liver cells via 
the activation of AMPK of duodenum mucosa (Duca et al. 
2015). Moreover, several studies have confirmed the role 
of the AMPK pathway in the reduction of lipid mass of the 
body and improvement of NAFLD by inducing liver fatty 
acid oxidation (Zang et al. 2004a, b; Smith et al. 2016). 
It has recently been found that AMPK acts as an inhibitor 
of Farnesoid X receptor (FXR). FXR regulates lipid and 
glucose metabolism, and is involved in controlling the pro-
duction and circulation of bile acids in the liver. The cul-
tivation of liver and intestinal cells revealed that AMPK 
activity would inhibit FXR transcription (Brandmaier et al. 
2015). It has been indicated in some studies that occurrence 
of intermediate fibrosis in the omental fat storage of obese 
people, which is associated with AMPK deactivation, results 
in TGF-β/SMAD3 signalling pathway induction, activation 
of myofibroblasts and apoptosis of adipocytes. Metformin is 
capable of preventing other complications and development 
of fibrosis via activating AMPK and suppressing the TGF-β/
SMAD3 pathway (Luo et al. 2016).

AMPK is able to participate in various non-metabolic 
pathways, including nitric oxide synthesis and anti-inflam-
matory processes (Reihill et  al. 2007; Salminen et  al. 
2011; Salt and Palmer 2012). Metformin is involved in 
controlling oxidative stress by controlling complex I of 
the mitochondrial electron transfer chain (Kinaan et al. 
2015; Wiernsperger 2015) and can be effective in reduc-
ing kidney damage induced by gentamicin (Darabi and 
Hasanvand 2018; Hasanvand 2018). Many studies have 
shown that the anti-inflammatory and antioxidative stress 
effects of metformin in various diseases, such as rheuma-
toid arthritis, neuropathic pain, renal disorders and Anky-
losing spondylitis (Son et al. 2014, Afshari et al. 2018, 
Driver et al. 2018, Qin et al. 2018a, b, Rajaei, Haybar et al. 
2018). This effect of metformin is achieved via activating 
multiple signalling pathways, including AMPK and Pi3K/
AKT. Accordingly, it can attenuated the levels of inflam-
matory cytokines, including TNF-α, Nrf2, IL-6 and etc. 
(Yan, Zhou et al. 2015, Ci, Zhou et al. 2017). Furthermore, 
metformin reduces the levels of inflammatory cytokines 
by inducing stimuli caused by lipopolysaccharide, activa-
tion of AMPK, and inhibition of phosphorylation of JNK1 
in macrophages (Woo, Xu et al. 2014). AMPK chemical 
activators such as metformin reduce the transcription of 
the NF-β factor and MDR1 expression in MCF-7/adr cells 
(Kim et al. 2011). Continuous activity of AMPK signal-
ling inhibits this factor and its consequent inflammation 
(Cacicedo et al. 2004; Yang et al. 2010). Using AMPK 
activators, Chunfen Mo et al. indicated in a research that 

this enzyme has a role in stimulating the expression of 
the Nrf2 transcription factor. This transcription activating 
factor is one of the factors that are effective in antioxidant 
responses (Mo et al. 2014). Nrf2 targets several genes, 
including NQO-1, HO-1 and glutathione S-transferase 
(GST), hence plays a role in regulating the antioxidant 
system (Tkachev et al. 2011).

Different factors can activate macrophages and cause 
inflammatory conditions in diabetic patients. One of the 
most important of these factors is the AGEs (Qin et al. 
2012; Jin et al. 2015). These factors have a receptor of 
RAGE/NF-β on the surface of the macrophages. Various 
investigations have revealed that RAGE signalling plays 
a pivotal role in inflammation caused by the activation 
of macrophages by AGE (Salminen et al. 2011; Huang 
et al. 2015). By activating AMPK, metformin is able to 
reduce the expression of RAGE and suppress NF-βB activ-
ity, and accordingly, reduce the expression of macrophage 
inflammatory cytokines, such as IL-1β, IL-6 and TGF-β. 
Moreover, metformin increases the expression of IL-10 
anti-inflammatory cytokines (Cai et al. 2015, Zhou et al. 
2016). Various investigations suggest the relationship 
between the formation of AGE and development of neu-
rological disorders and inflammatory responses in diabetic 
patients. Ming-Min Chung indicated that the cultivation of 
human neural stem cells in the presence of AGE decreases 
the survival of these cells and increases the production 
of inflammatory cytokines and oxidative enzymes. Treat-
ment with metformin results in reducing the expression 
of inflammatory transcription factors, such as NF-κB and 
IKK, and also decreasing the production of AGE (Chung 
et al. 2017). By phosphorylating and stimulating AMPK, 
metformin can increase the rate of expression of telomer-
ase reverse transcriptase (hTERT) enzyme and postpone 
the aging process of endothelial cells (Karnewar et al. 
2018).

The results showed that metformin could reduce the 
activity of MRCC-1 and eventually reduce oxygen con-
sumption (El-Mir et al. 2000). This inhibition of MRCC-1 
by metformin affects the AMP/ATP ratio and the NAD + /
NADH ratio, which prevents gluconeogenesis (Apostolova 
et al. 2020).

Regulation of transcription of hepatic gluconeogenesis 
induced by metformin has various mechanisms, such as 
inhibition of CREB-mediated transcription of gluconeo-
genic genes through breducing cyclic AMP accumulation 
(Miller et al. 2013; Johanns et al. 2016). In addition, acti-
vation of AMPK by metformin could reduce the expres-
sion of gluconeogenic gene. It has been suggested that 
decreased expression of G6pc and Pck1 may be due to 
separation of the CREB transcription set and mediated by 
AMPK activity (He et al. 2009).
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AMPK and cellular differentiation

In a recent research conducted by Wei et al. the role of 
metformin in increasing the differentiation of dental pulp 
cells into odontoblast was examined. In this research, met-
formin could induce differentiation and mineralization of 
dental pulp cells and be effective in the reconstruction of 
palpation ulcers via regulating AMPK activity. Moreo-
ver, the inhibition of AMPK reduced the activity of alka-
line phosphatase (Qin et al. 2018a, b). Metformin also 
significantly activated AMPK in bone marrow progeni-
tor cells (BMPCs). Prescription of metformin in a time-
dependent manner stimulates the differentiation of BMPCs 
into osteoblast by activating specific osteoblast transcrip-
tion factors, such as Runx2/Cbfa1 and activating AMPK 
(Molinuevo et al. 2010). As the activation of AMPK was 
intensified by metformin, phosphorylation of the STAT3 
transcription factor was reduced. This factor is central to 
the stimulation of conversion monocyte to macrophage by 
regulating the signalling of pro-inflammatory events and 
creating inflammatory micro-environment. Hence, as its 
phosphorylation is reduced by AMPK, this differentiation 
pathway is disrupted and inflammation will be more likely 
to be reduced (Vasamsetti et al. 2015). Moreover, the oral 
prescription of metformin in the systemic lupus erythe-
matosus disease prevents the differentiation of B cells into 
antibody-producing plasma cells by inhibiting the mTOR/
STAT3 signalling pathway (Lee et al. 2017). It has been 
found that metformin increases the proliferation of regula-
tory T cells and raises the expression of its specific tran-
scription factor (FOXP3) by reducing the expression of 
STAT3 and increasing the expression of STAT5 (Passerini 
et al. 2008; Goodman et al. 2011; Maddur et al. 2012). 
This effect is simultaneously observed with reduced power 
of proliferation of TH17 cells. Metformin can alter the 
pathway of polarity of cell differentiation from the inflam-
matory phenotype of TH17 to the Treg inhibitory pheno-
type by regulating this pathway (Lee, Lee et al. 2015a, b).

Through its effect on multiple factors, the AMPK 
activity can alter the differentiation pathway of mac-
rophages towards anti-inflammatory phenotype. In fact, 
if macrophages are stimulated by anti-inflammatory fac-
tors, AMPK phosphorylation occurs and the macrophage 
phenotype would be of anti-inflammatory type. Moreo-
ver, AMPK dephosphorylation occurs if macrophage is 
exposed to inflammatory cytokines (Sag et al. 2008). How-
ever, it was revealed, in tumor conditions, that metformin 
might be involved in inhibiting the spread of tumors and 
suppressing cancer development by altering the pathway 
of tumor-associated macrophages (TAMs) from pheno-
types M2 to M1. Classic macrophages or M1 have pre-
inflammatory activity and the alternative type or M2 has 

an inhibitory effect on immune responses, particularly 
on anti-tumor responses (Mukhtar et al. 2011; Ding et al. 
2015). Chi-Fu Chiang et al. indicated that metformin-
treated cancer cells increase the production of cytokines 
such as IL-12 and TNF-α, which act as macrophage inhibi-
tors to the inflammatory phenotype or M1 by activating the 
signalling pathway of AMPK/NF-β. Moreover, the activa-
tion of this pathway reduces the production of inhibitory 
cytokines, such as IL-10, IL-4, IL-13 and TGF-β, and 
suppresses the differentiation of macrophages towards the 
anti-inflammatory phenotype M2. As a result of these pro-
cesses, the microenvironment surrounding the cancer cells 
or the tumor is likely to suppress the tumor and destroy 
cancer cells (Chiang et al. 2017).

Activation of AMPK–mTOR via metformin inhibits the 
complex activity of the MRCC, which ultimately leads to 
cell death or inhibition of cell proliferation by growth fac-
tors (Cai et al. 2016). Akt kinase is an important kinase in 
human kinoma, which has three subtypes such as AKT1, 
AKT2, and AKT3. AKT2 subtype has been shown to play 
an important role in breast cancer and its proliferation and 
cell survival (Santi and Lee 2011). However, the increas-
ing of expression of miR-200c and its effect on the activity 
pathway of AKT2, c-Myc and Bcl-2 thourth by metformin 
therapy and its antitumor effects may indicate the anti-cancer 
potency of metformin and AMPK (Pulito et al. 2014; Zhang 
et al. 2017).

Metformin and therapeutic goals

Therapeutic actions of metformin in COVID‑19

With the advent of coronavirus in 2019, many studies have 
been conducted with regard to its treatment. However, the 
ACE2 receptor has been shown to facilitate infection at the 
surface of coronary target cells (Guan et al. 2020, Hoffmann 
et al. 2020). It has been indicated that metformin activates 
the AMPK pathway that can ultimately prevent the virus 
binding to the receptor by phosphorylating the ACE2 recep-
tor and altering its structure (Sharma, Ray et al. 2020). Stud-
ies have shown that two proteins in humans that are regulated 
by the mTOR signalling pathway interact with coronavirus 
proteins (Sharma, Ray et al. 2020). Moreover, it has been 
indicated that the AMPK signalling pathway can inhibit the 
mTOR pathway (Ramaiah 2020). Meanwhile, functional 
disorders of vital organs of the body, which are among the 
most important coronary complications, including endothe-
lia, cardiovascular, hematological, and brain disorders, etc., 
are affected by oxidative stress and inflammation processes. 
Activation of the AMPK pathway and subsequently inhibi-
tion of mTOR, suppression of oxidative stress and inflam-
mation, and inhibition of the increase in genes encoding 



779The role of AMPK‑dependent pathways in cellular and molecular mechanisms of metformin: a new…

1 3

proinflammatory cytokines, enables metformin to reduce 
mortality in patients with confirmed COVID-19 (Kamyshnyi 
et al. 2021). Decreased endosome cell pH has been shown to 
be associated with increased maturation of coronary virion, 
and metformin inhibits the endocytic cycle and maturation 
of virions by increasing the pH level. On the other hand, it 
can be effective in reducing the mortality of these patients 
by preventing the disruption of the normal intestinal flora, 
(Varghese, Samuel et al. 2021). Studies have shown that 
metformin can have a reduced risk of death in COVID-19 
patients. This effect was mediated by inhibits mTORC1 and 
active LKB1 by AMPK phosphorylation (Kamyshnyi et al. 
2021). Recent studies have shown that the use of metformin 
by AMPK activation can phosphorylate ACE2 and increase 
the stability of ACE2 and then decrease the host cell accept-
ance level for SARS-Cov-2 (Bangi et al. 2020, Sharma, Ray 
et al. 2020, Shen et al. 2020). Induction of the AMPK sig-
nalling pathway by metformin effectively reduces and modi-
fies neutrophil extracellular trap activity and suppresses the 
inflammatory response in SARS-CoV-2 (Sharma, Chang 
et al. 2020, Kamyshnyi et al. 2021). In addition, Esam Z. 
et al. Also showed that the use of metformin could reduce 
the risk of lung fibrosis associated with SARS-Cov-2 (Esam 
2020). There are numerous other studies in this area, all of 
which suggest that metformin may be a useful adjunctive 
therapy for COVID-19 patients (Bhutta et al. 2021, Bielka 
et al. 2021, Ibrahim et al. 2021, Varghese, Samuel et al. 
2021, Zangiabadian et al. 2021).

Therapeutic actions of metformin as an anti‑cancer 
agent

The relationship between the spread of tumors and cell 
metabolism processes, particularly the role of AMPK in 
these processes, has been investigated in various researches 
over a long period of time, and their use in developing new 
anti-cancer strategies are being examined (Cairns et al. 
2011). The mTOR signalling pathway has a significant role 
in controlling the translation and construction of protein, 
spread of lymphocyte population, tumor genesis and drug 
resistance (Weichhart and Saemann 2009; Witzig and Gupta 
2010; Perez-Galan et al. 2011; Zoncu et al. 2011). Epide-
miological investigations have shown that using metformin 
is associated with reduced incidence of various types of 
cancers including pancreatic (Li et al. 2009), colon (Cur-
rie et al. 2009), breast (Bodmer et al. 2010), and prostate 
cancers (Wright and Stanford 2009). The results of differ-
ent investigations have emphasized that metformin is highly 
likely to inhibit mTOR and perform its anti-tumor role by 
activating AMPK. Moreover, the AMPK Alpha subunit 
interacts with mitotic and cytokine regulators. This process 
is also associated with the suppressing role of AMPK in 

combating various kinds of cancers (Vazquez-Martin et al. 
2009a, b; Green et al. 2010).

Moreover, another study conducted by Tao Lu et  al. 
stated that exposure to metformin thourth regulating 
AMPK–CEBPB–PDL1 signalling pathway can a signifi-
cant reduction in the risk of non-small cell lung cancer (Lu 
et al. 2021). Also, Zhuang Luo et al. showed that metformin 
can induces apoptotic cytotoxicity and finally degrada-
tion thourth AMPK/PKA/GSK-3β-mediated in non-small 
cell lung cancer (Luo et al. 2019). Various research have 
shown that the combination therapy of metformin with 
anticancer drugs mades synergic anticancer effects, such as 
radiation (Storozhuk et al. 2013), gefitinib (Morgillo et al. 
2013; Li et al. 2017), erlotinib (Wang et al. 2017), sorafenib 
(Groenendijk et al. 2015), car-boplatin (Liu et al. 2017), 
cisplatin (Lin et al. 2013), and TRAIL (Nazim et al. 2016).

Park et al. reported that metformin regulates β‑catenin 
to reduce cell proliferation by activating AMPK in colon 
carcinoma (Park et al. 2019) and other study showed that 
in colorectal cancer cells, inhibits non-canonical Ser552 
phosphorylation in β-catenin through an AMPK/PI3K/Akt 
activation with metformin (Amable et al. 2019). The role of 
AMPK and its downstream pathway in repression of protein 
prenylation through MVA pathway and LKB1/AMPK path-
way is linked to inhibition of tumor growth has also been 
reported in several study (Carretero et al. 2007; Seo et al. 
2020). In another study demonstrated that activating ampk 
by metformin attenuated tight junction assembly in intesti-
nal epithelium and promotes expression of colonic epithe-
lial Caco2 cells (Chen, Wang et al. 2018). Several studies 
have shown that activation of cells (Vazquez-Martin et al. 
2009a, b; Yi et al. 2017). Metformin inhibits the progress 
of cells in cancer by inducing AMPK and then LKB1 levels 
and ultimately inhibits translation. Also, metformin reduces 
the phosphorylation of S6Ks and prevents mTOR activity 
(Saraei et al. 2019). Metformin effectively decrease the risk 
of proliferation and metastasis of pancreatic cancer (Oliveria 
et al. 2008; Ruiter et al. 2012). In addition, evidence sug-
gests that a reduced risk of pancreatic cancer suggests that 
significant inhibition of mTOR may be TSC2-independent 
or dependent but associated with phosphorylated AMPK 
(Dowling et al. 2007; Gwinn et al. 2008; Mohammed et al. 
2013).

Therapeutic actions of metformin 
as a nephroprotective agent

It has also been indicated that metformin can have a nephro-
protective effect by activating the AMPK signalling path-
way (Hasanvand et al. 2018). Another research revealed 
that AMPK activation by metformin was associated with 
reduced TGF-β-induced collagen production in kidney fibro-
blasts in mice. This factor, which is considered as one of the 
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important fibrogenic cytokines, plays a significant role in 
the pathogenesis of kidney diseases (Hills and Squires 2011; 
Lu et al. 2015; Hasanvand and Saberi 2018). Moreover, 
the positive effect of metformin in reducing the incidence 
of nephropathies in diabetic patients has been confirmed 
(Rafieian-Kopaei 2013; Dissanayake et al. 2017). This drug 
prevents the formation of kidney stones with its antioxidant 
activity (Yang et al. 2016). It has been shown that treatment 
with metformin, as an AMPK agonist, can well moderate 
mitophagia in epithelial cells of the proximal tubule of the 
kidney (Zhao and Sun 2020). In addition, Ya-chun Han et al. 
Also showed that the use of metformin could decrease the 
risk of fibrosis in the renal interstitial tube associated with 
mitophage activation via the AMPK-Pink1-Parkin path-
way (Han et al. 2021). Another study showed that the use 
of metformin in renal nephrectomy models following renal 
disease could halt the progression of chronic renal disease, 
including renal fibrosis, and that activation of AMPK may 
contribute to the protective effect of metformin nephropro-
technics (Borges et al. 2020). Based on several clinical trials, 
metformin has shown beneficial therapeutic effects on the 
survival of CKD patients as well as the survival of a trans-
planted kidney (Stephen et al. 2014; De Broe et al. 2018).

Therapeutic actions of metformin 
as a neuroprotective agent

A study has shown that stimulation of AMPK is a major 
molecular mechanism of “feeding behaviour” in the hypo-
thalamus of the brain (Blanco Martinez de Morentin, Gonza-
lez et al. 2011). In vitro studies have shown that stimulation 
of AMPK reverses neuropathic allodynia. Moreover, met-
formin could diminish chemotherapy-induced neuropathic 
pain in animals (Taylor et al. 2013). In rat models, met-
formin has been shown to have antinociceptive effects on 
the alleviation of pain in nerves damaged by diabetes (Ma 
et al. 2015). Metformin administration could up-regulate the 
expression of intrinsic factors linked to nerve regeneration 
such as apolipoprotein E (ApoE) after nerve damage (Mel-
emedjian et al. 2013). It was indicated in animal models of 
focal cerebral ischemia studies conducted by Harada et al. 
that neuroprotective effects of AMPK signalling activated 
by metformin diminishes the glucose intolerance. Moreover, 
they have reported a decrease in variation in the mnemonic 
tests (Harada et al. 2010). Activation of AMPK could be 
considered as a novel therapeutic purpose for the tentative 
treatment of neuropathic pain (Yerra et al. 2018). It was 
reported that activation of TRPA1 could induce pain-related 
behaviors in mice (Miura et al. 2013). However, treatment 
with AMPK activators could attenuate these behavioral 
and molecular changes in the pathophysiological profile of 
metabolic dysfunction (Wang et al. 2018). Various studies 
have shown that treatment with metformin is effective in 

neurological diseases, including high MPTP and increased 
BDNF (Patil et al. 2014, Lu et al. 2016), Parkinson’s disease 
(Choi et al. 2010; Arbeláez-Quintero and Palacios 2017; Lu 
et al. 2020, Paudel et al. 2020), epilepsy (H S, Paudel et al. 
2019, Demaré et al. 2021; Sanz et al. 2021, Salvati et al. 
2022), traumatic brain injury (Tao et al. 2018; Taheri et al. 
2019; Fan et al. 2020; Rahimi et al. 2020), neuroprotection 
of the heart (Zhu et al. 2018, Benjanuwattra et al. 2020, 
Leech et al. 2020), and preconditioning in ischemic brain 
injury (Wang et al. 2021a, b, c). Various studies have shown 
that BDNF can affect the structure of the anal sphincter 
(Singh and Rattan 2021, Singh, Singh et al. 2021).

Therapeutic actions of metformin 
as a cardioprotective agent

Consumption of metformin in diabetic patients is associated 
with a significant reduction in cardiac infarction and athero-
sclerosis (Matsumoto et al. 2004). With its effect on reduc-
ing the recruitment of monocytes to the vascular wall and 
their differentiation into inflammatory macrophages, met-
formin reduces the formation of atherosclerotic plaques and 
decreases the levels of inflammatory cytokines (Vasamsetti 
et al. 2015). The effects of metformin are mediated through 
an increase in p-AMPK and by up-regulating p-eNOS. 
Moreover, it improves cardiac function. The cardiopro-
tective effects of metformin are independent of its anti-
hyperglycemic effects. Moreover, an improved myocardial 
remodelling after an ischemic insult with metformin use was 
indicated in a research (Varjabedian et al. 2018). A study in 
patients showed that the progression of the medial thick-
ness of the carotid artery was reduced in metformin-treated 
diabetic patients. The median thickness of the carotid artery 
is a known indicator of atherosclerotic progression. It has 
also been indicated that activation of AMPK by metformin 
can have a pleiotropic effect (Zang et al. 2004a, b; Vasam-
setti et al. 2015). Additionally, various studies have shown 
that treatment with metformin is effective in heart diseases, 
including cardiotoxicity (Kuburas et al. 2022, O’Neill et al. 
2022, Park, Park et al. 2022), heart failure (Benes et al. 2022, 
Buczyńska et al. 2022, Hendawy et al. 2022), atrial fibril-
lation (Bai et al. 2019; Liu et al. 2020, Zhou et al. 2022), 
coronary heart disease (Hua et al. 2018; Luo et al. 2020).

Therapeutic actions of metformin in reproductive 
system diseases

In a research conducted by HyeRan Gwak et al. in 2017, the 
mechanism of action of metformin on ovarian cancer was 
examined. The results of this research confirmed that met-
formin can inhibit AKt and P70S6K by activating AMPK. 
Following this process, the GSK3β protein is activated, and 
finally during the ubiquitin/ proteasome process, the value 
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of cyclin D1 decreases. In fact, metformin decreases the 
amount of cyclin D1 without affecting its transcription lev-
els (Gwak et al. 2017). Cyclin D1 is an essential regulator of 
the cell cycle in phase G1. Investigations have indicated that 
high expression of this factor is associated with resistance to 
treatment and prognosis of ovarian cancer (Bali et al. 2004; 
Hashimoto et al. 2011). Activation of AMPK by metformin 
in ovarian syndrome or metabolic syndrome in vitro and 
in vivo results in the inhibition of metabolism, cessation of 
the cell cycle, and finally apoptosis of cells (Ben Sahra et al. 
2008; Pierotti et al. 2013). Research studies have shown that 
using metformin is associated with improved semen param-
eters and testicular weight, reduced apoptosis in testicular 
cell, and finally restoration of hormonal homeostasis (Yan, 
Mu et al. 2015a, b). Indeed, metformin administration in 
STZ-diabetic rats resulted in improved testosterone, LH 
and FSH hormones levels (Nasrolahi et al. 2013). Various 
studies have shown that treatment with metformin is effec-
tive in reproductive system diseases, including female and 
male reproduction in endocrine pathologies (Lee et al. 2019; 
Shpakov 2021, ul haq Shah, Shrivastava et al. 2022), endo-
metriosis (Zhao et al. 2018, Mu et al. 2020, Stochino-Loi 
et al. 2021, Kimber-Trojnar et al. 2022), polycystic ovary 
syndrome (Chen et al. 2019; Fornes et al. 2022, Xu et al. 
2022) and prostate (Sun et  al. 2018, Chen, Wang et al. 
2021a, b, c, Aydın et al. 2022, Morale et al. 2022).

Therapeutic actions of metformin in the bone 
structure

Available evidence suggests the occurrence of fibroblasts 
asphyxiation and blockage of AMPK activity in the ankylos-
ing spondylitis disease. Moreover, laboratory investigations 
conducted on metformin have indicated its anti-osteogenic 
effects and also its agonist property concerning AMPK. 
Findings of the research carried out by Xiong Qin et al. 
in 2018 showed that osteogenic markers and inhibition of 
ossification are reduced significantly by metformin pre-
scription to fibroblasts extracted from patients with anky-
losing spondylitis (Qin et al. 2018a, b). Metformin is able 
to suppress the differentiation of osteoblasts and inhibit the 
signalling pathway of OPG/RANKL/RANK (Shao et al. 
2014). In another study carried out in 2010, the mechanism 
of metformin’s activity on the differentiation of osteoblasts 
was examined. This research revealed that metformin could 
increase the expression of osteogenic genes such as bone 
sialoprotein, alkaline phosphatase, Runx2, osteocalcin, and 
SHP. Metformin induces the physical interaction and the 
formation of a complex between SHP and Runx2 in the 
osteocalcin promoter. The research findings showed that 
metformin might stimulate osteoblasts differentiation via 
changing the activation of Runx2 by upstream stimulatory 
factor-1 AMPK/USF-1/SHP (Jang et al. 2011). Min-Ji Ahn 

and Goang-Won Cho indicated, in a research conducted in 
2017, that activation of AMPK by metformin could have a 
stimulatory role in human bone marrow mesenchymal stem 
cells towards neural differentiation (Ahn and Cho 2017). 
Various studies have shown that treatment with metformin 
is effective in bone structure, including osteoarthritis (Feng 
et al. 2020; Li et al. 2020a, b; Li et al. 2020a, b), osteoporo-
sis (Blümel et al. 2020, Guo et al. 2022, Song et al. 2022), 
bone regeneration (Ren et al. 2021; Fang et al. 2022; Sun 
et al. 2022) and osteosarcoma (Paiva-Oliveira et al. 2018; 
Zhao et al. 2019, Lu et al. 2021).

Therapeutic actions of metformin in digestive 
system diseases

Min-Jie Lin et al. showed that activation of the metformin / 
AMPK pathway could improve the non-alcoholic fatty liver 
disease in obese mice (Lin et al. 2017a, b). Stimulation of 
this pathway has a positive effect on the activity of the LXRα 
transcription factor. This factor results in the decreasing reg-
ulation of expression of apolipoprotein (Jakel et al. 2004; 
Shu et al. 2007; Shu et al. 2010; Gao et al. 2012). Hence, 
due to the influence on the reduction of its expression in the 
aforementioned process, metformin ameliorates this com-
plication (Lin et al. 2017a, b). Another study revealed that 
metformin could play an inhibitory role in the cell prolifera-
tion of Esophageal squamous cell carcinomas by positive 
regulation of AMPK, P53, P21 and P27 (Cai et al. 2015). 
Metformin significantly reduces the severity of inflamma-
tory bowel disease (IBD) via suppressing the signalling 
pathway of STAT3. As the expression of STAT3 transcrip-
tion factor is increased in this disease, the TH17 phenotype 
and the production of inflammatory cytokines, particularly 
IL-17, IL-6 and TNF-α increase. Metformin can reduce the 
expression of STAT3 and increase the expression of P53 
through the AMPK pathway, which is in the upstream of 
the mTOR transcription factor. Regulation of these condi-
tions improves the clinical status of IBD patients by reduc-
ing inflammation (Shackelford and Shaw 2009, Micic et al. 
2011, Gálvez 2014, Lee, Lee et al. 2015a, b). Furthermore, 
another investigation revealed that inhibiting the activation 
of the two pathways of STAT3 and NF-βB by AMPK has 
been effective in inhibiting the growth of pancreatic tumours 
(Tan et al. 2015). In addition, various studies have shown 
that treatment with metformin is effective in digestive sys-
tem diseases, including colitis (El-Mahdy et al. 2021, Liu, 
Liao et al. 2021, El-Ghannam et al. 2022), Pancreatitis (He 
et al. 2021, Wang et al. 2021a, b, c, Wang, Yu et al. 2021), 
Liver Disease (Saeedi Saravi et al. 2016, Pinyopornpanish 
et al. 2021, Xie, Wang et al. 2021a, b, c) and Gut Microbiota 
(Lee, Chae et al. 2021b, a, Lee, Kim et al. 2021, Liu, Liao 
et al. 2021).
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Conclusions

Many studies have investigated the role of metformin in 
the treatment of various diseases, including inflammatory 
diseases, autoimmune diseases and cancer. A consider-
able number of these investigations have revealed that 
the capacity of metformin to activate AMPK and also the 
consequent activation or inhibition of different factors by 
metformin enable it to alter the pathological pathways of 
the disease, direct cell differentiation, and moderate the 
inflammatory conditions. Since its therapeutic use, even at 
high doses, does not lead to severe side effects, metformin 
has a significant role in either treating various diseases or 
reducing their symptoms.
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