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In recent decades, many serious respiratory infections have broken out all over the world, including SARS-CoV, MERS, and
COVID-19. They are characterized by strong infectivity, rapid disease progression, high mortality, and poor prognosis.
Excessive immune system activation results in cytokine hypersecretion, which is an important reason for the aggravation of
symptoms, and can spread throughout the body leading to systemic multiple organ dysfunction, namely, cytokine release
syndrome (CRS). Although many diseases related to CRS have been identified, the mechanism of CRS is rarely mentioned
clearly. This review is intended to clarify the pathogenetic mechanism of CRS in the deterioration of related diseases, describe
the important signaling pathways and clinical pathophysiological characteristics of CRS, and provide ideas for further research
and development of specific drugs for corresponding targets to treat CRS.

1. Introduction

Cytokine release syndrome (CRS), as is known to all, is an
uncontrollable systemic inflammatory response syndrome
(SIRS) caused by excessive release of cytokines. It causes a
series of clinical symptoms due to cytokine storms attacking
multiple systems and organs. In critically ill patients, they can
evolve into multiple organ failure, even be life-threatening. A
variety of grading methods have been proposed for CRS. The
severity of CRS can be roughly divided into four levels:
mild, moderate, severe, and life-threatening [1–4]. Patients
with mild CRS mainly show nonspecific clinical symptoms

such as fever, rash, fatigue, anorexia, diarrhea, joint pain,
headache, myalgia, and neuropsychiatric symptoms, while
those with severe CRS may have symptoms of multiple
organ failure, such as cognitive impairment, respiratory dis-
tress, and shock [5]. A survey found that nearly half of all
patients diagnosed with CRS had severe CRS and a poor
prognosis. Therefore, the severe form of CRS warrants
urgent research attention.

CRS involves cascade activation of circulating cytokines
and hyperactivation of immune cells, which can be triggered
by infection, malignant tumors, autoimmunity, monogenic
disease, various treatments, and some drugs [5, 6]. In recent
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decades, an increasing number of diseases have been found
to be associated with CRS [7]. Scientists first discovered
and described CRS in acute graft versus host disease, which
is induced by the transplantation of allogeneic hematopoi-
etic stem cells [8]. Subsequently, CRS was also found in
patients receiving treatment of immune checkpoint inhibi-
tors or chimeric antigen receptor (CAR) T cells [9]. During
the course of therapy, the severity of CRS and neurotoxic-
ity was found to have a direct dependency between the
burden of acute lymphocytic leukemia (ALL) and the
extent of CAR T cell expansion [10, 11]. Furthermore,
CRS has been observed in patients with primary and sec-
ondary hemophagocytic lymphohistiocytosis (HLH), mac-
rophage activation syndrome (MAS), and SARS-COV-,
MERS-, or COVID-19-induced acute respiratory distress
syndrome (ARDS) [12, 13].

Until recently, COVID-19 has spread throughout many
countries all over the world for nearly two years. Neverthe-
less, the number of confirmed cases and the death toll con-
tinue to rise, causing panic among governments and
people all over the world. What relentlessly takes the
patient’s life is the overactive immune response induced by
SARS-CoV-2 virus infection. This response involves the
release of extensive proinflammatory cytokines, resulting in
a violent inflammatory response [14]. CRS occurs when sys-
tems and organs throughout the body are attacked by
inflammatory cytokines. Patients with severe lung injury
can progress to ARDS [15, 16]. The obvious hypoxemia that
accompanies it puts the patient at risk. It can be concluded
that CRS may be a common pathophysiological syndrome
in the occurrence and progression of various diseases.
Unfortunately, scientists have yet to find an effective treat-
ment for CRS. We provide an overview of the fundamental
mechanisms that lead to multiple organ damage in CRS, in
order to identify the key cytokines or common pathways
involved in the initiation and development of CRS and what
pathophysiological damage these cytokines cause to organs.
Based on these, we are dedicated to find corresponding
therapeutic drugs to explore mutual therapeutic treatment
of diseases involving CRS, which will have a beneficial
impact on the prevention and treatment of multiple serious
diseases [17].

We searched for published articles in PubMed and Goo-
gle Scholar, employing the keywords “cytokine storm” and
“cytokine release syndrome” and discovered that they are
associated with multiple diseases, such as COVID-19, acute
graft versus host disease, and MERS. We also summarize
cytokine interaction network and identify that four cyto-
kines play a major role in the development of CRS by ana-
lyzing those publications combining CRS and relevant
disorders. After reading literature intensively, it was found
that CRS can cause multiple organ injuries, especially brain,
lung, heart, liver, and kidney injuries. Therefore, we con-
ducted a further search using the terms “organ injury” and
“cytokine” to summarize the cytokines and pathways
involved in CRS-related organ damage. Finally, we took
“COVID-19” as pointcut and searched for inhibitors of rel-
evant cytokines or pathways to explore effective treatment
of CRS.

2. Common Features of Cytokine Storms

The analysis of clinical case shows that the clinical symp-
toms of CRS in different diseases have shared characteristics.
Cytokine storms can assault various systems and organs
throughout the body and generally manifest as lung, kidney,
or liver dysfunction. When cytokine storms affect the lung,
mild symptoms can include cough and shortness of breath.
With progression of the disease, not only pneumonia but
also pulmonary edema can occur. When the condition
worsens, CRS is able to develop into ARDS, along with dys-
pnea and hypoxemia [5, 6, 18]. When the kidney is involved,
it presents as proteinuria, acute kidney injury (AKI), and
renal dysfunction [19–21]. When the liver is involved, CRS
is characterized by hepatomegaly, elevation of liver enzymes
and hypoproteinemia, cholestasis, liver injury, and even liver
failure [5].

Other systems may also be affected. Damage to the heart
caused by CRS leads to hypotension, arrhythmia, cardiomy-
opathy, and even heart failure (HF) [22–24]. Nervous system
damage manifests as dizziness, muscle pain, confusion,
ataxia, epilepsy, loss of taste and smell, and defects in visual
acuity [25]. Injury to blood vessels can lead to capillary leak-
age syndrome, hemodynamic instability, and coagulation
activation [26, 27], while gastrointestinal symptoms include
loss of appetite, nausea, vomiting, and diarrhea [28–30].

At the molecular level, we found that different diseases
trigger cytokine storms by different initiation mechanisms
and variations in the spectrum of cytokines that become acti-
vated [31–34]. Nevertheless, CRS has shared characteristics
in regard to injury to different organs: cytokines induce cell
injury and endothelial dysfunction, leading to vascular leak-
age and nonprogrammed cell death eventually (Figure 1).
Through repeated comparison, we found that several cyto-
kines, including IL-1 (interleukin-1), IL-6 (interleukin-6),
TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ),
always coexist and are critical to CRS caused by infection or
immunotherapy [35]. These cytokines are initially produced
primarily in innate immune cells such as monocytes, macro-
phages, neutrophils, and natural killer (NK) cells. Innate
immune cells not only activate each other but also release
cytokines to activate adaptive immune cells, which further
aggravates the inflammatory effect. After activation, adaptive
immune cells in turn act on innate immune cells and posi-
tively upregulate cytokine levels. When exposure to the exter-
nal stimulus is continuous, positive feedback always exists
while the negative feedback mechanism is insufficiently acti-
vated. This cascade amplification and continuous positive
feedback bring about the overactivation of the immune sys-
tem as well as the aggregation of immune cells in local tissues,
which stimulates the manufacture of free radicals and prote-
ases, which can directly damage cells, tissues, and organs.
These mechanisms ultimately cause a development of CRS.

Next, this review summarizes the mechanisms underly-
ing the downstream effects caused by the common and cru-
cial cytokines in CRS and attempts to explain how they lead
to inflammatory damage to vital organs, that is, how CRS
develops. The insights thus gained should provide inspira-
tion for developing new treatments against CRS.
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3. Cytokine Signaling Pathway Activated by IL-
6, TNF-α, IFN-γ, IL-1, and
the Inflammasome

After binding to their corresponding receptors, IL-6, TNF-α,
IFN-γ, and IL-1 affect the expression of cytokine-related
genes in the nucleus through transduction of a series of sig-
naling proteins and eventually cause a continuous increase
in cytokine production (Figure 2).

3.1. IL-6. Il-6, which is known as the eye of the cytokine
storm, performs a critical part in inflammatory and immu-
nological responses. IL-6 transmits signals and exerts its
effect by three important signaling modes, namely, the clas-
sic signal patterns, trans-signaling pathway, and trans-
presentation pathway [36–38]. In the classic pathway, IL-6
adheres to the interleukin 6 receptor (IL-6R), which is also
noted as GP80 via its site 1 to form a trimer. Subsequently,
it interacts with another membrane glycoprotein (GP130)

at site 2. As a consequence, a heterotrimer is formed. And
then, an active hexameric signaling complex is formed in
which GP130 initiates signal transduction through dimeriza-
tion and phosphorylation by integrating two heterotrimers
[39]. Downstream signal transduction of the hexameric sig-
naling complex is mainly regulated by JAKs (Janus kinases)
and STAT3 (signal transducer and activator of transcription
3). In addition, there are two pathways which also play a
critical role in downstream signal transduction, namely,
Akt-PI3K-MTOR (protein kinase B-phosphoinositol 3
kinase-mammalian target of rapamycin) and Ras-Raf-ERK-
MAPK (GTPase-Raf kinase-extracellular signal-regulated
kinase-mitogen-activated protein kinase) [40]. Although IL-
6R is expressed only in a few cell types, IL-6 can also be trans-
duced through connecting to soluble IL-6 receptor (sIL-6R)
and subsequently to GP130 when it is at an elevated level.
Current opinion holds that the IL-6 classic signaling pathway
mainly exerts an important role in anti-inflammatory effects;
on the other side, the trans-signaling pathway does the

Macrophage Neutrophil NK cell

Activated stage

IL-1α
IL-1β
IFN-γ
IL-6

IL-1 IL-2

IL-1 IL-1 MIP

GM-CSF
IFN-γ

IL-1 IL-2 IL-6 IL-8 IL-10 
IL-12 IL-18 TNF-α IFN-γ T cell B cell

IL-2 
IL-9 
IL-10

IL-2 
IL-10

T cell Plasma cell
TNF-α IFN-γ
IL-1 IL-6 IL-8

TNF-α IFN-γ
IL-1 IL-6 IL-12

IL-17IL-2 IFN-γ

Congential immunity Adaptive immunity

A

Pyroptosis

B C

D

DAMPs
PAMPs

Vessel leakage

IP-10 IL-6
TNF-α MIP

Figure 1: Development of cytokine release syndrome. (a) Antigen presentation: when DAMPs (damage-associated molecular patterns) or
PAMPs (pathogen-associated molecular patterns) bind to PRRs (pattern recognition receptors) on the membrane of antigen-presenting cells
(APCs) in capillaries, these cells activate immune signal transduction and stimulate immune cells and epithelial cells to release cytokines. (b)
Activation of the innate immune system: cytokine secretion results in the recruitment of innate immune cells (e.g., macrophages,
neutrophils, and NK cells) in local tissues. (c) Activation of adaptive immune system: innate immune cells further activate adaptive
immune cells (T cells and B cells). Immune cells then continue to activate each another, resulting in extensive production of cytokines
under the action of positive feedback and causing the formation of a cytokine storm. (d) Cytokine release syndrome: after a cytokine
storm is formed, immune cells and the cytokines released by them continue to induce capillary leakage and pyroptosis, which can lead to
severe organ structural destruction and functional failure. IP-10: interferon-inducible protein 10; MIP: macrophage inflammatory
protein; GM-CSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin; TNF-α: tumor necrosis factor-α; IFN-γ: interferon-
γ; NK cells: natural killer cells.
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opposite; therefore, at high concentrations, IL-6 can both
expand the scope of the inflammatory response and prolong
the duration of activation of the pathway [1, 39]. In contrast
to the classic pathway, the membrane-bound IL-6 receptor
(mIL-6R) and GP130, which are mutually recognized in the
trans-presentation pathway, are distributed in different cells:
IL-6 combines with mIL-6R on dendritic cells and then binds
to GP130 expressed on the membrane of T cells. This path-
way plays a critical part in the activation of helper T cells
17 (Th17).

The IL-6-mediated JAK/STAT3 pathway is requested for
complete stimulation of the NF-κB pathway. Activation of
NF-κB can lead to IL-6 production, resulting in a cascaded
amplification effect [41]. During this process, both IL-1
and TNF-α activate the NF-κB pathway and promote IL-6
generation [42]. As a result, IL-6 promotes production of
IL-1 and TNF-α through activating Th17 and other path-
ways in turn [43, 44]. Therefore, IL-6 performs a critical part
in the activation of other cytokines.

3.2. TNF-α. TNF-α induces downstream effects mainly by
activating the apoptotic pathway, NF-κB pathway, and acti-
vator protein (AP-1). It is clear that TNF-α can interact with

two types of receptors, which are TNF receptor 1 (TNFR1)
and TNFR2. Researches show that TNFR1 has an intracellu-
lar death domain (DD) while TNFR2 does not [45]. The DD
in TNFR1 can recruit TRADD. And then, TRADD recruits
FADD, which can activate caspase-8 and caspase-3 sequen-
tially, consequently causing cell apoptosis. Caspase-3 can
also be activated by caspase-9, which requires mitochondria
to release reactive oxide species (ROS) to mediate activation
[46, 47]. The synergistic impact of TNF-α and IFN-γ can
exacerbate the activation of caspase/FADD [46, 47]. In addi-
tion, TNF-α activates AP-1 through a variety of pathways,
including ERK, p38MAPK, and C-JNK [47, 48]. AP-1 per-
forms an important part in cell proliferation and death [49].
Although different from the apoptosis pathway, NF-κBmainly
mediates the expression of proteins related to cell prolifera-
tion and survival, playing an important proinflammatory
role. For example, NF-κB induces inducible nitric oxide syn-
thase (iNOS). Furthermore, cyclooxygenase-2 (COX-2) and
5-lipoxygenase (5-LOX) are also upregulated [50, 51]. In
addition, TNF-α not only exerts a proinflammatory effect
through NF-κB but also promotes the further spread of
inflammation by upregulating the expression of cytokines.
This process in reverse leads to upregulation of cytokines
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Figure 2: Cytokine signaling pathway activated by IL-6, TNF-α, IFN-γ, IL-1, and the inflammasome. (a) IL-6 mainly mediates signal
transduction through Ras-Raf-ERK-MAPK, NF-κB, JAK/STAT3, and PI3K-Akt-mTOR. (b) IFN-γ activates the downstream pathway
through JAK/STAT1 and NF-κB to generate a cascade amplification effect. (c) TNF-α promotes inflammatory response diffusion through
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transcription; Ras: a GTPase; Raf: Raf kinase; ERK: extracellular signal-regulated kinase; MAPK: mitogen-activated protein kinase; MEK:
MAPK/ERK kinase; SHP2: Src homology 2-containing protein tyrosine phosphatase 2; PI3K: phosphatidylinositol 3 kinase; AKT: protein
kinase B (PKB); mTORC1: mammalian target of rapamycin complex 1; TRAF2: TNFR-associated factor 2; RIP: receptor-interacting
protein; TAK1: TGF-β-activated kinase 1; TGF-β: transforming growth factor-β; IKK: inhibitor of κB kinase; MEKK: MAP/ERK kinase
kinase; JNK: c-Jun N-terminal kinase; p38a: p38 mitogen-activated protein kinase; AP-1: activator protein-1; TRADD: TNFR-associated
death domain; FADD: Fas-associated protein with death domain; NLRP3: NOD-like receptor (NLR) protein 3; ASC: adaptor protein
apoptosis-associated speck-like protein containing a caspase-recruitment domain; caspase: cysteinyl aspartate specific proteinase.
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including TNF-α. In summary, TNF-α can both induce cell
pyroptosis and apoptosis through caspase and AP-1 and pro-
mote the inflammatory response through NF-κB.

3.3. IFN-γ. The host defense response mediated by inter-
feron (IFN) mainly includes antiproliferative and proapop-
totic effects. IFN mainly have three types in human [52].
Type I IFN refers to IFN-β, 13 types of IFN-α subtypes,
and IFN-ε and IFN-ω. Type II IFN includes only one sort:
IFN-γ. Type III interferons are found by researches so far,
namely, IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4. IFN-γ is
the only type II interferon. Unlike other interferons, IFN-γ
not only has antiviral properties but is also able to stimulate
and modulate the immune system [53]. Similar to IL-6, IFN-
γ recognizes the IFN-γ receptor (IFNGR1/2) and activates
the JAK/STAT signal transduction pathway to perform its
biological function [54, 55]. Subsequently, IFN-γ receptor
activation results in STAT1 being phosphorylated by
receptor-associated JAK1 and JAK2. A homologous dimer
is formed by phosphorylated STAT1 that is transferred to
the nucleus to activate the IFN-γ response gene by connect-
ing to the GAS motif within the promoter [56]. The IFN-γ
gene also has adhering sites which is in its promoter region
for several other transcription factors. Among these tran-
scription factors, AP-1, CREB/ATF, NFAT, NF-κB, T-BET,
and Eomes are included [57]. In addition, many transcrip-
tion factors can be activated by other cytokines such as
TNF-α, IL-1, IL-2, IL-6, IL-12, IL-15, IL-18, and IL-27. Type
I interferon can also induce IFN-γ production by activating
STAT-1 [58]. IFN-γ induces the stimulation of macrophages
and Th1 cells, which activates the downstream cytokine net-
work and maintains the continuous production of IFN-γ,
leading to the activation of CD4+ and CD8+ cells [59–61].
IFN-γ performs a critical part in cell apoptosis stimulated
by IFN regulatory factors (IRF). The IRF target genes
responsible for the apoptotic response may include cas-
pase-1, caspase-7, and caspase-8 [57].

3.4. IL-1 and the Inflammasome. IL-1 performs a significant
role in inflammatory cascade amplification; to exert its effect
during the innate immune response, it requires the process-
ing and activation of a multiprotein complex called the
inflammasome. The inflammasome can be divided into dif-
ferent types according to sensor proteins, including NLRP1,
NLRP3, NLRC4, and AIM2 [62]. It serves as a regulator of
caspase-1 stimulation and processing of IL-1β. The NLRP3
inflammasome has been found to play a key part in activat-
ing IL-1 to exert inflammatory effects [63]. The NLRP3
inflammasome consisted of NLRP3 and ASC (adaptor pro-
tein apoptosis-associated speck-like protein containing a
caspase-recruitment domain) and effector protein inflam-
matory cysteine aspartase (caspase). Activation of the
inflammasome is divided into two steps. When sensor pro-
teins recognize DAMP or PAMP, NLRP3 interacts with
ASC to form oligomers that provide a site for caspase-1 acti-
vation: this constitutes the first step. Caspase-1 activation
also requires the mediation of the second signal in the sec-
ond step. It is believed that the secondary signal may be
derived from K+ efflux, mitochondrial DNA oxidation and

dysfunction, lysosomal degradation, ROS formation, and
Ca2+ imbalance [64, 65]. After two steps, caspase-1 is acti-
vated and promotes the excretion of IL-1β and IL-18.

In addition to cytokine production, the inflammasome
can also cleave the connector site between the amino termi-
nal (N) and carboxyl terminal (C) of Gasdermin D (GSDM-
D), resulting in the formation of pores in the cell membrane
through the N-terminal (GSDM-DN) [62]. This pore can
release IL-1β and allow Na+ and H2O to pass into cells,
resulting in cell swelling and apoptosis [66]. Excessive IL-
1β not only promotes the secretion of a great number of
cytokines (including IL-6, TNF, IFN-α, and IFN-β) through
the stimulation of several signaling pathways but also acti-
vates cyclooxygenase, leading to acute inflammatory disease.
Deposition of IL-1α can further activate PAMP or DAMP
and promote the operation of the IL-1β pathway [67].
Recent studies have also found that other inflammasomes
can increase caspase-1 activity through different pathways,
causing similar inflammatory effects. Like caspase-1, several
other proteins in the caspase family play important roles in
inducing GSDM-D cleavage and apoptosis [62, 68]. For
example, it is found recently that caspase-8 stimulates the
secretion of proinflammatory cytokines and to process pro-
IL-1β and IL-18 in identical routes as caspase-1 in inducing
apoptosis.

4. The Mechanism of Organ Damage in
Cytokine Release Syndrome

CRS involves damage to various organs throughout the
body, mainly the brain, lungs, heart, liver, and kidney
(Figure 3). Although these organs are connected to each
other through blood vessels, the mechanism by which dam-
age occurs to each of them is different.

4.1. Brain. A multitude of etiologies can cause neurological
symptoms in cytokine release syndrome. Clinical studies
have shown that increased blood–brain barrier (BBB) per-
meability can be observed in sufferers with neurological
symptoms of CRS [69]. The appearance of neurological
manifestations in COVID-19 patients with cytokine release
syndrome-related encephalopathy is also associated with an
increase in serum S100B protein levels (reflecting BBB per-
meability) [70, 71]; CAR-T cells, elevated protein concentra-
tion, and high white blood cell count have also been
observed in the cerebrospinal fluid of patients with neuro-
toxicity after CAR-T cell adoptive immunotherapy [72].
Abnormal increase of cytokines in blood vessels can lead
to increased BBB permeability. For example, IL-6 and
TNF-α have been shown to cause endothelial damage and
increase BBB dysfunction [73], allowing cytokines in the
blood vessels to penetrate into the brain tissue through the
BBB [72], subsequently activating the microglia [74] in the
central nervous system to secrete IL-1β, IL-6, IL-12, TNF-
α, and other cytokines [75], as well as activating other brain
tissue cells such as astrocytes. Microglia and astrocytes can
damage neurons and glial cells, which could explain the
neurological symptoms seen in severe CRS. In addition, the
passage of IFN-γ and TNFα through BBB can induce the
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pressure and apoptosis of vascular supporting pericytes,
which may amplify the increase in BBB permeability and
aggravate neurological symptoms [76, 77].

When cytokines in the blood increase the permeability of
the BBB, viruses and CAR-T cells are also more likely to
infiltrate and directly damage the brain tissue [72]. In addi-
tion, vascular leakage, complement activation, and abnormal
coagulation caused by cytokine storms increase the risk of
stroke and cause ischemic necrosis of brain tissue [22, 78].
It is worth noting that neurodegenerative diseases are also
related to abnormal proinflammatory factors in brain tissue
[79]. Therefore, CRS may worsen the condition of such
patients while also increasing the risk of neurodegenerative
diseases among other patients in the future: this warrants
close attention from researchers.

4.2. Lung. Lung damage is very common in CRS, especially
in severe respiratory infectious diseases, which can result in
ARDS. The lung parenchyma is mainly composed of alveo-
lar epithelial cells and vascular endothelium. In severe respi-
ratory infections, the causative pathogen can lead to ARDS
by recognizing the receptors of alveolar epithelial cells. In
both infectious and iatrogenic cytokine storms, cytokines
tend to accumulate in the lungs due to the abundance of
small blood vessels in these organs.

Excessive IL-6 signaling can induce innate and adaptive
immune cells to accumulate in the lungs [80]. When trig-
gered by cytokines like TNF and IFN, these immune cells
release large amounts of free radicals and proteases, causing
damage to capillary endothelial cells and lung epithelial cells
[17]. They can also act in concert with the inflammasome
complex to promote the pyroptosis of alveolar cells [81]. A
study has found that IL-6 can reduce the production of
fibronectin [82], causing the connections between cells to
loosen. Together with the edema and pyroptosis of alveolar
and vascular epithelial cells, the permeability of the respira-
tory membrane (alveolar-capillary membrane) increases.
Because IL-6 also damages liver cells, resulting in reduced
albumin production, a great deal of fibrin-rich fluid and pro-
tein eventually leaks into the lung interstitium and alveoli,
causing noncardiogenic pulmonary edema [83]. IL-6 can
also promote the differentiation and maturation of Th17
cells, which produce IL-17 and IL-22, as well as promote
the production of IL-1, IL-6, and TNF by macrophages, den-
dritic cells, fibroblasts, and endothelial cells, thereby acceler-
ating the occurrence of inflammation and leading to lung
tissue structure and dysfunction [43, 83]. Decreased lung
function leads to hypoxia in tissue cells, which leads to
decreased Na-K-ATPase activity of alveolar epithelial cells,
cell metabolism disorders, lymphatic decompensation, and
further aggravation of fluid retention and hypoxia. The
oxygen-sensitive proline hydroxylase is activated and NF-
κB is released at this stage, which further aggravates the
inflammatory response. Eventually, lung function deterio-
rates severely and ARDS develops [84].

4.3. Heart. The manifestations of the cardiovascular system
in CRS include myocardial injury, myocarditis, arrhythmia,
ischemic heart disease, and HF [23, 85]. In CAR-T treatment

and COVID-19, CRS is intimately linked to the occurrence
of heart damage and cardiovascular events [86, 87]. In spe-
cific CRS diseases, cardiac complications are often caused
by various mechanisms, and abnormally increased cytokines
are a major source of the secondary cardiac complications of
the disease [85, 87]. Inflammatory cytokines mainly affect
heart function in three ways: (1) acting on cytokine receptors
on cardiomyocytes, causing structural changes in the heart;
(2) acting on the specific ion channels of the ventricular
myocytes, affecting the electrophysiological activity of the
myocardium; and (3) acting on the endothelium of coronary
arteries, affecting the blood supply to the heart.

Excess TNF-α may activate TNFR, causing myocardial
dysfunction and infarction development, as well as hypertro-
phy, fibrosis, and apoptosis [88]. TNFR-α activation medi-
ates cell apoptosis through the transduction of a series of
downstream signals [17]. Studies have shown that IL-1, IL-
6, and TNF-α can regulate the expression and functional
changes of potassium and calcium channels on ventricular
myocytes, which leads to prolonged duration of action
potential of cardiomyocytes and affects the QT interval of
cardiomyocytes [89–92]. This may be one of the mecha-
nisms by which systemic inflammation in CRS leads to
arrhythmia. Furthermore, in the mouse model, the interac-
tion between TNF-α and IL-6 has been shown to aggravate
oxidative stress and reduce eNOS phosphorylation, leading
to coronary artery endothelial dysfunction in type 2 diabetes
mellitus mice [93]. Coronary endothelial dysfunction can
increase the occurrence of cardiovascular events [94], which
may explain the frequent occurrence of cardiovascular com-
plications when CRS occurs in patients with chronic under-
lying diseases.

It is worth noting that the mechanisms by which the
above-mentioned inflammatory cytokines affect the struc-
ture and function of myocardium are chronic; as a result,
not every patient with CRS will experience immediate
cardiovascular symptoms. However, in patients with cardio-
vascular diseases and chronic diseases accompanied by
inflammatory conditions such as diabetes, abnormally ele-
vated inflammatory cytokines may aggravate the original
heart damage, making these patients more likely to develop
CRS-related cardiovascular events.

4.4. Liver. The liver plays a key role in purifying the blood
and removing harmful substances because besides liver cells
there are a great deal of other immune cells in the liver such
as Kupffer cells, dendritic cells, and lymphocytes. Damaged
liver cells thus interact with these immune cells. Clinical
studies have shown that cases of liver damage can be found
in a variety of diseases exacerbated by CRS. Damage of liver
cells is closely related to cytokine storms, in which IL-1, IL-6,
TNF-α, and IFN all play a role.

IL-6 can exert its effect in two ways: classic and trans-
signaling. Studies have found that the classic signaling path-
way through IL-6R that bound in membrane is required for
anti-inflammatory effects and can promote the regeneration
of liver and biliary tract cells. When the concentration of IL-
6 increases, it can combine with sIL-6R to exert its proin-
flammatory effect and readily induce the production of acute
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phase proteins like serum amyloid A (SAA), C-reactive
protein (CRP), haptoglobin, and fibrinogen [82]. The accu-
mulation of amyloid (AA) can lead to amyloidosis in the
liver, and in severe cases, the very poor outcome of liver fail-
ure can be observed [95]. The deposition of AA can also
affect the kidneys and gastrointestinal tract, leading to mul-
tiple organ failure [95]. IL-6 induces insulin resistance and
causes fatty changes in liver cells [96]. The acute phase pro-
tein and fibrin participate in the activation of the comple-
ment system and the coagulation cascade, leading to a
persistent hypercoagulable state of blood. Cytokines recruit
monocytes, neutrophils, and other immune cells to the vas-
cular endothelium, and the complement system and proco-
agulant pathways interact, leading to the formation of
microthrombi [97–99]. Liver dysfunction can also disrupt
the coagulation and anticoagulation balance and induce
DIC in severe cases.

IL-1 produces IL-1β after the activation of inflamma-
somes, which not only induces the pyroptosis of hepato-
cytes but also activates other cytokines in the liver to form
a positive feedforward stimulus and continue to amplify
inflammatory damage. Several human and animal experi-
ments have confirmed that the inflammasome and IL-1
are the main factors that drive liver cell damage and liver
failure [100]. The liver is rich in NK cells, which account
for about 30% of immune cells [101–103]. A study showed
that under normal circumstances, IFN-γ secreted by NK
cells can promote liver regeneration after activating STAT3.
Overactivated NK cells can activate STAT1 signaling path-
way in an IFN-γ-dependent manner and block the prolifer-
ation of hepatocytes and oval cells to inhibit liver
regeneration [104]. TNF-α plays a dual role in the liver. It
not only acts as a cell death mediator but also induces hepa-
tocyte proliferation and liver regeneration. TNF-α can pre-
vent cell death through the NF-κB pathway and induce
hepatocyte apoptosis and necrosis through the ROS-JNK
pathway [105].

4.5. Kidney. There are many reasons for kidney damage
caused by cytokine storms. Hypertension, immune cell
recruitment, and microthrombosis are all potential contribu-
tors. The dysfunction of other organs can also affect the kid-
neys. IL-6 promotes the differentiation and maturation of
Th17, and the synergistic effect of secreted IL-17 and TNF-
α reduces NO production in the vascular endothelium and
enhances blood vessel contraction; the release of IFN-γ reg-
ulates the production of local angiotensinogen in the kidney;
subsequently, the AngII pathway and the renin-angiotensin-
aldosterone system (RAAS) are overactivated, and the pro-
duction of aldosterone increases, which enhances the reab-
sorption of water and sodium and aggravates high blood
pressure [106–110]. Hypertension damages the renal capil-
lary endothelial cells, leading to renal arteriole sclerosis. T
cells deposited in renal capillaries due to the chemotaxis of
cytokines penetrate into the adventitia of the capillaries
and surrounding fat to produce ROS, leading to kidney dam-
age and renal fibrosis [110]. Severe hypercoagulability can
lead to diffuse intravascular coagulation, and microthrombi
entering the renal capillary network can form renal microin-

farction foci, leading to acute necrosis of renal tubules and
even affecting cortical function [111].

In the late stage of CRS, if the heart experiences cardiac
insufficiency due to cytokine storms, insufficient cardiac
output may lead to insufficient renal perfusion [112]. Lung
damage leads to hypoxia, while liver insufficiency leads to
hepatorenal syndrome, which also contributes kidney
damage.

5. Treatment

There are several types of drugs that can be used to pre-
vent the development of CRS; these include cytokines or
cytokine receptor antagonists, downstream signaling path-
way blockers, glucocorticoids, and plasma from recovered
patients (Table 1).

5.1. Cytokine Antagonism

5.1.1. IL-6 Antagonists-Clazakizumab. Clazakizumab is a
high-affinity humanized monoclonal antibody developed
by genetic engineering (IgG1). It prevents IL-6 from inter-
acting with IL-6R. Clazakizumab has the best effect and lon-
gest acting time among the IL-6- and IL-6R-blocking drugs.
It does not cross-link with any cell surface receptors and has
no antibody-dependent or complement-dependent cytotox-
icity. In addition, compared with IL-6 receptor blockers,
clazakizumab can avoid the rebound effect caused by accu-
mulated IL-6 [113]. According to a case report, a severe
COVID-19 patient who had received a heart transplant
was cured after receiving clazakizumab [114]. Clazakizumab
has also been used for treating rheumatoid arthritis, signifi-
cantly improving the response rate of ACR20 compared with
that in patients treated with methotrexate (MTX) alone
[115]. Another study has shown that clazakizumab can
reduce donor-specific antibody (DSA) titers in the immune
rejection after kidney transplantation and significantly
improve the prognosis of kidney transplantation patients
[116]. Other drugs in the same category are olokizumab
[39], siltuximab, and sirukumab.

5.1.2. IL-6 Receptor Antagonist-Tocilizumab. Tocilizumab is
a humanized monoclonal antibody which can bind to solu-
ble IL-6R (GP80) and membrane-bound IL-6R (GP130); it
blocks the IL-6 signal pathway to reduce inflammation and
prevent the progression of CRS. Data from a retrospective
study conducted in China [117] showed that most of the
severe COVID-19 patients and critical COVID-19 patients
experienced immediate improvement in hypoxemia and
lung CT opacity after tocilizumab treatment, which indicates
that tocilizumab has a great treatment of COVID-19. Its
mechanism and efficacy in rheumatoid arthritis are similar
to those of clazakizumab [118]. Other drugs in the same cat-
egory are sarilumab and levilimab [119, 120].

5.1.3. Blockade of IFN-γ-Emapalumab. Emapalumab is a
monoclonal antibody against IFN-γ. It binds to the cytokine
IFN-γ to block its interaction with the corresponding cell
surface receptors and prevents its activation of downstream
JAK/STAT-related signaling pathways, thus preventing the
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further aggravation of CRS. It can significantly reduce criti-
cal COVID-19 patients’ mortality. However, its side effect
is to increase the patients’ viral load and exacerbate the
infection [121]. This drug blocks cytokine storms in primary
hemophagocytic lymphohistiocytosis (pHLH) [122], and it
is currently approved by the US FDA (Food and Drug
Administration) for the treatment of the disease.

5.1.4. Blockade of IL-1β-Canakinumab/Anakinra. Anakinra
is an IL-1 receptor antagonist. Canakinumab is an IL-1β
antagonist. These drugs prevent NLRP3 activation by block-
ing the binding of IL-1 and its receptor, preventing apoptosis
and pyroptosis, and reducing induction of the release of
other cytokines by the IL-1 pathway to prevent the further
development of CRS. Studies have shown that anakinra
treatment can significantly reduce mortality in COVID-19
patients without increasing the risk of infection and with
no side effects. Anakinra is therefore an ideal broad-
spectrum therapeutic drug [123, 124]. In a recent study, 10
hospitalized adults with bilateral pneumonia, excessive
inflammation, and respiratory failure who did not require
mechanical ventilation showed a rapid decrease in serum
CRP, improved oxygenation, and no granulocytopenia or
bacterial septicemia during 45 days of hospitalization when
treated with canakinumab [125].

5.1.5. Blockade of TNF-α-Infliximab/Adalimumab/
Etanercept. This type of drug is a soluble TNF-α-binding
drug, which prevents the binding of TNF-α to its receptors
and activates downstream signaling pathways. Some
researchers have suggested that treatment with high doses
of infliximab may worsen infection, but existing clinical
studies do not offer enough evidence to support this claim.
Anti-TNF therapy has been shown to be safe for many peo-
ple at high risk of COVID-19 [126]. Furthermore, studies
have shown no direct association between the drug and
adverse pregnancy outcomes [127]. Etanercept is a human-
ized TNF-α receptor antibody fusion protein, a soluble
TNF receptor, which prevents the binding of TNF-α and
its receptor by binding to TNF-α/β to control inflammation.
Because its mechanism of action is similar to infliximab and
adalimumab, the authors believe that this drug can be used
to treat COVID-19; however, this needs verification through
relevant clinical trials.

5.2. Blockade of Cytokine Downstream Pathway

5.2.1. JAK-STAT Signaling Pathway-Ruxolitinib. Ruxolitinib
is a potent inhibitor of the JAK/STAT signaling pathway
that selectively inhibits JAK-1 and JAK-2 to exert antiviral
effects. Ruxolitinib inhibits the function of T cells, dendritic
cells, and NK cells to reduce the production of IL-10, IL-12,
IL-23, and TGF-β. Reduced IL-12 and IL-23 levels result in
the inactivation of Th-1 and Th-17 cells. This reduces the
production of IL-17, IL-22, TNF-α, IFN-γ, and IL-2, ulti-
mately weakening the inflammatory response [128]. How-
ever, this downregulation increases the body’s susceptibility
to opportunistic pathogens and the risk of activation of
latent infections. However, a number of controlled clinical
studies [129, 130] have shown that the use of ruxolitinib in

COVID-19 patients can accelerate clinical improvement
and is well tolerated.

5.2.2. NF-κB Signaling Pathway-Phillyrin (KD-1). In labora-
tory studies, phillyrin was shown to significantly reduce the
levels of NF-κB, thereby reducing the production of inflam-
matory cytokines such as IL-6, TNF-α, IL-1β, IP-10, and
MCP-1 to relieve inflammation [131]. However, there is a
lack of studies related on its clinical application for
COVID-19 treatment.

5.2.3. PPAR-γ Agonists. Thiazolidinedione (TZD) and pio-
glitazone have attracted much attention [132, 133]. PPAR-
γ (peroxisome proliferator-activated receptors-γ) is widely
distributed in tissues. It not only inactivates NF-κB by
silencing but also induces the synthesis of antioxidant
enzymes and reduces the generation of ROS [134, 135]. Fur-
thermore, PPAR-γ inhibits the differentiation and matura-
tion of monocyte macrophages [136]. To date, many
reviews have hypothesized that PPAR-γ drugs have a good
therapeutic effect in CRS, reducing lung injury and inhibit-
ing viral RNA synthesis and replication [137].

5.2.4. SphK-S1P-S1PR. Current FDA-approved drugs target-
ing SphK-S1P-S1PR include FTY720, ozanimod, and opaga-
nib. Activation of FTY720 leads to downregulation of S1PR1
and reduces microvascular permeability, thereby preventing
the invasion of lymphocytes from lymphatic tissue into the
blood system, which is instrumental in limiting the diffusion
of inflammation [138, 139]. FTY720 inhibits the generation
of TNF-α, IL-6, and other types of cytokines [140], thus tak-
ing part in suppressing cytokine storms. Additionally, clini-
cal studies have found that FTY720 is able to pass through
the BBB as well as fulfill multiple roles in the CNS. Since
more serious neurological side effects may occur in patients
with COVID-19, it may be utilized as an early prevention
measure [141, 142]. Compared with FTY720, ozanimod
has the advantage that it does not bind to S1PR3 and activate
it. Hence, ozanimod is more specific, having fewer cardio-
pulmonary side effects. Furthermore, it has a shorter half-
life as well as higher safety [143]. In global clinical trials
for patients infected with SARS-COV-2, opaganib has also
been measured. Some studies suggest that sphingolipid
derivatives, such as ceramide-1 phosphate, have stronger
potential of antiviral and auxiliary immune in COVID-19
[144–146].

5.3. Other Treatment. In addition to the therapeutics
described above, the use of glucocorticoid (dexamethasone)
has been shown to be effective in reducing 28-day mortality
in COVID-19 patients without significantly increasing the
risk of adverse events [147]. In China, during the COVID-
19 outbreak, traditional Chinese medicine has also played a
significant role in improving the prognosis of patients and
accelerating their recovery. A multicenter controlled study
[148] conducted by academician Zhong Nanshan’s team
showed that luteinizing hormone capsule (Lianhuaqingwen)
improves the recovery rate of patients with fever, fatigue,
cough, and other symptoms and shortens their recovery
time. Lianhuaqingwen has been approved for COVID-19
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treatment in China. In Wuhan, plasma treatment of recov-
ered patients also achieved good results. A small clinical
study has shown that treating COVID-19 patients with
high-titer convalescent plasma results in remission or reso-
lution of clinical symptoms such as fever, cough, shortness
of breath, and chest pain within 1–3 days. Lung imaging
findings and lung function were also reported improving sig-
nificantly [149]. This also suggests that pathogen control
may be a treatment for cytokine release syndrome given that
the persistence of pathogens is an important factor in main-
taining cytokine storms. Some researchers believe that high
doses of vitamin C can also play a role in blocking cytokine
storms [150].

6. Discussion

We note that patients with the same CRS disease still have
different clinical manifestations; this is evident when
COVID-19 patients are considered as an example. COVID-
19 patients are classified based on whether they have asymp-
tomatic, mild, moderate, severe, or critical disease. Some
patients develop ARDS and die. The difference in clinical
manifestations may be due to the difference in the negative
feedback regulation mechanism of inflammatory response
among different populations. The imbalance between the vir-
us’s ability to cause inflammation and the patient’s ability to
suppress it leads to disease progression and even death.
Plasma treatment can quickly relieve the clinical symptoms:
a possible explanation for this is that in COVID-19 survivors,
the virus-specific antibody in the blood plasma can neutralize
the virus directly and undermine its ability to promote the
progression of inflammation to levels below which the
patient’s own immune system can inhibit inflammation pro-
gression quickly; in this way, the patient’s own negative feed-
back mechanism can be brought into play to alleviate clinical
symptoms. However, the specific mechanism of action of
convalescent plasma therapy has not been fully elucidated.

IL-6, IFN- γ, TNF- α, and IL-1 participate in the activa-
tion of multiple key pathways in the cytokine network
simultaneously, among which extensive studies refer to the
NF-κB pathway, JAK/STAT pathway, and MAPK pathway
[41, 42]. Therefore, these four cytokines are closely related
to a variety of other different kinds of cytokines. Because
of the diverse combinations of cytokine receptors and signal
transduction pathways, one signaling molecule may not
only participate in one pathway but also affect the transduc-
tion of other pathways. Therefore, single-target drugs can
theoretically have high efficacy in a short time, but it cannot
be ruled out that other signaling pathways may be affected
which could generate potential side effects such as disrup-
tion of the trade-off between the process of proinflamma-
tory and anti-inflammatory. Studies of single-target drugs
should focus on the overall impact of blockers on upstream
and downstream pathways to identify such side effects as
priority.

At present, in addition to the interaction between cyto-
kines, other components in tissues play key roles in the acti-
vation or inhibition of cytokines. For example, the activation
of the inflammasome requires second signals, including sec-

ond messengers. Besides the binding of DAMPs and PAMPs
with PRRs, the changes in intracellular ions and the dysfunc-
tion of mitochondria and lysosomes also play important part
in inflammasome activation [64, 65]. Therefore, the mecha-
nism of action of these components in CRS is also worthy of
further exploration.

The increased vascular permeability and endothelial dys-
function is one of the crucial shared mechanisms of multiple
organ dysfunction in CRS. However, the characteristics of
mechanism by which organ damage occurs in CRS vary in
different organs such as the brain, lung, heart, liver, and kid-
ney, giving rise to divergent future research directions. For
example, the symptoms of neurological damage in CRS are
more common in patients receiving CAR-T treatment, while
symptoms of respiratory system damage in CRS are more
common in severe infectious diseases of the respiratory tract,
indicating that the degree of organ damage is related to the
cause. In CRS, IL-6 plays a central role in the mechanism
of pulmonary injury, TNF-α plays a vital role in the mecha-
nism underlying cardiac injury, and the liver injury mecha-
nism includes a variety of cytokines, indicating that the
contribution of cytokines to damage in different organs is
different. The damage to the liver plays an important role
in aggravating multiple organ failure in CRS, while kidney
damage is more secondary to the damage to other organs,
indicating that different organ disorders play different roles
in CRS. In addition, the influence of inflammatory factors
on various systems plays an important role in the mecha-
nism of multiple organ dysfunction in CRS, although the
distribution of inflammatory factor receptors in various
organs and their functions are not clearly understood. Fur-
thermore, organ damage is often the result of the synergistic
effect of multiple inflammatory factors, which also makes
research challenging. Future research should pay attention
to the effects of cytokines on specific organs and the interac-
tion between cytokines.

Most of the functional proteins in the cytokine pathway
are located in cells and some in the nucleus. Thus, in addi-
tion to extracellular specific factor antagonists, the develop-
ment of key protein antagonists in shared intracellular or
nuclear pathways is a significant orientation in developing
therapeutic drugs against CRS. It is necessary to test the
transmembrane ability of drugs and the efficiency and
activity of cell entry when developing such drugs to better
assess their efficacy. Because a variety of kinases is involved
in the activation and signaling of transduction proteins,
enzyme activity is also worthy of further investigation. At
present, good results have been achieved in the targeting
of pathogens, cytokines, cytokine receptors, and down-
stream signaling pathways. However, due to the multipath-
way characteristics of CRS itself, an effective specific drug
or drug combination remains elusive. Although Chinese
medicine also shows efficacy in the treatment of CRS-
related diseases, there are still many uncertainties due to
the unclear mechanism of action. We believe that as the
mechanism of CRS is gradually clarified, more effective
drugs and treatment plans will be developed. However, vac-
cination remains the most efficacious response to curb the
burden of COVID-19.
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7. Conclusion

Cytokine storms occur in many diseases and are a key deter-
minant of poor prognosis. CRS, which is the result of the
accumulation of cytokine storms in local tissues or organs,
involves the mobilization of a great number of immune cells
to attack and injure cells in tissues, causing structural
destruction and dysfunction of tissues and organs. Promi-
nent and common pathophysiological features include vas-
cular leakage and necrosis. CRS involves a variety of
cytokines; among which IL-6, IFN-γ, TNF-α, and IL-1 per-
form an extremely key role in the cytokine network, deter-
mining the severity of cytokine release syndrome. Although
several drugs targeting specific cytokines have been used in
some CRS-related diseases, it is uncertain whether these
drugs have good efficacy against multiple CRS-related dis-
eases. Therefore, elucidation of the pathophysiological mech-
anisms of these four cytokines in multiple organ dysfunction
may reveal new ideas and directions for the treatment of
cytokine release syndrome.
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